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Abstract

AI research explains the strangest feature of software and
tell us how to understand larger programs.

1 Introduction

The physicist John Archibald Wheeler advised that “in
any field, find the strangest thing and explore it.” Accord-
ingly, this article explores the most strangest thing about
software; i.e. that it ever works at all.

Software should not work. It is too complex for us
to understand it. For example, once we wrote a search
engine to find unreachable goals in a model [1]. The
first implementation was impractically slow, and a lit-
tle mathematics showed us why: we were searching a
model with 300 boolean variables. Such a model has up
to 2300 = 2× 1090 different states. To put that number in
perspective, it is estimated that there are 1024 stars in the
universe. That is, our little model had more internal states
than stars in the sky.

Software implementations of such huge models are too
complex for systematic examination of every possible in-
ternal configuration to be possible (see Figure 1). Any
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If x is the probability that a randomly selected program input
finds a fault then after N random inputs, the chances of the inputs
not revealing a fault is (1−x)N . Hence, the chances C of seeing
the fault is 1−(1−x)N which can be rearranged to N = log(1−
C)/log(1 − x). This expression shows that a linear increase in
C requires exponentially more tests. For example, for one-in-
a-thousand detects (i.e. x = 0.001), moving C from 90% to
94% to 98% requires 2301, 2812, and 3910 black box probes
(respectively) [2].
The problem of requiring exponential resources to evaluate soft-
ware is not solved by using more informed evaluation method.
For example, the infamous state space explosion problem im-
poses strict limits on how much a system can be explored via,
say, automatic formal methods [3]. Also, with Bojan Cukic, we
have explored numerous other examples where assessment ef-
fectiveness is exponential on effort [4].

Figure 1: Exponential cost of traditional assessment.

software assessment or verification and validation pro-
cess must negotiate this complexity by effectively cov-
ering only a fraction of the software’s possible internal
configurations.

So, why does software work? One response might be
to deny the premise of the question and argue that soft-
ware rarely works as well as it should. To be sure, soft-
ware sometimes crashes — perhaps at the most awkward
or dangerous moment: for example, see the depressing
litany of mistakes documented in Peter Neumann’s “Risk
Digest” [5]. However, given the internal complexities of
software, it is puzzling that software doesn’t crash more
often.
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Our thesis is that software works because internally it
is surprisingly simple. This must be true since, if it were
otherwise, then dumb apes like the authors (and, perhaps,
the reader) would never have been able to build something
as big as, say, the Internet or the software that controls the
international passenger airline network.

Recent research results from artificial intelligence (AI)
offer much support for our thesis that “software is sim-
ple.” AI has discovered certain previously unrecognized
regularities that can be used to quickly find solutions. For
problems with those regularities, much of what can be
found via complex and costly methods can also be found
by random search. This is an important result since an
incomplete randomized algorithm may also be the sim-
plest algorithm available, or the fastest, or both [6]. This
article presents examples of such algorithms, after some
backgrounds notes on AI and recent empirical results in
software analysis.

2 Background
Historically, AI has a bad reputation. It may therefore
seem strange to assert that AI can help software analysis.
To explain why we make this assertion, we begin with a
careful review of some interesting results from that field.

A repeated conclusion in AI is that the behavior of large
software is determined by a very small number of key
variables, which we call the collar [7] variables. When
collars are present, the problem of controlling software
reduces to just the problem of controlling the variables in
the collar.

Collars have been discovered and rediscovered in AI
many times, and given different names including variable
subset selection [8], narrows [9], master-variables [10],
and back doors [11].

2.1 Variable Subset Selection
Numerous researchers have examined what happens when
a data miner deliberately ignores some of the variables in
the training data. For example, Ron Kohavi and George
John studied a specific variable subset selection method.
Their experiments show that, on 8 real world datasets, an
average 81% of variables can be ignored. Further, ignor-
ing those variables doesn’t degrade the learner’s classifi-

av. number of variables
dataset before after after

before
% accuracy

change
breast cancer 10 2.9 29% +0.14%
cleve 13 2.6 2% +5.89%
crx 15 2.9 19% +4.49%
DNA 180 11 6% +3.63%
horse-colic 22 2.8 13% +1.63%
Pima 8 1 13% +0.79%
sick-euthyroid 25 4 16% +0.38%
soybean 35 12.7 36% +0.15%
average 38.5 4.99 19% +2.14%

Figure 2: Variable subset selection results; from [8]

cation accuracy; on the contrary, it results in an average
increase of 2.14% [8] (see Figure 2.1).

