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Abstract 

Component based development is gaining 
popularity in the software engineering community.   
The reliability of components affects the reliability of 
the system.  Different models and theories have been 
developed to estimate system reliability given the 
information about system architecture and the quality 
of the components. Almost always in these models a 
key attribute of component-based systems, the error 
propagation between the components, is overlooked 
and not taken into account in the reliability prediction.  

We extend our previous work on Bayesian 
reliability prediction of component based systems by 
introducing the error propagation probability into the 
model. We demonstrate the impact of the error 
propagation in a case study of an automated Personnel 
Access Control System.  We conclude that error 
propagation may have a significant impact on the 
system reliability prediction and, therefore, future 
architecture-based models should not ignore it. 

1. Introduction 

COTS-based (commercial of-the-shelf) software 
products and COTS-based software development are 
becoming increasingly popular in the software 
engineering community.  The objective is to design 
components that can be simply installed and cooperate 
well with existing system components. Current 
operating systems, Internet browsers and office product 
groups are just few among the numerous examples of 
the products that fit into the COTS software category.  
Many software packages bought by typical computer 
users belong to this category.  

The frequent use of COTS components makes them 
suitable for numerous applications. Besides their cost 
advantage, if these components are reliable, the 
reliability of the system in which they are assembled is 
expected to be high too.   

COTS-based development raises new issues in 
software architectures research: ensuring the reliability 
of the interaction between components, correlations 
between system failures and failures of particular 
components, etc.  Component–based software 
reliability engineering can help us gather and analyze 
information that is relevant for solving quality related 
problems. Component failure rates have a major role in 
reliability estimation process of the system as a whole. 
The problem we face is how to combine these pieces of 
the reliability puzzle together. 

Several methods are available for estimating and 
analyzing the reliability of component-based software 
systems. These methods can be broadly classified in 
two groups: the system level approaches and 
component-based approaches. System level approaches 
threat system as a whole and they do not include 
valuable component information in the analysis [7].  In 
component-based approaches, information about the 
quality of components is crucial for the reliability 
analysis.  

According to Popstojanova et. al. [8], we can 
classify component-based models as state-based 
models, path-based models and additive models. The 
state based models [9, 10] utilize control graphs 
created using Discrete Time Markov Chains, 
Continuous Time Markov Chains or Semi-Markov 
Processes to characterize the application architecture. 
These models presume component and interface failure 
rates which can also vary over the time [9]. The path-
based models in their analysis have similar steps as the 
state-based models observing the various executions 
paths and their frequencies that particular program can 
exercise [8]. These models may require an executable 
program and complete source code for testing in order 
to create necessary path information. The path 
information is further combined with the failure 
behavior to predict reliability.  Additive models do not 
explicitly analyze application architecture. These 
models pay more attention on the failure data of 
individual components and then estimate reliability by 
combining this information. The methodology behind 
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additive models assumes that component reliability can 
be modeled by a non-homogenous Poisson process, 
thus permitting that system reliability be represented as 
a weighted sum of component reliabilities [8].  

Singh et. al. [1] proposed a Bayesian approach to 
reliability prediction and assessment of component-
based systems. In this paper, we extend their work by 
adding a very important architectural attribute that is 
often overlooked in order to simplify reliability 
modeling: the error propagation probability in software 
architectures. This attribute has to be considered in 
order to achieve accurate reliability estimation of any 
system. Error propagation probability represents the 
probability that an erroneous state generated in one 
component propagates to other components, instead of 
being always successfully detected and masked at its 
source.  

The outline of the paper is as follows. In Section 2 
we present related work on how error propagation can 
be computed for a given program. Section 3 talks about 
the Bayesian based reliability estimation and 
assessment of component-based systems. We extend 
this model by incorporating the error propagation 
probability in Section 4. Section 5 presents the case 
study where we demonstrate the effect of the 
component failure rates and error propagation on the 
overall system reliability.  The conclusions are 
presented in Section 6. 

2. Error Propagation in Software   
It is known that a software fault and the resulting 

error in one component can be propagated to the other 
interacting components causing their failures. 
Component failures are, therefore, seldom independent. 
However, architectural software reliability models 
assume this independence.  Error propagation is 
important from developer’s perspective, since the 
estimates can be used to find the most affected 
components, and take actions in improving the 
reliability of the system by applying error detection or 
error recovery mechanisms, such as wrappers [14]. 
There have been several studies on estimating the error 
propagation between software components or modules 
[4, 14, 15]. Error propagation models have been 
validated through fault injection experiments, followed 
by the comparison of the actual error propagation 
results with the ones predicted by the model. 

