
IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 4, DECEMBER 2004 465

A Scenario-Based Reliability Analysis Approach
for Component-Based Software

Sherif Yacoub, Member, IEEE, Bojan Cukic, Member, IEEE, and Hany H. Ammar, Member, IEEE

Abstract—This paper introduces a reliability model, and a
reliability analysis technique for component-based software. The
technique is named Scenario-Based Reliability Analysis (SBRA).
Using scenarios of component interactions, we construct a prob-
abilistic model named Component-Dependency Graph (CDG).
Based on CDG, a reliability analysis algorithm is developed to
analyze the reliability of the system as a function of reliabilities of
its architectural constituents. An extension of the proposed model
and algorithm is also developed for distributed software systems.
The proposed approach has the following benefits:

• It is used to analyze the impact of variations and uncertainties
in the reliability of individual components, subsystems, and
links between components on the overall reliability estimate
of the software system. This is particularly useful when the
system is built partially or fully from existing off-the-shelf
components.

• It is suitable for analyzing the reliability of distributed
software systems because it incorporates link and delivery
channel reliabilities.

• The technique is used to identify critical components, inter-
faces, and subsystems; and to investigate the sensitivity of the
application reliability to these elements.

• The approach is applicable early in the development lifecycle,
at the architecture level. Early detection of critical architec-
ture elements, those that affect the overall reliability of the
system the most, is useful in delegating resources in later de-
velopment phases.

Index Terms—Component-based software, component-depen-
dency graphs (CDG), scenario-based reliability analysis (SRBA),
software reliability analysis and modeling.

ACRONYMS1

CBRE Component Based Reliability Estimation
CBSE Component-Based Software Engineering
CDG Component Dependency Graph
COTS Commercial Off-The-Shelf
DICOM Digital Imaging and Communication in Medicine
DIMSE DICOM Message Service Elements

Manuscript received June 26, 2000. This work was supported in part
by grants to West Virginia University Research Corp. from the National
Science Foundation Information Technology Research (ITR) Program grant
CCR-0082574; from the NASA Office of Safety and Mission Assurance
(OSMA) Software Assurance Research Program (SARP) managed through
the NASA Independent Verification and Validation (IV&V) Facility, Fairmont,
West Virginia; from NASA research grant NAG4-163; and from NSF CAREER
award CCR-0093315. Associate Editor: R. A. Evans.

S. Yacoub is with the Hewlett-Packard Labs, Palo Alto, CA 94304 USA
(e-mail: sherif.yacoub@hp.com).

B. Cukic and H. H. Ammar are with the Lane Department of Computer
Science & Electrical Engineering, West Virginia University, Morgantown, WV
26506 USA(e-mail: cukic@csee.wvu.edu; hany.ammar@mail.wvu.edu).

Digital Object Identifier 10.1109/TR.2004.838034

1The singular and plural of an acronym are always spelled the same.

EET Extended Execution Time
IOD Information Object Definition
MM Markov Models
MSC Message Sequence Charts
SBRA Scenario-Based Reliability Analysis
SS_CDG Subsystem Component Dependency Graph
UML Unified Modeling Language

NOTATION

Average Execution Time of a Global Scenario
The ith component
A set of edges in a CDG
The average execution time of the component
The average execution time of the subsystem
A set of nodes in a CDG
A Node in a CDG, could be a component or a sub-
system
Name of component number i
Name of subsystem number m
Probability of scenario number k
Probability of a transition from node to node
A reliability estimate of component
A reliability estimate of subsystem
A reliability estimate of a transition from node to
node
A start node in a CDG
Scenario number k
Subsystem number m
A termination node in a CDG
Name of the transition from node to

I. INTRODUCTION

COMPONENT-BASED SOFTWARE ENGINEERING
(CBSE) is a specialized form of software reuse concerned

with building software from existing components (including
Commercial Off-The-Shelf components, COTS) by assembling
them together in an interoperable manner. Achieving a highly
reliable software application is a difficult task, even when
high quality, pre-tested, and trusted software components are
composed together [36]. As a result, several techniques have
emerged to analyze the reliability of component-based applica-
tions. These can be categorized as:

• System-level reliability estimation. Reliability is estimated
for the application as a whole.

• Component-based reliability estimation. The application
reliability is estimated using the reliability of the indi-
vidual components and their interconnection mechanisms.