2.2 Narrows
Amarel observed that search problems contain tiny col-
lars (which he called narrows) in their search space which
must be traversed in any solution. In such a search space,
what matters is not so much how you get to these collars,
but what decision you make when you get there. Since the
route between collars is not important, Amarel’s work de-
fined macros encoding paths between them in the search
space, effectively permitting a search engine to jump be-
tween them [9].

Note that Amarel’s narrows would explain the variable
subset selection results: variables from outside the nar-
rows can be ignored without losing control of a system.

2.3 Master variables
James Crawford and Andrew Baker observed collars
(which they called “master variables”) while investigat-
ing different scheduling methods. They built a very fast
complete search engine called TABLEAU and compared
its performance to a very simple randomized search en-
gine called ISAMP (shown in Figure 3). Both algorithms
assign a value to one variable, then infer some conse-
quences with forward checking. If contradictions are de-
tected, TABLEAU backtracks while ISAMP simply starts
over and re-assigns other variables randomly (giving up
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for i := 1 to MAX TRIES {
try:
set all variables to unassigned
loop {

if all variables are valued
then return current assignment
else{ v ← random unvalued variable

assign v a randomly chosen value
unit propagate()
if contradiction goto try

}}}
return failure

TABLEAU: ISAMP:
full search partial, random search

% Success Time (sec) % Success Time (sec) Tries
A 90 255.4 100 10 7
B 100 104.8 100 13 15
C 70 79.2 100 11 13
D 100 90.6 100 21 45
E 80 66.3 100 19 52
F 100 81.7 100 68 252

Figure 3: Average performance of TABLEAU vs ISAMP on 6 scheduling problems (A..F) with different levels of
constraints and bottlenecks. From [10]. The unit propagation procedure of ISAMP is a special linear-time
case of resolution; i.e. (x) ∧ (¬x or y1 ... yn) ` (y1 or... yn) and (¬x) ∧ (x or y1 or... yn) ` (y1 or... yn).

after MAX-TRIES number of times). Otherwise, they
continue looping until all variables are assigned. Surpris-
ingly, as shown in Figure 3, ISAMP took less time than
TABLEAU to find more scheduling solutions using just a
small number of TRIES.

Crawford and Baker explained this effect by assuming
that a small set of master variables set the remaining vari-
ables in a system. They hypothesized that the solutions
are not uniformly distributed throughout the search space.
TABLEAU’s depth-first search sometimes wanders into
the regions containing no solutions by making an early
unlucky choice in the master variables. On the other hand,
ISAMP’s randomized sampling effectively searches in a
smaller space since it restarts on every contradiction.

2.4 Back doors
Crawford and Baker argue that the collars/master vari-
ables play an important role in controlling how long it
takes to find a solution. A similar conclusions comes
from the work of Ryan Williams, Carla Gomes and Bart
Selman who discuss how to use collars (which they call
“back doors”) to optimize search. Constraining the col-
lars also constrains the rest of the program (by definition).
So, to quickly search a program, they suggest imposing
some setting on the collar variables. This reduces the re-
maining search space within a program, which can then be
explored very quickly. They argue that this policy can re-
duce exponential time problems to polynomial time- pro-
vided that the collars can be cheaply located [11] (an issue
we will return to below).

3 Collars (and Clumps)
Software is simple where it contains structures that dra-
matically reduce its internal structure. We have shown
above that collars (by many names) have been observed
many times in AI and that collars reduce the effective
complexity of software. We will discuss below how to ex-
ploit collars for software analysis. Before doing so, how-
ever, we will look beyond the AI literature for evidence
for collars, and collar-like, phenomena.

If the overall behavior of a software is determined by
a small number of collar variables then we would expect
three effects:

• Testing should quickly saturate; i.e. most program
paths will get exercised early with little further im-
provement seen as testing continues.