In this paper, we adopt the error propagation model 
of Nassar et. al. [3].  This model emerged in a project 
that investigates wide range of architectural attributes 
such as change propagation probability, and
requirements propagation probability [11].  One of the 
reasons for selecting Nassar’s model is its reliance on 

UML design artifacts, the notation we use for the 
reliability modeling too.  However, we need to stress 
that other methodologies for calculating the error 
propagation probability can be utilized in our reliability 
model as well, as described in Section 4. 

2.1. Computing Error Propagation 

In [4], error propagation is calculated from the 
information available early on in the lifecycle - in the 
system design stage. The information about the 
structure and semantics of the code is not available at 
this stage, but the information about the flow of control 
and data within components and between components 
exists in appropriate UML artifacts. 

Nassar et. al. define the error propagation 
probability (EP) from component A to component B as 
follows:  

)|)]([)](([),( ,, xxxBxBPBAEP ≠≠= .

[B] is the function of component B which captures all 
the outcomes of executing B (the state of B and the 
outputs of B),  x is an instance of the connector X used 
for communication between components A and B.
Finally, EP(A, B) represents the probability that a fault 
and associated error state in A will be propagated to B.
In other words, the outcome of the execution of B will 
be changed as the result of the error that occurred in A.

Having the architecture of N components, EP is an 
N × N matrix, where the entry in row A and column B
is the error propagation probability from component A 
to component B. EP(A, A) is equal to 1, because if a 
component reached an error state then it is assumed to 
remain in the error state [4].  If a component 
implements some error correcting mechanisms, this 
assumption would need to be changed.  EP(A, B) is a 
conditional probability because the probability that an 
error propagates from A to B is calculated under the 
condition that component A actually transmits a 
message to component B.

The authors of [3] claim that the next formula 
expresses the error propagation probability between A
and B derived from the probabilities of messages being 
sent from A to B and their state information: 
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• )(xPB is the probability of observing component 

B in state x ( BS  is the set of states of the 

component B),

• )]([ 1 yFP xBA
−

→  is the probability of the 

transmission of a message (from A to B) that 
causes component B to transit from state x to state 
y,

• ][vP BA→  is the probability that message v,

BAVv →∈ ,  is sent over the connector from A to 

B.

Further, { }yvFVvyF xBAx =∈= →
− )(|)(1 . BP  and 

BAP →  represent the assumed or estimated probability 

distributions on the set of states, and the set of 

messages, respectively. )(xPB  is related to the 

operational profile of the system, that may be 
represented by annotated UML diagrams.  

Assuming that states of B and the messages being 
passed from component A to component B through the 
connector all have an equal probability, then the error 
propagation formula above can be simplified into 
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The authors of [3] further define Unconditional 
Error Propagation, which we find particularly useful 
for reliability modeling.  Denoted by E(A, B), it is 
defined as the probability that an error propagates from 
A to B, without being conditioned by an actual 
occurrence of a message from A to B. E(A, B) is
calculated from the Transmission Probability Matrix,
T(A, B).  Each entry in T(A, B) indicates the probability 
of the connector from A to B being activated during a 
canonical execution.  The purpose of matrix T is “to 
reflect the variance in frequency of activations of 
different connectors during a typical execution” [4]. 
The Unconditional Error Propagation is obtained from 

),()(),( BATBAEPBAE ⋅→= ,

T(A, B) is calculated from the number of messages 
between components A and B in the given UML system 
model divided by the number of all observed messages 
in the system.  In other words, T(A, B) represents an 

estimate of the probability that a message is sent from 
A to B.

3. Early Reliability Prediction for 
Component-Based Systems 

We already mentioned that several techniques exist 
for reliability analysis of component based software 
systems. However, only a few of them can be applied 
in early stages of system development, i.e., before an 
executable version of the entire system is available. 
The model of Sing et. al. [1], which we extend here, 
has the following characteristics:  
1. Applicability early in the software development 

lifecycle.  
2. Seamless integration with UML diagrams.  
3. A model supports reliability prediction in the 

system design phase and reliability assessment 
based on the observed failure behavior [5].  

