
Error Propagation in the Reliability Analysis of Component based Systems

Petar Popic, Dejan Desovski, Walid Abdelmoez, Bojan Cukic
Lane Department of Computer Science and Electrical Engineering

West Virginia University
{petarp, desovski, rabie, cukic}@csee.wvu.edu

Abstract

Component based development is gaining
popularity in the software engineering community.
The reliability of components affects the reliability of
the system. Different models and theories have been
developed to estimate system reliability given the
information about system architecture and the quality
of the components. Almost always in these models a
key attribute of component-based systems, the error
propagation between the components, is overlooked
and not taken into account in the reliability prediction.

We extend our previous work on Bayesian
reliability prediction of component based systems by
introducing the error propagation probability into the
model. We demonstrate the impact of the error
propagation in a case study of an automated Personnel
Access Control System. We conclude that error
propagation may have a significant impact on the
system reliability prediction and, therefore, future
architecture-based models should not ignore it.

1. Introduction

COTS-based (commercial of-the-shelf) software
products and COTS-based software development are
becoming increasingly popular in the software
engineering community. The objective is to design
components that can be simply installed and cooperate
well with existing system components. Current
operating systems, Internet browsers and office product
groups are just few among the numerous examples of
the products that fit into the COTS software category.
Many software packages bought by typical computer
users belong to this category.

The frequent use of COTS components makes them
suitable for numerous applications. Besides their cost
advantage, if these components are reliable, the
reliability of the system in which they are assembled is
expected to be high too.

COTS-based development raises new issues in
software architectures research: ensuring the reliability
of the interaction between components, correlations
between system failures and failures of particular
components, etc. Component–based software
reliability engineering can help us gather and analyze
information that is relevant for solving quality related
problems. Component failure rates have a major role in
reliability estimation process of the system as a whole.
The problem we face is how to combine these pieces of
the reliability puzzle together.

Several methods are available for estimating and
analyzing the reliability of component-based software
systems. These methods can be broadly classified in
two groups: the system level approaches and
component-based approaches. System level approaches
threat system as a whole and they do not include
valuable component information in the analysis [7]. In
component-based approaches, information about the
quality of components is crucial for the reliability
analysis.

According to Popstojanova et. al. [8], we can
classify component-based models as state-based
models, path-based models and additive models. The
state based models [9, 10] utilize control graphs
created using Discrete Time Markov Chains,
Continuous Time Markov Chains or Semi-Markov
Processes to characterize the application architecture.
These models presume component and interface failure
rates which can also vary over the time [9]. The path-
based models in their analysis have similar steps as the
state-based models observing the various executions
paths and their frequencies that particular program can
exercise [8]. These models may require an executable
program and complete source code for testing in order
to create necessary path information. The path
information is further combined with the failure
behavior to predict reliability. Additive models do not
explicitly analyze application architecture. These
models pay more attention on the failure data of
individual components and then estimate reliability by
combining this information. The methodology behind

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005)
1071-9458/05 $20.00 © 2005 IEEE

additive models assumes that component reliability can
be modeled by a non-homogenous Poisson process,
thus permitting that system reliability be represented as
a weighted sum of component reliabilities [8].

Singh et. al. [1] proposed a Bayesian approach to
reliability prediction and assessment of component-
based systems. In this paper, we extend their work by
adding a very important architectural attribute that is
often overlooked in order to simplify reliability
modeling: the error propagation probability in software
architectures. This attribute has to be considered in
order to achieve accurate reliability estimation of any
system. Error propagation probability represents the
probability that an erroneous state generated in one
component propagates to other components, instead of
being always successfully detected and masked at its
source.

The outline of the paper is as follows. In Section 2
we present related work on how error propagation can
be computed for a given program. Section 3 talks about
the Bayesian based reliability estimation and
assessment of component-based systems. We extend
this model by incorporating the error propagation
probability in Section 4. Section 5 presents the case
study where we demonstrate the effect of the
component failure rates and error propagation on the
overall system reliability. The conclusions are
presented in Section 6.

2. Error Propagation in Software
It is known that a software fault and the resulting

error in one component can be propagated to the other
interacting components causing their failures.
Component failures are, therefore, seldom independent.
However, architectural software reliability models
assume this independence. Error propagation is
important from developer’s perspective, since the
estimates can be used to find the most affected
components, and take actions in improving the
reliability of the system by applying error detection or
error recovery mechanisms, such as wrappers [14].
There have been several studies on estimating the error
propagation between software components or modules
[4, 14, 15]. Error propagation models have been
validated through fault injection experiments, followed
by the comparison of the actual error propagation
results with the ones predicted by the model.