• Random mutation is unlikely to find those variables
and the net effect of those mutations would be very
small (a mutant of a program is a syntactically valid,
but randomly selected, variation to a program; e.g.
swapping all plus signs to a minus sign). Hence,
most mutations of software containing collars would
result in the same effects.

• Software states should clump; i.e. only a small num-
ber of states will be reached at runtime. Collars im-
ply clumps since the number of reachable states in a
software will be quite small; i.e. just the number of
possible settings to the collar (and not, e.g., the 2300

states mentioned in the introduction).
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(Actually, clumps also imply collars since the collars are
formed from the difference in the states reached at run-
time. If the number of states is small then the number of
differences will also be small.)

All these effects can be found in the literature. The
saturation effect has been reported by Joseph Horgan and
Aditya Mathur [12]. As to mutation testing, Christopher
Michael found that in 80 to 90% of cases, there were no
changes in the behavior of a range of programs despite
numerous perturbations on data values using a program
mutator [13]. In similar results, Eric Wong compared re-
sults using X% of a library of mutators, randomly selected
(X ∈ {10,15,. . . 40,100}). Most of what could be learned
from the program could be learned using only X=10% of
the mutators; i.e. after a very small number of mutators,
new mutators acted in the same manner as previously used
mutators [14]. The same observation has been made else-
where by Timothy Budd [15] and Allen Acree [16].

As to clumping, Marek Druzdzel observed clumping
in a diagnosis application for monitoring patients in in-
tensive care. Although the software had 525,312 possible
internal states, the application reached few of them at run-
time: one of the states occurred 52 percent of the time, and
49 states appeared 91 percent of the time. Druzdel could
show mathematically that there is nothing unusual about
his application: we should always expect that software
will clump (see Figure 4).

Empirical evidence for clumping comes from Radek
Pelanek [17]’s detailed review of the structures of dozens
of formal models. He found that, on average, their in-
ternal structure was remarkably simple. Formal models
often comprised one large strongly connected component
(where if state u connects to state v, the v also connects
to u) and small “diameters” (i.e. the largest shortest path
between two states was quite short). A program execut-
ing around such a space would repeatedly arrive back at a
small number of states; i.e. it would clump.

4 Software Analysis via Random
Search

The key to exploiting collars and clumps is to first note
that they dramatically reduce the search space within a
program. With Singh, we have showed that the number

If software has n variables, each with its own assignment
probability distribution of pi, then the probability that soft-
ware will fall into a particular state is

p = p1p2p3...pn =

n∏
i=1

pi.

By taking logs of both sides, this equation becomes

ln p = ln
n∏

i=1

pi =

n∑
i=1

ln pi (1)

The asymptotic behavior of such a sum of random vari-
ables is addressed by the central limit theorem. In the case
where we know very little about software, pi is uniform
and many states are possible. However, the more we know
about software the more varied are individual distributions.
Given enough variance in the individual priors and condi-
tional probabilities or pi, the expected case is that the fre-
quency with which we reach states will exhibit a log-normal
distribution; i.e. a small fraction of states can be expected to
cover a large portion of the total probability space; and the
remaining states have practically negligible probability.

Figure 4: Expected distribution of reachable states in soft-
ware.

of variables in a collar is expected to be very small (see
Figure 5). The number of reachable states is set by the col-
lar variables, so small collars also means that the number
of clumping states will also be small. Hence, theoretically
anyway, random search will quickly find most of what can
be found via a more complete search.

We have been testing this theoretical speculation since
1999 [19]. Currently, we are experimenting with two ran-
dom search algorithms: LURCH and TAR3. The results
to date are quite promising. Some of those results are pre-
sented below.

4.1 TAR3

TAR3 is a randomized version of the TAR2 data
miner [20] that inputs a set of scored examples and out-
puts contrast rules that distinguish highly scored examples
from the others. The rule generation algorithm seeks the
smallest set of rules that most select for the highest scor-
ing examples.
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Consider the space of possible chains of inferences within
software. Some of these chains intersect and may clash over
the value of a variable at the intersection. We say that the
collars contain the clashes that were not dependent on any
other clashes. Let some goal in software be reachable by a
narrow collar M or a wide collar N : i.e.

a1−→M1
a2−→M2

. . .
am−→Mm

 c−→ goali
d←−



N1
b1←−

N2
b2←−

N3
b2←−

N4
b2←−
. . .