This reliability model was based on several 
assumptions:  
• Existence of information about failure rates for 

components and connectors in an architecture. 
• Independence of the failures among different 

components. 
• Component failures follow the principle of 

regularity, i.e., a component is expected to exhibit 
the same failure rate whenever it is invoked. 

3.1 Component based software modeling in 
UML 

UML has become a de facto standard notation for 
expressing functional attributes of software systems. 
Component-based software modeling takes advantage 
of many UML features.  Some of those features are the 
graphical representation of UML diagrams and the 
possibility of introducing notational extensions. The 
annotations introduce extra information supporting 
different tasks. In case of reliability modeling, Use
Case Diagrams, Sequence Diagrams and Deployment 
Diagrams require annotations [2]. 

Use Case Diagrams (UCD) provide not only 
functional description of a system, but also graphic 
description of how external entities interact with the 
system. There are two parameters annotated in a UCD. 
The first parameter is the probability that an actor i

interacts with the system, denoted by iq  ( 1=
i

iq ).

The second parameter is the probability of an actor i

using the specific system use case x, denoted by ixP
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(
i x

ixP =1).  These annotations are then combined 

to create the probability of a system behavior occurring 
during system execution. The probability of occurrence 
of a system behavior x is given by  

ix

m

i
i PqxP ⋅=

=1

)(  ,                               (1) 

where m is the number of actors that use the given 
system behavior.  

A Sequence Diagram (SD) describes how groups of 
software components interact to accomplish a 
particular task. There exists at least one SD for each 
Use Case.  However, more than one SD may exist for a 
single UCD.  In case of multiple sequence diagrams 
within the same use case we divide the cumulative 
probability P(x) by the number of sequence diagrams in 
the use case. Annotations of an SD depict the number 
of periods each component is in a busy state. When an 
interaction enters the component or the component is 
invoked, it enters a busy period.  Busy periods are 

counted.  Variable ijbp  represents the number of busy 

periods that the component iC  exhibits in the sequence 

diagram j. The failure probability of component iC  in 

scenario j is represented by ijΘ  and calculated from 

the following equation: 

=Θij Prob(failure of ijC ) = ( )bpij
iΘ−− 11       (2) 

   
A Deployment Diagram (DD) describes the 

application environment in terms of different systems 
in which computations take place and connectors 
(networks) between them. The annotations of DD 
include connection failure probabilities, denoted by 

iΨ . In order to represent failure rate of the 

communication channel between components l and m,
first the number of interactions between these two 
components in SD j has to be counted. This number is 
denoted by |Interact(l,m,j)|. Using the failure 

probability of the connector iΨ , the reliability lmjΨ
can be calculated from [2]: 

),,()1( jmlInteract
ilmj Ψ−=Ψ            (3)  

3.2 System Reliability Prediction 

The collected information form UCD, SD, and DD, 
is sufficient to create model for the reliability of the 

whole system. By combining equations 1, 2, and 3, 
Cortellessa et. al. [2] derived the following expression 
for the system level failure rate calculation: 

( ) ( ) ( )

( )
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= =

Ψ−⋅Θ−−=Θ
K

j

N

i il

jilInteract
jil

bpij
ijs P

1 1 ,

,,
,,111      (4) 

This equation is used in the ECRA tool to predict 
the reliability of the component-based application [6]. 
The reliability prediction algorithm generates beta 
distributions from component failure rates and it 
requires the user to enter the confidence intervals for 
failure rates of each component [5].  

4. Extending the model 

One of the assumptions of reliability models 
discussed so far is the independence of failures among 
different components. Inter-component failure 
independence implies that error states of one 
component will not propagate to the other components. 
This fact simplifies the modeling, which is the primary 
reason why all existing reliability models for 
component-based systems assume it [8].  However, in 
practice this assumption usually does not hold. 

4.1 Including error propagation probability 
The goal of our research is to extend the reliability 

model from [1, 2] by including failure propagation.  
We also extended ECRA system reliability tool [6] 
with failure propagation feature. 