In this paper, we adopt the error propagation model
of Nassar et. al. [3]. This model emerged in a project
that investigates wide range of architectural attributes
such as change propagation probability, and
requirements propagation probability [11]. One of the
reasons for selecting Nassar’s model is its reliance on

UML design artifacts, the notation we use for the
reliability modeling too. However, we need to stress
that other methodologies for calculating the error
propagation probability can be utilized in our reliability
model as well, as described in Section 4.

2.1. Computing Error Propagation

In [4], error propagation is calculated from the
information available early on in the lifecycle - in the
system design stage. The information about the
structure and semantics of the code is not available at
this stage, but the information about the flow of control
and data within components and between components
exists in appropriate UML artifacts.

Nassar et. al. define the error propagation
probability (EP) from component A to component B as
follows:

)|)]([)](([),(,, xxxBxBPBAEP ≠≠= .

[B] is the function of component B which captures all
the outcomes of executing B (the state of B and the
outputs of B), x is an instance of the connector X used
for communication between components A and B.
Finally, EP(A, B) represents the probability that a fault
and associated error state in A will be propagated to B.
In other words, the outcome of the execution of B will
be changed as the result of the error that occurred in A.

Having the architecture of N components, EP is an
N × N matrix, where the entry in row A and column B
is the error propagation probability from component A
to component B. EP(A, A) is equal to 1, because if a
component reached an error state then it is assumed to
remain in the error state [4]. If a component
implements some error correcting mechanisms, this
assumption would need to be changed. EP(A, B) is a
conditional probability because the probability that an
error propagates from A to B is calculated under the
condition that component A actually transmits a
message to component B.

The authors of [3] claim that the next formula
expresses the error propagation probability between A
and B derived from the probabilities of messages being
sent from A to B and their state information:

[]
[]

→∈
→

∈ ∈

−
→

−

−
=→

BA

B B

Vv
BA

Sx Sy
xBAB

vP

yFPxP

BAEP
2

21

1

)()(1

)(,

where:

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005)
1071-9458/05 $20.00 © 2005 IEEE

•)(xPB is the probability of observing component

B in state x (BS is the set of states of the

component B),

•)]([1 yFP xBA
−

→ is the probability of the

transmission of a message (from A to B) that
causes component B to transit from state x to state
y,

•][vP BA→ is the probability that message v,

BAVv →∈ , is sent over the connector from A to

B.

Further, { }yvFVvyF xBAx =∈= →
−)(|)(1 . BP and

BAP → represent the assumed or estimated probability

distributions on the set of states, and the set of

messages, respectively.)(xPB is related to the

operational profile of the system, that may be
represented by annotated UML diagrams.

Assuming that states of B and the messages being
passed from component A to component B through the
connector all have an equal probability, then the error
propagation formula above can be simplified into

BA

Sx Sy
x

BAB

V

yF
VS

BAEP
B B

→

∈ ∈

−

→

−

−

=→
1

1

)(
1

1

)(

21
2

.

The authors of [3] further define Unconditional
Error Propagation, which we find particularly useful
for reliability modeling. Denoted by E(A, B), it is
defined as the probability that an error propagates from
A to B, without being conditioned by an actual
occurrence of a message from A to B. E(A, B) is
calculated from the Transmission Probability Matrix,
T(A, B). Each entry in T(A, B) indicates the probability
of the connector from A to B being activated during a
canonical execution. The purpose of matrix T is “to
reflect the variance in frequency of activations of
different connectors during a typical execution” [4].
The Unconditional Error Propagation is obtained from

),()(),(BATBAEPBAE ⋅→= ,

T(A, B) is calculated from the number of messages
between components A and B in the given UML system
model divided by the number of all observed messages
in the system. In other words, T(A, B) represents an

estimate of the probability that a message is sent from
A to B.

3. Early Reliability Prediction for
Component-Based Systems

We already mentioned that several techniques exist
for reliability analysis of component based software
systems. However, only a few of them can be applied
in early stages of system development, i.e., before an
executable version of the entire system is available.
The model of Sing et. al. [1], which we extend here,
has the following characteristics:
1. Applicability early in the software development

lifecycle.
2. Seamless integration with UML diagrams.
3. A model supports reliability prediction in the

system design phase and reliability assessment
based on the observed failure behavior [5].