Nn
bn←−

Let the cardinality of the narrow funnel and wide funnels be
m and n respectively. Each m members of M is reached
via a path with probability ai while each n members of N is
reached via a path with probability bi. Two paths exist from
the funnels to this goal: one from the narrow neck with prob-
ability c and one from the wide neck with probability d. The
probability of reaching the goal via the narrow pathway is
narrow = c

∏m

i=1
ai while the probability of reaching the

goal via the wide pathway is wide = d
∏n

i=1
bi.

For what values of m and n are the odds narrow � wide?
In the case of uniform distributions of ai, bi where∑m

i=1
ai = 1 ,

∑n

i=1
bi = 1 , ai = 1

m
, bi = 1

b
then we

showed that at (e.g.) m = 3, the wider collar pathway is
very unlikely. Precisely, the wider collar pathway is favored
when d

c
≥ 1728. i.e. only in the unlikely case that the d

pathway is thousands of times more likely that c.
We built a small simulator to study the non-uniform case.
The same conclusions were reached: narrow collars were
millions of times more likely (for details, see [18]).

Figure 5: Mathematically, small clumps are likely.

To find the collar variables, TAR3 assumes that if col-
lars exist, then they control the behavior of software. So,
a random selection of the software behaviors must sam-
ple the collars (by definition). That is, we don’t need to
search for the collars - they’ll find us. If we generate sce-
narios at random (e.g. via some Monte Carlo simulation),
then score each run as “good” or “bad” using some do-
main knowledge (e.g. number of goals reached), the col-
lar variables will be those with attribute ranges that oc-
cur with very different frequencies in “good” rather than
“bad” runs. TAR3 builds its rules randomly, favoring at-

World model:
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Figure 6: Output from TAR3, using data generated from
the Limits to Growth Model.
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tribute ranges that occur more in high scoring examples
than in lower scoring examples.

Dustin Geletko [21] applied TAR3 to a version of the
Limits to Growth [22] model shown at the top of Figure
6. This model studies the effects of the world’s exponen-
tially growing population and economy. The full model
contains 295 variables and over 100 nodes (for space rea-
sons, only a small portion of that model is shown in Figure
6). MIT faculty studied this model for several years to
find factors that prevented global population over-shoot
and collapse; i.e. desired completed family size normal =
0..2 and industrial capital output ratio = 3..5. The two
effects seen in the Limits to Growth Study were also seen
in the UCI data. TAR3 found the same factors in a 30
minute run. Most of that time was spent generating the
example data from the model; the learning only took sec-
onds. To check TAR3’s conclusions, another simulation
was conducted where the inputs were constrained accord-
ing to TAR3’s recommendations. The results are shown
as the middle plot of Figure 6: average life expectancy in
the year 2100 increases from 30 to 80 years and appears
to be stable from that time onwards.

Since TAR3 returns the collar variables and since we
expect the number of collar variables to be very small,
TAR3’s learned theories should be more succinct than
standard learners. To test this, Geletko gave an entropy
decision tree learner the same data used by TAR3. That
learner returned a decision tree with 200 tests, shown bot-
tom of Figure 6. In a result consistent with the collar hy-
pothesis, TAR3’s theory learned from the same data only
needed to test two variables: desired completed family
size normal and industrial capital output ratio.

The two main effects of this study were that (1) TAR3
returned very small theories and (2) those theories were
effective in changing the distribution of some system.
Ying Hu [23] describes numerous studies with the algo-
rithm and multiple datasets from the standard UCI data
mining data sets [24] (plus some software engineering
domains). The two effects seen in the Limits to Growth
Study were also seen in the UCI data. TAR3 always pro-
duced theories that tested less than five variables and those
theories (when applied as a SELECT statement to the data
sets) selected examples with a greatly changed class dis-
tribution.