From equation (2) the estimated probability of 

success of a single component iC  in given sequence 

diagram SDj, under the assumption of failure 
independence, is: 

Prob(success of ijC  | failure_independence) =

( )bpij
iij Θ−=Θ− 11               (5) 

If we remove the independence assumption, then 

the probability of success of iC  in SDj must take into 

account possible failures that may be propagated to it 
from other components. The component will execute 
successfully if and only if it does not excercise any of 
its own faults and no faults are propagated to it from 
the other components: 

Prob(success of ijC ) =

Prob(success_of ijC /failure_independence)× 

Prob(no_error_propagated)                      (6)
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If, for the given system, we have the Unconditional 
Error Propagation Matrix E(A, B), the probability that 

a component kC  will propagate a single fault to the 

component iC  can be estimated by the following 

formula: 

Prob(error_propagated  k  i) = kjikE Θ),( ,    (7) 

i.e., it is proportional to the failure rate of the 

component kC  in scenario j, and the error propagation 

probability from component kC  to iC .  Thus, the 

probability of the complementary event – no error 

propagated from component kC  to component iC  is 

given by: 

Prob(no_error_propagated k i) = kjikE Θ− ),(1 , (8)

Taking into account all other components in the 
system, we obtain the probability of success of the 

component iC  as follows: 

( ) ( )∏
=

Θ−Θ−=Θ−
N

k
kj

bpij
iij ikE

1

),(111 ,          (9) 

where N is the number of components in the system.  
Please note that E(i, i) = 0, so the component doesn’t 
affect its own failure rate through the propagation.  
   We can rewrite the old equations expressing 
component reliability using expression (9). The 
equations now look as follows: 

( ) ( )

( ) ( )Θ−Θ−−=Θ
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If we assume that the system has K different 
sequence diagrams, we obtain the failure rates for each 
of the components in each sequence diagram. Then, 
using the formula similar to (4) we can calculate the 
failure rate of the entire system:  

( ) ( )

( )
∏ ∏

= =

Ψ−⋅Θ−=Θ
K

j

N

i il

jilInteract
jilijjs P

1 1 ,

,,
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We must note that the solutions to the model (10) 
contain all possible error propagation paths between 
the components, including the possible circular 
dependencies.  If such circular dependencies exist, the 
solutions will overestimate the failure rates of the 

components (i.e. the obtained failure rates will be 
higher because of the recursive propagation).  
However, in practice we observed that the 
overestimation is reasonably small and the results 
obtained are representative for the studied systems.  
We consider this to represent the worst-case reliability 
analysis, meaning that the failure rates will be lower 
than those derived by our model. 

4.2 Special cases with closed form solutions 

In the case when the entire error propagation matrix 
is zero the resulting model (equations 10 and 11) is the 
same as the reliability estimation model of Singh et al. 
[1].  When error propagation probabilities are not equal 
to 0 (i.e., the error propagation probabilities have been 
calculated by the methodology described in Section 
2.1, or some other method) our new reliability model 
takes this information into account.  

In general, the system of equations (10) that models 
failure rates of system components and includes error 
propagation is non-linear.  A closed form solution 
cannot be obtained. We use numerical methods to 
obtain the solutions for the component failure rates and 
calculate the failure rate of the system. 

For some architectural patterns observed in the 
UML sequence diagrams the system of equations (10) 
is linear, and closed form solutions can be obtained. 
The simplest of these patterns is when two components 
interact with each other in isolation.  For these 
components, say A and B, the failure rate equations are: 

( ) ( )( )
( ) ( )( )Θ⋅−Θ−−=Θ

Θ⋅−Θ−−=Θ

Aj
bpBj

BBj

Bj
bpAj

AAj

BAE

ABE

,111

,111

Solving the system equation, we obtain the following: 

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )ABEBAE

ABE
bpBj

B
bpAj

A

bpBj
B

bpAj
A

bpAj
A

Aj
,,111

,11111

⋅⋅Θ−⋅Θ−−
⋅Θ−−⋅Θ−+Θ−−=Θ

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )ABEBAE

BAE
bpBj

B
bpAj

A

bpAj
A

bpBj
B

bpBj
B

Bj
,,111

,11111

⋅⋅Θ−⋅Θ−−
⋅Θ−−⋅Θ−+Θ−−=Θ

This special case can be generalized to a system 
with N components, as presented in the scenario 
diagram in Figure 1.  In this case there exists a method 
invocation cycle: C1 calls a method from C2, C2 from 
C3, etc.  At the end, CN returns the results of the 
processing to C1. 
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C1 C2 C3 C4

Figure 1: Scenario Diagram with calling cycle 

While the expressions representing component failure 
rates of the diagram from Figure 1 are more 
complicated than those above, they can still be 
obtained analytically.  