This reliability model was based on several
assumptions:
• Existence of information about failure rates for

components and connectors in an architecture.
• Independence of the failures among different

components.
• Component failures follow the principle of

regularity, i.e., a component is expected to exhibit
the same failure rate whenever it is invoked.

3.1 Component based software modeling in
UML

UML has become a de facto standard notation for
expressing functional attributes of software systems.
Component-based software modeling takes advantage
of many UML features. Some of those features are the
graphical representation of UML diagrams and the
possibility of introducing notational extensions. The
annotations introduce extra information supporting
different tasks. In case of reliability modeling, Use
Case Diagrams, Sequence Diagrams and Deployment
Diagrams require annotations [2].

Use Case Diagrams (UCD) provide not only
functional description of a system, but also graphic
description of how external entities interact with the
system. There are two parameters annotated in a UCD.
The first parameter is the probability that an actor i

interacts with the system, denoted by iq (1=
i

iq).

The second parameter is the probability of an actor i

using the specific system use case x, denoted by ixP

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005)
1071-9458/05 $20.00 © 2005 IEEE

(
i x

ixP =1). These annotations are then combined

to create the probability of a system behavior occurring
during system execution. The probability of occurrence
of a system behavior x is given by

ix

m

i
i PqxP ⋅=

=1

)(, (1)

where m is the number of actors that use the given
system behavior.

A Sequence Diagram (SD) describes how groups of
software components interact to accomplish a
particular task. There exists at least one SD for each
Use Case. However, more than one SD may exist for a
single UCD. In case of multiple sequence diagrams
within the same use case we divide the cumulative
probability P(x) by the number of sequence diagrams in
the use case. Annotations of an SD depict the number
of periods each component is in a busy state. When an
interaction enters the component or the component is
invoked, it enters a busy period. Busy periods are

counted. Variable ijbp represents the number of busy

periods that the component iC exhibits in the sequence

diagram j. The failure probability of component iC in

scenario j is represented by ijΘ and calculated from

the following equation:

=Θij Prob(failure of ijC) = ()bpij
iΘ−− 11 (2)

A Deployment Diagram (DD) describes the

application environment in terms of different systems
in which computations take place and connectors
(networks) between them. The annotations of DD
include connection failure probabilities, denoted by

iΨ . In order to represent failure rate of the

communication channel between components l and m,
first the number of interactions between these two
components in SD j has to be counted. This number is
denoted by |Interact(l,m,j)|. Using the failure

probability of the connector iΨ , the reliability lmjΨ
can be calculated from [2]:

),,()1(jmlInteract
ilmj Ψ−=Ψ (3)

3.2 System Reliability Prediction

The collected information form UCD, SD, and DD,
is sufficient to create model for the reliability of the

whole system. By combining equations 1, 2, and 3,
Cortellessa et. al. [2] derived the following expression
for the system level failure rate calculation:

() () ()

()
∏ ∏

= =

Ψ−⋅Θ−−=Θ
K

j

N

i il

jilInteract
jil

bpij
ijs P

1 1 ,

,,
,,111 (4)

This equation is used in the ECRA tool to predict
the reliability of the component-based application [6].
The reliability prediction algorithm generates beta
distributions from component failure rates and it
requires the user to enter the confidence intervals for
failure rates of each component [5].

4. Extending the model

One of the assumptions of reliability models
discussed so far is the independence of failures among
different components. Inter-component failure
independence implies that error states of one
component will not propagate to the other components.
This fact simplifies the modeling, which is the primary
reason why all existing reliability models for
component-based systems assume it [8]. However, in
practice this assumption usually does not hold.

4.1 Including error propagation probability
The goal of our research is to extend the reliability

model from [1, 2] by including failure propagation.
We also extended ECRA system reliability tool [6]
with failure propagation feature.