0018-9529/04$20.00 © 2004 IEEE

466 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 4, DECEMBER 2004

The first approach treats the software system as a unit. This
approach is not the most suitable for component-based appli-
cations because it does not consider compositional properties
of systems, and does not accommodate the reliability growth
of individual components. The limitations of system-level
approaches for component-based applications are discussed in
[8]. As for the second approach, two issues arise. The first is
about estimating the reliability of individual components, and
the second is about analyzing the reliability of the application
by aggregating the reliabilities of constituting components.
This paper addresses the second problem, the analysis of the
reliability of a component-based system as a function of its
constituents. We are concerned with reliability analysis models
for systems whose design is substantially based on independent
execution scenarios. This work is motivated by the need to:

• Study the sensitivity of the application reliability to reli-
abilities of components and their interfaces. This guides
the process of identifying components and interfaces with
critical impacts on system reliability. We can analyze the
effects of replacing components with new ones, with sim-
ilar/same interfaces but improved reliability.

• Develop a probabilistic technique for reliability analysis
which is applicable at the architecture level [33], [34].
Many reliability analysis techniques use test cases and
fault injection. Using scenarios has the advantage of ap-
plicability in the early phases of development life cycle.

• Analyze the reliability of a component-based application
even when the source code is not available (i.e. fault in-
jection and seeding would not be applicable). This is fre-
quently required by systems built of COTS components.

• Develop a reliability analysis technique that addresses is-
sues related to the distributed nature of software systems,
such as the complexity and hierarchical composition of
subsystems. Moreover, physical distribution of compo-
nents imposes the need for careful treatment of inter-com-
ponent link reliabilities.

As mentioned above, the proposed technique is suitable for
applications designed and analyzed using independent scenarios
describing component interactions. Independent scenarios iden-
tify system execution paths. Each scenario terminates by re-
turning the flow of control back to its starting conditions without
carrying over state changes to the next scenario. Many reac-
tive systems, such as feedback systems and simulation environ-
ments, have this property. The technique also assumes sequen-
tial execution of components; parallelism is outside the scope of
the current study.

We propose a new technique called Scenario-Based Relia-
bility Analysis (SBRA), which builds on scenarios used in the
analysis phase of component-based system development. A
Component Dependency Graph (CDG) is proposed as a new
reliability analysis model. A CDG incorporates component and
interaction usage probabilities, as well as their estimated relia-
bilities. An algorithm is developed to analyze the reliability of
component-based applications using the information embedded
in a CDG. In general, we are not concerned with estimating
the reliability of the application over its execution lifetime. In
our opinion, early lifecycle data is not sufficient for precise

prediction of operational reliability. Instead, we concentrate our
analysis to study the implications of component/interface/link
reliabilities to the expected reliability of the software system,
once it is built.

Section II summarizes related work on reliability analysis,
and estimation of component-based software. Section III
introduces the reliability analysis model, Component De-
pendency Graph (CDG). Section IV describes the proposed
scenario-based analysis approach; constructing CDG, and
applying an analysis algorithm which traverses these graphs.
Section V describes the application of the model, and the al-
gorithm to a case study. Section VI discusses the extensions of
the reliability model, and the algorithm for distributed systems.
Section VII describes the application of this approach to a
distributed system example.

II. BACKGROUND

Several reliability models and estimation techniques have
been proposed to assess the reliability of component-based
applications. Gokhale et al. [6] discuss the flexibility offered
by discrete-event simulation to analyze component-based
applications. Their approach relies on random generation of
faults in components using a programmatic procedure which
returns the inter-failure arrival time of a given component.
The total number of failures is calculated for the application
under simulation, and its reliability is estimated. This approach
assumes the existence of a control flow graph of a program.
The simulation approach assumes failure and repair rates for
components, and uses them to generate failures in executing
the application. It also assumes constant execution time per
component interaction, and ignores failures in component
interfaces and links (transition reliabilities). Sanyal et al. [18]
introduce Program Dependency Graphs and Fault Propagation
Analysis [19], [22] for analytical reliability estimation of
component based-applications. The approach is code-based
(reverse-engineering) where dependency graphs are generated
from source code, which may not be available for off-the-shelf
components.