5. Case Study 

In our experiments, we utilize ECRA (Early 
Component-based Reliability Assesment) tool [6]. 
ECRA implements reliability analysis methodology 
presented so far.  We analyzed an actual Personnel 
Access Control System (PACS) system to demonstrate 
the results of our methodology.  We present two sets of 
early reliability prediction results for the PACS model; 
In the first set of simulations we used methodology 
from [1, 2], which calculates system failure rate based 
on the failure independence assumption.  We also used 
our new methodology, which takes in account error 
propagation among components.  Calculated results 
demonstrate that these two approaches result in 
different values of predicted reliability. In the second 
set of experiments we changed the failure rate of the 
component which is known to have a critical impact on 
the system reliability.  Performing two simulations, 
with and without error propagation, we demonstrate 
that the resulting reliability estimates differ quite 
dramatically.   

5.1 The ECRA tool 

ECRA (see user interface in Figure 2) is a 
homegrown tool built at the High Assurance Systems 
Research Center of West Virginia University [6].  It 
automates reliability assessment of component-based 
systems using UML diagrams and the methodology 
described in [1, 2].  We modified ECRA tool to 
accommodate model extensions. The tool accepts three 
types of UML diagrams:  

• The use case diagram - ECRA requires 
detailed description of the actors, use cases, 
and modules within each use case.  

• The sequence diagram – ECRA’s input are 
sequence diagrams.  From them, it calculates 

the number of busy periods for each 
component in each diagram. 

• The deployment diagram – ECRA requires the 
information of the name of each processor and 
processes, along with the description of 
connections between them. 

Figure 2: The User Interface of ECRA tool 

The mentioned diagrams constitute an input into the 
ECRA tool.  The diagrams need to be annotated with 
component and connector failure rates and the error 
propagation matrix E.

If the error propagation matrix is not known (or not 
available), ECRA tool will assume that failures cannot 
be propagated between components. 

The outputs of the ECRA tool are the plots 
representing: 

• Prior beta distributions of component and 
connector failure rates.  

• A histogram plot of the predicted system 
reliability. 

• In addition to system failure probability 
ECRA also provides the 95% confidence 
interval around the system reliability estimate.    

5.2 Personnel Access Control System (PACS) 

To demonstrate the importance of failure 
propagation in component-based software reliability 
modeling, we analyzed the reliability of Personnel 
Access Control System (PACS) [13].  PACS system 
controls physical access to a restricted area. Authorized 
users receive a personal ID card and a personal 
identification number (PIN).  In order to get access, the 
user swipes the ID card which contains user name and a 
unique number (SSN) through a card reader.  After 
searching its database of user names and SSNs to 
validate privileges, PACS system instructs the user to 
enter a four-digit PIN number. If the entered PIN 
matches a stored PIN, the system allows the user to 
enter the area through a gate. Two types of actors use 
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PACS system: the card holder, and the security officer.   
PACS guides the card holder with messages written on 
a single-line display screen. Security officer monitors 
and controls the PACS using a console with another 
single-line display screen, an alarm, a reset button, and 
a gate override button. In its current form, requirements 
specification for PACS originated from a US 
government agency.  The requirements are relatively 
simple, but realistic.  Systems built according to this 
specification have been deployed.  An annotated use 
case diagram of PACS system is shown in Figure 3.  

Gain Physical Access

User q1

P11

Monitor the System

Failure

Security officer q2

P22

P23

Figure 3: Annotated UCD for the PACS system 

In annotated UCD, the usage probability for user type 
q1, the card holder, is 0.96, and for the security officer, 
q2, is 0.04. The user to use-case probability for 
scenario P11 is 1, for P22 is 0.75, and for P23 is 0.25.
These numbers are based on the estimated operational 
profile from the requirements document [13]. It is 
expected that 96% of the time PACS system operates 
by granting access to legitimate users of the system. 4% 
of the time some additional monitoring from the 
security officer is required, out of which ¼ or 1% is 
due to system failure, and the rest, 3%, is due to 
incorrectly typed PIN numbers, or defective ID cards. 
For each use case scenario there is exactly one 
sequence diagram. Figure 4 illustrates the so-called 
failure scenario, which is one of the three different 
sequence diagrams in PACS. This scenario has been 
annotated with the number of busy periods for each 
component. 