From equation (2) the estimated probability of

success of a single component iC in given sequence

diagram SDj, under the assumption of failure
independence, is:

Prob(success of ijC | failure_independence) =

()bpij
iij Θ−=Θ− 11 (5)

If we remove the independence assumption, then

the probability of success of iC in SDj must take into

account possible failures that may be propagated to it
from other components. The component will execute
successfully if and only if it does not excercise any of
its own faults and no faults are propagated to it from
the other components:

Prob(success of ijC) =

Prob(success_of ijC /failure_independence)×

Prob(no_error_propagated) (6)

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005)
1071-9458/05 $20.00 © 2005 IEEE

If, for the given system, we have the Unconditional
Error Propagation Matrix E(A, B), the probability that

a component kC will propagate a single fault to the

component iC can be estimated by the following

formula:

Prob(error_propagated k i) = kjikE Θ),(, (7)

i.e., it is proportional to the failure rate of the

component kC in scenario j, and the error propagation

probability from component kC to iC . Thus, the

probability of the complementary event – no error

propagated from component kC to component iC is

given by:

Prob(no_error_propagated k i) = kjikE Θ−),(1 , (8)

Taking into account all other components in the
system, we obtain the probability of success of the

component iC as follows:

() ()∏
=

Θ−Θ−=Θ−
N

k
kj

bpij
iij ikE

1

),(111 , (9)

where N is the number of components in the system.
Please note that E(i, i) = 0, so the component doesn’t
affect its own failure rate through the propagation.
 We can rewrite the old equations expressing
component reliability using expression (9). The
equations now look as follows:

() ()

() ()Θ−Θ−−=Θ

Θ−Θ−−=Θ

∏

∏

=

=

N

k
kj

bpNj
NNj

N

k
kj

jbp
j

NkE

kE

1

1

1
11

),(111

)1,(111

M (10)

If we assume that the system has K different
sequence diagrams, we obtain the failure rates for each
of the components in each sequence diagram. Then,
using the formula similar to (4) we can calculate the
failure rate of the entire system:

() ()

()
∏ ∏

= =

Ψ−⋅Θ−=Θ
K

j

N

i il

jilInteract
jilijjs P

1 1 ,

,,
,,11 (11)

We must note that the solutions to the model (10)
contain all possible error propagation paths between
the components, including the possible circular
dependencies. If such circular dependencies exist, the
solutions will overestimate the failure rates of the

components (i.e. the obtained failure rates will be
higher because of the recursive propagation).
However, in practice we observed that the
overestimation is reasonably small and the results
obtained are representative for the studied systems.
We consider this to represent the worst-case reliability
analysis, meaning that the failure rates will be lower
than those derived by our model.

4.2 Special cases with closed form solutions

In the case when the entire error propagation matrix
is zero the resulting model (equations 10 and 11) is the
same as the reliability estimation model of Singh et al.
[1]. When error propagation probabilities are not equal
to 0 (i.e., the error propagation probabilities have been
calculated by the methodology described in Section
2.1, or some other method) our new reliability model
takes this information into account.

In general, the system of equations (10) that models
failure rates of system components and includes error
propagation is non-linear. A closed form solution
cannot be obtained. We use numerical methods to
obtain the solutions for the component failure rates and
calculate the failure rate of the system.

For some architectural patterns observed in the
UML sequence diagrams the system of equations (10)
is linear, and closed form solutions can be obtained.
The simplest of these patterns is when two components
interact with each other in isolation. For these
components, say A and B, the failure rate equations are:

() ()()
() ()()Θ⋅−Θ−−=Θ

Θ⋅−Θ−−=Θ

Aj
bpBj

BBj

Bj
bpAj

AAj

BAE

ABE

,111

,111

Solving the system equation, we obtain the following:

() () ()() ()
() () () ()ABEBAE

ABE
bpBj

B
bpAj

A

bpBj
B

bpAj
A

bpAj
A

Aj
,,111

,11111

⋅⋅Θ−⋅Θ−−
⋅Θ−−⋅Θ−+Θ−−=Θ

() () ()() ()
() () () ()ABEBAE

BAE
bpBj

B
bpAj

A

bpAj
A

bpBj
B

bpBj
B

Bj
,,111

,11111

⋅⋅Θ−⋅Θ−−
⋅Θ−−⋅Θ−+Θ−−=Θ

This special case can be generalized to a system
with N components, as presented in the scenario
diagram in Figure 1. In this case there exists a method
invocation cycle: C1 calls a method from C2, C2 from
C3, etc. At the end, CN returns the results of the
processing to C1.

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005)
1071-9458/05 $20.00 © 2005 IEEE

C1 C2 C3 C4

Figure 1: Scenario Diagram with calling cycle

While the expressions representing component failure
rates of the diagram from Figure 1 are more
complicated than those above, they can still be
obtained analytically.