Krishnamurthy et al. [11] assess the reliability of compo-
nent-based applications using a technique called Component
Based Reliability Estimation (CBRE). The approach is based
on test information and test cases. For each test case, the exe-
cution path is identified. The path reliability is calculated using
the reliability of the components assuming a series connection
(using the independent failure assumption and perfect interfaces
between components). This approach does not consider compo-
nent interface faults, although they are considerable factors in
reliability analysis of component-based software. In an attempt
to borrow ideas from the hardware reliability engineering com-
munity, a research group at the University of Toronto [13], [25]
proposes that designers should follow certain disciplines in soft-
ware component development. They develop a set of design and
interaction rules to minimize the interaction and dependence be-
tween components. The proposed rules facilitate modeling the
component-based system as Markov chains and, hence, we can
apply the same reliability analysis techniques as in the case of

YACOUB et al.: A SCENARIO-BASED RELIABILITY ANALYSIS APPROACH FOR COMPONENT-BASED SOFTWARE 467

hardware systems. A similar study of the failure dependency
between components is discussed in [37]. However, such disci-
pline is difficult to impose in practice.

The techniques discussed above are so called path-based
approaches to reliability analysis of component-based soft-
ware. Most path-based approaches assume that components fail
independently, thus providing a pessimistic estimate of system
reliability. Gokhale et al. [5] propose a technique which allows
handling of dependent failures. The solution takes into account
time-dependent representation of component reliability, and
a fixed execution time per interaction. Everett [4] describes
an approach which uses the Extended Execution Time (EET)
reliability growth model to arrive at a composite reliability
growth model for the testing period. The proposed CDG model
and SBRA algorithm could be integrated into the “superimpose
component reliability” step in Everett’s framework.

Schneidewind [27] addresses the problem of assessing the re-
liability of distributed systems in which a set of client and server
nodes remotely communicate with each other over a network.
Physical distribution imposes the need to consider new factors
in reliability analysis of software systems:

a) accounting for a possibility that the survivability of certain
client and server components will be more critical to the
system operation than others, and

b) accounting for the possibility of using redundant services
across the network to allow system recovery if one of the
critical nodes fails.

Several approaches use Markov chains to develop reliability
models (Markov Models, MM) for software systems, for ex-
ample [28], [29]. While the models we develop in this paper
may look similar to MM in representation, they are conceptu-
ally different. MM are used to capture the system states, and
the transitions from one state to another. Transitions are the re-
sults of component failures. The models that we develop here
are based on representing the system as the composition of soft-
ware components, not system states. Whereas state modeling
focuses on the behavioral aspects of the system, we focus on
capturing component interactions which represent system archi-
tecture. MM techniques have limited applications to complex
systems when it becomes hard to identify the large number of
system states.

Poore et al. [30] propose an approach which helps developers
plan for software reliability analysis and certification. As part of
their methodology, a component model is used to represent the
system as a composition of components with transition prob-
abilities. The work proposed in this paper shares similar ob-
jectives. Poore does not discuss how to obtain the component
model nor its parameters, such as transition probabilities. He
assumes that the analyst will construct the model based on do-
main experience. It is not clear in the approach how to obtain
some model parameters such as transition probabilities. Our ap-
proach extends Poore’s model by formally defining the com-
ponent model, and a traversal algorithm to analyze system reli-
ability as a function of component and transition reliabilities.
We show how to use design and analysis scenarios to define
the component model such that it is not heavily dependent on

the domain analyst’s intuition. Moreover, we address systems
which are hierarchical in nature.

Goseva-Popstojanova and Trivedi [32] present a classifica-
tion of architecture-based approaches to reliability assessment
of component-based software systems. They identify three
classes based on the methods used to describe the architecture,
and aggregate the failure behavior of components and connec-
tors. These classes are:

a) state-based where software architectures and failure
behavior are represented as a Markov chain or a
semi-Markov process;

b) path-based where reliability is estimated for set of execu-
tion scenarios [33], [35]; and

c) additive models which focus on estimating the time-de-
pendent failure intensity of the system using components
failure data.