driver : 
<DummyClass>

PACS System : 
<DummyClass>

userLCD : 
<DummyClass>

officerLCD : 
<DummyClass>

writeRegister(5,0)

wrietRegister(8,1)

waitForOne(7)

writeRegister(8,0)

writeRegister(7,1)

write(ACCESS DENIED)

write(ACCESS DENIED)

Figure 4: Annotated SD for the Failure case 

The PACS architecture consists of five components 
(processes), which run on the same processor.  Table 1  
presents the information record for each component in 
the initial set of simulations. The record includes 
component’s name, component’s failure probability, a 
95% confidence interval of the failure probability, and 
the number of busy periods the component exhibits in 
each sequence diagram.  Table 2 shows the number of 
messages exchanged between components along all the 
three scenarios. The scenario numbering is consistent 
in Tables 1 and 2. 

Table 2: Number of interactions per pair of 
components through scenarios 

Pair(l, i) Scenario 1 Scenario 2 Scenario 3 
(C2, C1) 5 24 4 
(C2, C3) 0 1 0 
(C2, C4) 1 3 1 
(C2, C5) 1 0 1 

5.3 System reliability under failure 
independence assumption 

The methodology by Singh et. al. [1] assumes 
failure independence.  Equation (4) and the values from 
Table 1 are used in the calculation of system failure 
probability sΘ as follows: 

Table 1: Information record of PACS components 

Busy Periods Component Name Failure Probability Confidence Interval 
bpi1 bpi2 bpi3 

C1 Communication Driver 0.002 (0.001,0.003) 24 4 5 
C2 PACS 0.005 (0.003,0.007) 4 1 1 
C3 Validator 0.002 (0.001,0.003) 1 0 0 
C4 User LCD 0.006 (0.003,0.009) 3 1 1 
C5 Officer LCD 0.006 (0.003,0.009) 0 1 1 
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sΘ = 1 – [0.96 ( ( )24
11 Θ− ( )4

21 Θ− ( )1
31 Θ−

( )3
41 Θ− ) + 0.03 ( ( )4

11 Θ− ( )1
21 Θ− ( )1

41 Θ−
( )1

51 Θ− ) + 0.01 ( ( )5
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Figure 5 depicts the histogram of expected system 

level failure rates, SΘ , under the assumption of failure 

independence. SΘ  is presented in the form of a 

histogram because it is obtained by Monte Carlo 
simulations of the expression above [1].     
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Figure 5: Predicted PDF of sΘ assuming failure 

independence 

The first observation is that this reliability 
prediction does not meet the system requirement [13], 
which limits system failure probability per demand to 
0.01.  More reliable components than those assumed in 
Table 1 are needed if the system is to achieve the 
desired reliability.  

More important for the subject of this paper, in a 
related project [16] we implemented PACS and 
empirically evaluated its reliability through extensive 
testing.  To our dismay the observed system reliability 
was much lower than predicted by this model, even 
though component reliabilities were those indicated in 
Table 1.  We concluded that the reliability model 
which excludes failure propagation probability is too 
optimistic.  

5.4 System reliability with error propagation 

Next, beside the component reliabilities used in the 
first experiment, we added error propagation matrix 

shown in Table 3. The matrix was calculated by the 
methodology described in Section 2.1. From UML 
state diagrams, sequence diagrams and the expected 
operational profile, we calculated the probability 
distribution of the set of states for each component, and 
probability distribution of the set of messages between 
each pair of components. First, we calculated the 
conditional error propagation probability matrix, and 
then the transmission probability matrix.  The values in 
Table 3 represent the unconditional error propagation 
probability.  