5. Case Study

In our experiments, we utilize ECRA (Early
Component-based Reliability Assesment) tool [6].
ECRA implements reliability analysis methodology
presented so far. We analyzed an actual Personnel
Access Control System (PACS) system to demonstrate
the results of our methodology. We present two sets of
early reliability prediction results for the PACS model;
In the first set of simulations we used methodology
from [1, 2], which calculates system failure rate based
on the failure independence assumption. We also used
our new methodology, which takes in account error
propagation among components. Calculated results
demonstrate that these two approaches result in
different values of predicted reliability. In the second
set of experiments we changed the failure rate of the
component which is known to have a critical impact on
the system reliability. Performing two simulations,
with and without error propagation, we demonstrate
that the resulting reliability estimates differ quite
dramatically.

5.1 The ECRA tool

ECRA (see user interface in Figure 2) is a
homegrown tool built at the High Assurance Systems
Research Center of West Virginia University [6]. It
automates reliability assessment of component-based
systems using UML diagrams and the methodology
described in [1, 2]. We modified ECRA tool to
accommodate model extensions. The tool accepts three
types of UML diagrams:

• The use case diagram - ECRA requires
detailed description of the actors, use cases,
and modules within each use case.

• The sequence diagram – ECRA’s input are
sequence diagrams. From them, it calculates

the number of busy periods for each
component in each diagram.

• The deployment diagram – ECRA requires the
information of the name of each processor and
processes, along with the description of
connections between them.

Figure 2: The User Interface of ECRA tool

The mentioned diagrams constitute an input into the
ECRA tool. The diagrams need to be annotated with
component and connector failure rates and the error
propagation matrix E.

If the error propagation matrix is not known (or not
available), ECRA tool will assume that failures cannot
be propagated between components.

The outputs of the ECRA tool are the plots
representing:

• Prior beta distributions of component and
connector failure rates.

• A histogram plot of the predicted system
reliability.

• In addition to system failure probability
ECRA also provides the 95% confidence
interval around the system reliability estimate.

5.2 Personnel Access Control System (PACS)

To demonstrate the importance of failure
propagation in component-based software reliability
modeling, we analyzed the reliability of Personnel
Access Control System (PACS) [13]. PACS system
controls physical access to a restricted area. Authorized
users receive a personal ID card and a personal
identification number (PIN). In order to get access, the
user swipes the ID card which contains user name and a
unique number (SSN) through a card reader. After
searching its database of user names and SSNs to
validate privileges, PACS system instructs the user to
enter a four-digit PIN number. If the entered PIN
matches a stored PIN, the system allows the user to
enter the area through a gate. Two types of actors use

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005)
1071-9458/05 $20.00 © 2005 IEEE

PACS system: the card holder, and the security officer.
PACS guides the card holder with messages written on
a single-line display screen. Security officer monitors
and controls the PACS using a console with another
single-line display screen, an alarm, a reset button, and
a gate override button. In its current form, requirements
specification for PACS originated from a US
government agency. The requirements are relatively
simple, but realistic. Systems built according to this
specification have been deployed. An annotated use
case diagram of PACS system is shown in Figure 3.

Gain Physical Access

User q1

P11

Monitor the System

Failure

Security officer q2

P22

P23

Figure 3: Annotated UCD for the PACS system

In annotated UCD, the usage probability for user type
q1, the card holder, is 0.96, and for the security officer,
q2, is 0.04. The user to use-case probability for
scenario P11 is 1, for P22 is 0.75, and for P23 is 0.25.
These numbers are based on the estimated operational
profile from the requirements document [13]. It is
expected that 96% of the time PACS system operates
by granting access to legitimate users of the system. 4%
of the time some additional monitoring from the
security officer is required, out of which ¼ or 1% is
due to system failure, and the rest, 3%, is due to
incorrectly typed PIN numbers, or defective ID cards.
For each use case scenario there is exactly one
sequence diagram. Figure 4 illustrates the so-called
failure scenario, which is one of the three different
sequence diagrams in PACS. This scenario has been
annotated with the number of busy periods for each
component.

driver :
<DummyClass>

PACS System :
<DummyClass>

userLCD :
<DummyClass>

officerLCD :
<DummyClass>

writeRegister(5,0)

wrietRegister(8,1)

waitForOne(7)

writeRegister(8,0)

writeRegister(7,1)

write(ACCESS DENIED)

write(ACCESS DENIED)

Figure 4: Annotated SD for the Failure case

The PACS architecture consists of five components
(processes), which run on the same processor. Table 1
presents the information record for each component in
the initial set of simulations. The record includes
component’s name, component’s failure probability, a
95% confidence interval of the failure probability, and
the number of busy periods the component exhibits in
each sequence diagram. Table 2 shows the number of
messages exchanged between components along all the
three scenarios. The scenario numbering is consistent
in Tables 1 and 2.