4.2 LURCH

LURCH is a design debugging tool for state transition di-
agrams [25, 26]. If more than one transition can be ap-
plied at any time, LURCH selects one at random. The
program never backtracks; rather it generates state transi-
tions as fast as possible. After some termination condition
(e.g. looping, too many transitions), LURCH resets and
generates another randomly selected trajectory of states.

For example, Figure 7 compares the runtimes and
memory required for a complete search and randomized
search to solve the “N-queens” problem (place N queens
on an N ∗ N chess board such that no queen can take
any other). For the complete search, the SPIN model
checker [27] was run in six different modes that tried var-
ious methods to improve that search. For the random
search, LURCH was used to randomly explore a finite
state machine model of N-queens.

Crawford and Baker commented above that a complete
search looks into everything and can get stuck in some ir-
relevant corner of the problem. This effect can be seen
in Figure 7: SPIN’s complete search gave up and died on
anything larger than 15*15 (shown by the vertical dashed
line). But just like ISAMP, LURCH’s random search has
a built-in “get out jail free” card: when it gets stuck, it
can (metaphorically) jump over a wall and start afresh
somewhere else. Observe how LURCH’s search scaled
to much larger problems than SPIN.

Figure 7 also demonstrates the order effects that plague
deterministic search. For deterministic algorithms, certain
inputs always result in slowest runtimes. For example, in-
sertion sort runs slowest if the inputs are already sorted in
reverse order. For another example, in Figure 7, SPIN’s
complete complete search takes exponentially less time
and memory for boards of odd size (e.g. N = 11, 13, 15)
than boards of even size (e.g. N = 10, 12, 14). The ran-
dom search, on the other hand, jumps around the input
data, so it can be difficult to find inputs that generates
worst-case runtimes.

A standard objection to using random search (and sys-
tems like LURCH) is that they can miss some safety crit-
ical property violations. In this regard, our recent work
with Duran Desivksi and Bojan Cukic is insightful [26].
In that study, a formal requirements model was explored
with SPIN and LURCH. Both tools missed property vi-
olations that the other found. LURCH missed violations
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Figure 7: N-queens using complete (SPIN) vs random (LURCH) search.

because of its random search and SPIN missed properties
because of a heuristic used at runtime to let it scale up
to that model. Hence, we recommend combining random
with complete search methods.

5 Discussion

The strangest thing about software is that it works at all.
Yet it does work, so something must be simplifying the
internals of our software.

Here we have argued from AI, and some other results,
that much of the internal structure of software is con-
strained and simplified by collars and clumps. With that
as a premise, we have been exploring random search tools
for software analysis. Two such tools are the TAR3 con-
trast set learner and the LURCH design debugger. For
software with clumps and collars, these tools reveal much
of what can be revealed using more complete methods.

To be sure, there are times when random search is dan-
gerous and should be avoided. For example, the soft-
ware controller of the ascent stage of a manned spacecraft

should be a deterministic algorithm with guaranteed per-
formance properties. Using random search at this stage
of the mission is as crazy as not using random search to
assist in on-board diagnosis when the craft is (a) in deep
space and (b) in deep trouble and (c) it takes too long to
ask for help from ground control.

In other words, complete methods and random methods
should be mixed and matched. For the mission-critical
kernel of the software, tools like SPIN should be used
for complete validation. But the rest of the software may
be too big for complete analysis, in which case a random
search (e.g. using LURCH and/or TAR3) may be the only
cost-effective option.

We would recommend that software analysis starts with
random analysis first (since it is so cheap) and only move
to the more complex methods when random methods run
out of steam. Writing nearly two decades ago, Barry
Boehm made a analogous proposal for iterative soft-
ware exploration in his famous paper “A Spiral Model
for Software Development” [28]. Writing at the same
time, Donald Norman argued in “The Design of Everyday
Things” [29] that such iterative exploration is essential in
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any human design process.
Since 1988, much has changed. We now know how to

write algorithms that exploit certain regularities internal
to software. LURCH can quickly sample the reachable
clumps and TAR3 can find the smallest rules that most
select for the different clumps. This kind of randomized
search and learning shows great promise for finding the
key decisions within seemingly intricate softwares.
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