Table 3: The error propagation values among 
the PACS’s components 

 C1 C2 C3 C4 C5 
C1 0 0.425169 0 0 0 
C2 0.804878 0 0.02439 0.083388 0.073165
C3 0 0.687124 0 0 0 
C4 0 0 0 0 0 
C5 0 0 0 0 0 

Equation (11) was used to set up the system failure 
probability expression that includes error propagation: 

sΘ = 1 – [0.96 (
24

11Θ · 4
21Θ · 1

31Θ · 3
41Θ ) + 0.03 ·

(
4

12Θ · 1
22Θ · 1

42Θ · 1
52Θ ) + 0.01 (

5
13Θ · 1

23Θ ·
1

43Θ · 1
53Θ )]

Figure 6 depicts the histogram of expected system level 

failure rates, SΘ , in case where the failure 

independence assumption is eliminated. 
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Figure 6: Predicted PDF of sΘ  using error 

propagation 
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In contrast with the first result, this system failure 
rate is much higher.  The increase in failure rate is 
caused by the error propagation between the 
components.  Predicted system reliability is much 
closer to the one observed in tests of PACS 
implementation.  In fact, the measured reliability is 
within the 95% confidence interval calculated by the 
model.  So, while additional effort is required to 
calculate the error propagation probability matrix, it 
appears that the precision of system level reliability 
prediction has increased.  Unfortunately, an automated 
tool is still not available for calculating unconditional 
error propagation probability matrix from UML 
artifacts.  In our experiments, the values in the matrix 
were computed by hand, requiring significant effort. 

5.5 The sensitivity analysis assuming failure 
independence 

Based on the error propagation matrix and prior 
experience with PACS, we observed that system 
reliability is the most sensitive to the changes in 
reliability of Driver component, C1.  For the second set 
of experiments we used the same simulation parameters 
as before except for the failure rate of the C1.  In the 
following two experiments, we assumed that the 
reliability of C1 doubled to 0.001 failures per demand, 
with the 95% confidence interval of (0.0005, 0.0015). 
Figure 7 presents the results obtained by ECRA 
simulations when the error propagation information is 
not included in the model. 
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Figure 7. Predicted PDF of sΘ  with improved 

Driver component and no failure propagation 

Comparing Figures 5 and 7 we observe that the 
improvement in the Driver component positively 

impacts system reliability. The expected system failure 
rate has decreased from 0.0819 to 0.0604, an 
improvement of 26.25%. 

5.5 The impact of component reliability and 
error propagation to system reliability

Figure 8 presents the result of ECRA Monte Carlo 
simulations when error propagation information is 
included in the model. 
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Figure 8: Predicted PDF of sΘ  using error 

propagation and improved driver component 

Comparing Figures 6 and 8 we observe a 
substantial improvement in the system failure rate from 
0.221 to 0.156, a 29.41% improvement.   

    This result matches closely the measured reliability 
of our implementation [16]. Predictive performance 
can be explained by the error propagation, since there 
is a substantial probability (0.425 in Table 3) that an 
error in Driver component (C1) can affect the PACS 
component C2. Component C2, in turn, propagates this 
error to all the other components leading to a certain 
system failure (the row C2 is has mostly non-zero 
elements). But even more importantly, the Driver
component is heavily used, having 24 busy periods (see 
Table 1) in the usage scenario that is utilized about 
96% of the time. Therefore, any faults in C1 are more 
likely to lead to system error. This observation 
contrasts, for example, the error propagation behavior 
of Validator component C3. C3 has a high error 
propagation probability towards the PACS component 
C2 (0.687 in Table 3), but its usage frequency is much 
lower than that of Driver component (C1).  Therefore, 
its overall contribution to system reliability is modest.  
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6. Conclusions and Future work 

In this paper, we extended the existing Bayesian 
approach for reliability estimation of component- based 
software systems [1, 2].  Like most other component-
based reliability models, the old model assumed that 
system components will fail independently.  To some 
extent, this assumption is realistic if components are 
accompanied by wrappers, which contain failure 
propagation close to its source.  However, not all the 
component-based applications contain wrappers.  Plus, 
the question is whether wrappers are able to prevent the 
propagation of component errors, i.e., corrupted states 
resulting from incorrect computations but not 
externally observable as failures.  Error propagation, if 
it can be captured by the probability of occurrence, 
represents a meaningful extension to current reliability 
models.   

We presented one possible approach to error 
propagation probability calculation and integrated it 
into the Bayesian methodology for reliability prediction 
of component-based systems.  Our analytical and 
experimental observations indicate that error 
propagation can make a significant difference in system 
reliability prediction, especially if components 
“leaking” erroneous states are complex and frequently 
used.   

While our early experiences are positive, they call 
for a more extensive set of experiments.  New 
experiments should be conducted to investigate 
whether reliability predictions of models which take 
into account error propagation probability are 
statistically significantly more precise than those that 
do not.  
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