Table 2: Number of interactions per pair of
components through scenarios

Pair(l, i) Scenario 1 Scenario 2 Scenario 3
(C2, C1) 5 24 4
(C2, C3) 0 1 0
(C2, C4) 1 3 1
(C2, C5) 1 0 1

5.3 System reliability under failure
independence assumption

The methodology by Singh et. al. [1] assumes
failure independence. Equation (4) and the values from
Table 1 are used in the calculation of system failure
probability sΘ as follows:

Table 1: Information record of PACS components

Busy Periods Component Name Failure Probability Confidence Interval
bpi1 bpi2 bpi3

C1 Communication Driver 0.002 (0.001,0.003) 24 4 5
C2 PACS 0.005 (0.003,0.007) 4 1 1
C3 Validator 0.002 (0.001,0.003) 1 0 0
C4 User LCD 0.006 (0.003,0.009) 3 1 1
C5 Officer LCD 0.006 (0.003,0.009) 0 1 1

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005)
1071-9458/05 $20.00 © 2005 IEEE

sΘ = 1 – [0.96 (()24
11 Θ− ()4

21 Θ− ()1
31 Θ−

()3
41 Θ−) + 0.03 (()4

11 Θ− ()1
21 Θ− ()1

41 Θ−
()1

51 Θ−) + 0.01 (()5
11 Θ− ()1

21 Θ− ()1
41 Θ−

()1
51 Θ−)].

Figure 5 depicts the histogram of expected system

level failure rates, SΘ , under the assumption of failure

independence. SΘ is presented in the form of a

histogram because it is obtained by Monte Carlo
simulations of the expression above [1].

0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

500

1000

1500

2000
Prior Probability Density Function of the System Failure Probability Theta−S

Theta−S Range

F
re

qu
en

cy

Failure Probability = (0.081922)
95% Confidence Interval = (0.062901,0.10302)

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
0

5

10

15

20

25

30

35

Theta−S Range

F
re

qu
en

cy

Histogram
Beta Curve

Figure 5: Predicted PDF of sΘ assuming failure

independence

The first observation is that this reliability
prediction does not meet the system requirement [13],
which limits system failure probability per demand to
0.01. More reliable components than those assumed in
Table 1 are needed if the system is to achieve the
desired reliability.

More important for the subject of this paper, in a
related project [16] we implemented PACS and
empirically evaluated its reliability through extensive
testing. To our dismay the observed system reliability
was much lower than predicted by this model, even
though component reliabilities were those indicated in
Table 1. We concluded that the reliability model
which excludes failure propagation probability is too
optimistic.

5.4 System reliability with error propagation

Next, beside the component reliabilities used in the
first experiment, we added error propagation matrix

shown in Table 3. The matrix was calculated by the
methodology described in Section 2.1. From UML
state diagrams, sequence diagrams and the expected
operational profile, we calculated the probability
distribution of the set of states for each component, and
probability distribution of the set of messages between
each pair of components. First, we calculated the
conditional error propagation probability matrix, and
then the transmission probability matrix. The values in
Table 3 represent the unconditional error propagation
probability.

Table 3: The error propagation values among
the PACS’s components

 C1 C2 C3 C4 C5
C1 0 0.425169 0 0 0
C2 0.804878 0 0.02439 0.083388 0.073165
C3 0 0.687124 0 0 0
C4 0 0 0 0 0
C5 0 0 0 0 0

Equation (11) was used to set up the system failure
probability expression that includes error propagation:

sΘ = 1 – [0.96 (
24

11Θ · 4
21Θ · 1

31Θ · 3
41Θ) + 0.03 ·

(
4

12Θ · 1
22Θ · 1

42Θ · 1
52Θ) + 0.01 (

5
13Θ · 1

23Θ ·
1

43Θ · 1
53Θ)]

Figure 6 depicts the histogram of expected system level

failure rates, SΘ , in case where the failure

independence assumption is eliminated.

0.1 0.15 0.2 0.25 0.3 0.35
0

10

20

30

40

50

60

70
Prior Probability Density Function of the System Failure Probability Theta−S

Theta−S Range

F
re

qu
en

cy

Failure Probability = (0.22063)
95% Confidence Interval = (0.17046,0.27831)

0.1 0.15 0.2 0.25 0.3 0.35
0

2

4

6

8

10

12

14

Theta−S Range

F
re

qu
en

cy

Histogram
Beta Curve

Figure 6: Predicted PDF of sΘ using error

propagation

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005)
1071-9458/05 $20.00 © 2005 IEEE

In contrast with the first result, this system failure
rate is much higher. The increase in failure rate is
caused by the error propagation between the
components. Predicted system reliability is much
closer to the one observed in tests of PACS
implementation. In fact, the measured reliability is
within the 95% confidence interval calculated by the
model. So, while additional effort is required to
calculate the error propagation probability matrix, it
appears that the precision of system level reliability
prediction has increased. Unfortunately, an automated
tool is still not available for calculating unconditional
error propagation probability matrix from UML
artifacts. In our experiments, the values in the matrix
were computed by hand, requiring significant effort.

5.5 The sensitivity analysis assuming failure
independence

Based on the error propagation matrix and prior
experience with PACS, we observed that system
reliability is the most sensitive to the changes in
reliability of Driver component, C1. For the second set
of experiments we used the same simulation parameters
as before except for the failure rate of the C1. In the
following two experiments, we assumed that the
reliability of C1 doubled to 0.001 failures per demand,
with the 95% confidence interval of (0.0005, 0.0015).
Figure 7 presents the results obtained by ECRA
simulations when the error propagation information is
not included in the model.

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

500

1000

1500

2000

2500
Prior Probability Density Function of the System Failure Probability Theta−S

Theta−S Range

F
re

qu
en

cy

Failure Probability = (0.06045)
95% Confidence Interval = (0.047882,0.074401)

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

Theta−S Range

F
re

qu
en

cy

Histogram
Beta Curve

Figure 7. Predicted PDF of sΘ with improved

Driver component and no failure propagation

Comparing Figures 5 and 7 we observe that the
improvement in the Driver component positively

impacts system reliability. The expected system failure
rate has decreased from 0.0819 to 0.0604, an
improvement of 26.25%.

5.5 The impact of component reliability and
error propagation to system reliability

Figure 8 presents the result of ECRA Monte Carlo
simulations when error propagation information is
included in the model.

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0

20

40

60

80

100

120
Prior Probability Density Function of the System Failure Probability Theta−S

Theta−S Range

F
re

qu
en

cy

Failure Probability = (0.15619)
95% Confidence Interval = (0.12118,0.19382)

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0

5

10

15

20

25

Theta−S Range

F
re

qu
en

cy

Histogram
Beta Curve

Figure 8: Predicted PDF of sΘ using error

propagation and improved driver component

Comparing Figures 6 and 8 we observe a
substantial improvement in the system failure rate from
0.221 to 0.156, a 29.41% improvement.

 This result matches closely the measured reliability
of our implementation [16]. Predictive performance
can be explained by the error propagation, since there
is a substantial probability (0.425 in Table 3) that an
error in Driver component (C1) can affect the PACS
component C2. Component C2, in turn, propagates this
error to all the other components leading to a certain
system failure (the row C2 is has mostly non-zero
elements). But even more importantly, the Driver
component is heavily used, having 24 busy periods (see
Table 1) in the usage scenario that is utilized about
96% of the time. Therefore, any faults in C1 are more
likely to lead to system error. This observation
contrasts, for example, the error propagation behavior
of Validator component C3. C3 has a high error
propagation probability towards the PACS component
C2 (0.687 in Table 3), but its usage frequency is much
lower than that of Driver component (C1). Therefore,
its overall contribution to system reliability is modest.

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005)
1071-9458/05 $20.00 © 2005 IEEE

6. Conclusions and Future work

In this paper, we extended the existing Bayesian
approach for reliability estimation of component- based
software systems [1, 2]. Like most other component-
based reliability models, the old model assumed that
system components will fail independently. To some
extent, this assumption is realistic if components are
accompanied by wrappers, which contain failure
propagation close to its source. However, not all the
component-based applications contain wrappers. Plus,
the question is whether wrappers are able to prevent the
propagation of component errors, i.e., corrupted states
resulting from incorrect computations but not
externally observable as failures. Error propagation, if
it can be captured by the probability of occurrence,
represents a meaningful extension to current reliability
models.

We presented one possible approach to error
propagation probability calculation and integrated it
into the Bayesian methodology for reliability prediction
of component-based systems. Our analytical and
experimental observations indicate that error
propagation can make a significant difference in system
reliability prediction, especially if components
“leaking” erroneous states are complex and frequently
used.

While our early experiences are positive, they call
for a more extensive set of experiments. New
experiments should be conducted to investigate
whether reliability predictions of models which take
into account error propagation probability are
statistically significantly more precise than those that
do not.

References

[1] H. Singh, V. Cortellessa, B. Cukic, E Gunel, and V.
Bharadway, “A Bayesian approach to reliability
prediction and assessment of component based systems”,
in Proc. 12th International Symposium on Software
Reliability Engineering (ISREE’01), Boca Raton, FL,
October 2001.

[2] V. Cortellessa, H. Singh, and B. Cukic. “Early reliability
assessment of UML based software models”, 3rd

International Workshop on Software Performance
(WOSP ‘02), Rome, Italy, July 2002.

[3] D.M. Nassar, W.A. Rabie, M. Shereshevsky, N.
Gradetski, H.H. Ammar, Bo Yu, S Bogazzi, and A. Milli,
“Estimating error propagation probabilities in software

architecture”, Technical report, College of Computer
Science, New Jersey Institute of Technology 2002.

 [4] W. Abdelmoez, D.M. Nassar, M. Shereshevski, N.
Gradetski, R. Gunnallan, H.H. Ammar, Bo Yu, and A.
Milli, “Error Propagation in Software Architectures”, in
Proc. 10th IEEE Int’l Software Metrics Symposium
(METRICS 2004), Chicago, IL, Sept. 2004.

 [5] B. Cukic, “The virtues of assessing software reliability
early”, IEEE Software, Vol 22, No. 3, May/June 2005.

 [6] W. B. Smith, “Early component-based reliability
assessment using UML Based software models”. MS
Thesis, Lane Department of Computer Science and
Electrical Engineering, West Virginia University, 2002.

 [7] J. Horgan, and A. Mathur, “Software testing and
reliability”, in Handbook of software reliability
engineering, Michael R. Lye (editor), McGraw-Hill, New
York, NY, 1996.

 [8] K. Goseva-Popstojanova, and K.S. Trivedi,
“Architecture based approaches to software reliability
prediction”, International Journal Computers &
Mathematics with Applications, (to appear).

[9] S. Ghokale, M. Lyu, and K. Trivedi, “Reliability
simulation of component based software systems”, Proc.

th9 International Symposium on Software Reliability
Engineering, (ISSRE’98), Paderborn, Germany, 1998.

[10] S. Ghokale, E. Wong, K. Trivedi, and J. R. Horgan, “An
analytical approach to architecture based software
reliability prediction”, Proc. Symposium on Application
Specific Systems and Software Engineering Technology
(ASSET’98), Dallas, TX, 1998.

[11] H. Ammar, S.M. Yacoub, A. Ibrahim, “A fault model
for fault injection analysis of dynamic UML
specifications”, International Symposium on Software
Reliability Engineering (ISSRE ’01), Boca Raton, FL,
October 2001.

 [12] V.R. Basili, and H.D. Rombach, The Tame project:
Towards improvement oriented software environments,
IEEE Transactions on Software Engineering, 1988.

[13] Requirements Specification for Personal Access Control
System, National Security Agency, 2003.

[14] M. Hiller, A. Jhumka, N. Suri, “An Approach for
Analysing the Propagation of Data Errors in Software”,
Proc. Dependable Systems and Networks (DSN ’01),
Goteborg, Sweden, July 2001.

[15] M. Hiller, A. Jhumka, N. Suri, “PROPANE: An
Environment for Examining the Propagation of Errors in
Software”, Proc. Int’l. Symp. Software Testing and
Analysis (ISSTA ’02), Rome, Italy, July 2002.

[16] M. Li, Y. Wei, D. Desovski, H. Nejad, S. Ghose, B.
Cukic, C. Smidts, “Validation of a Methodology for
Assessing Software Reliability”, in Proc. 15th

International Symposium on Software Reliability
Engineering (ISREE’04), St. Malo, France, October
2001.

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005)
1071-9458/05 $20.00 © 2005 IEEE