The approach we present in this paper is a path-based ap-
proach, adequate for large-scale systems where the analysis
of MM will be prohibitive due to the state space explosion
problem. Our approach is also based on execution scenarios.
A scenario is a set of component interactions triggered by a
specific input stimulus [24]. One way to model scenarios is by
using sequence diagrams. Sequence diagrams specify interac-
tions between application entities in a time sequence manner.
We adopt Sequence Diagrams as means of documenting a sce-
nario for a component-based application. We also use the word
interaction as a general term to refer generically to all possible
types of collaboration between components. The notation of
sequence diagrams involving components is similar to those
used for Message Sequence Charts (MSC) [9] or interaction
diagrams in the Unified Modeling Language (UML) [20],
with some generalization of the terms. Modeling languages,
in general, provide support to represent events (interactions
between components) in sequence diagrams using an ordinal
scale. Most languages are concerned with the order of invoca-
tions instead of the execution time of the component as a result
of an invocation. Little research has considered annotating
the sequence diagrams with execution times. For instance,
Firley et al. [31] propose extensions to the UML to represent
timed sequence diagrams. For the purpose of our study, we
require that sequence diagrams be annotated with time stamps
showing estimated component execution times. The majority
of modeling tools provide support for annotations, which an
analyst can use to capture execution time estimates in sequence
diagrams. Scenarios are also related to the concept of operations
and run-types used for the description of operational profiles
[16]. Scenarios with specified input variables are similar to
operation run-types. A generic scenario with fewer details
about input values, but specific for an input (sub)domain, is
similar to an operation with several run-types. Finally, a profile
of the component execution probabilities assigned to scenarios
is similar to the operational profile. Operational profiles have
long been used to guide testing, development, and performance
analysis by identifying frequently executed operations. Here,
we use scenarios to derive a probabilistic model for the purpose
of reliability analysis of component-based systems.

468 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 4, DECEMBER 2004

III. COMPONENT DEPENDENCY GRAPH (CDG)

Control flow graphs are the classical method of revealing the
structure, decision points, and branches in program code [17].
We adapt the control flow graph principles to component-based
applications to represent the architectural dependency between
components and possible execution paths. We call this graph a
Component Dependency Graph, CDG. In this section we define
the graph, while the following section describes how to calculate
graph attributes.

Definition 1: A Component Dependency Graph “CDG”: A
CDG is defined by the tuple , where is a di-
rected graph, is the start node, is a termination node. is a
set of nodes in the graph, , , and is a
set of directed edges in the graph, , .

Definition 2: A Node “ ”: models a component ,
and is defined by the tuple , where: is
the name of component , is the reliability of component

, and is its average execution time of the component .
Definition 3: Component Reliability “ ”: is the

probability that the component executes correctly (failure
free) upon invocation.

Definition 4: Average Execution Time of a Component
“ ”: is the average execution time of a component

.
Definition 5: A Directed Edge “ ”: models the con-

trol flow transfer from one component to another. It is annotated
by the tuple where: is the transition name
from node to , denoted , is the transition’s
reliability, and is the transition’s execution probability.

Definition 6: Transition Reliability “ ”: is the
probability that information sent from component to com-
ponent is delivered error-free. This probability includes
possible interface errors and possible channel delivery errors,
as discussed in Section IV-A-3.

Definition 7: Transition Probability “ ”: is the
conditional probability that will execute next given that

is currently executing. The sum of outgoing transition
probabilities from any node must be unity.

Thus, a CDG is defined as follows:

and are the start

and termination nodes

Fig. 1 shows the CDG of a system consisting of four compo-
nents.

IV. SCENARIO-BASED RELIABILITY ANALYSIS (SBRA)

We propose to analyze the reliability of a component-based
software application in three steps:

1) estimation of the parameters used in the reliability
model;

2) construction of the component dependency graph; and

Fig. 1. A sample CDG.

3) application of the algorithm for reliability and sensitivity
analysis.

The rest of this section describes these steps.

A. Parameter Estimation

1) Scenario-Related Parameters: Scenario “ ”. A sce-
nario from the set of the application scenarios ,
where , represents a sequence of component
interactions. At the system level, scenarios are activated by
specific input stimuli.

Scenario Probability “ ”. The dynamic behavior of a
component-based application is specified using a set of sce-
narios. Each scenario is assigned the probability of execution.

is the execution frequency of scenario k with respect to all
other scenarios. The execution probabilities of all scenarios ,

, should sum to unity.
It is usually difficult to exhaustively document all possible

scenarios, especially at early phases of the development life
cycle. In such cases, to estimate , the concepts of opera-
tional profile and equivalence partitioning [15] could be used to
specify scenario categories. Alternative solutions to identify/se-
lect scenarios to use in reliability analysis can be found in [26].

Average Execution Time of the application “ ”. The
average execution time of the application is given by

Time (1)

where is the probability of execution of scenario , and
Time is the average execution time of scenario .

2) Component-Related Parameters: Component Reli-
ability “ ”. Several techniques have been proposed to
estimate the reliability of software components. We assume
that the reliability of individual components has been calcu-
lated (numerical formula) or modeled (mathematical formula).
We refer to this estimate as . Techniques for component
reliability estimation include fault injection, testing, and ret-
rospective analysis. Assessing the reliability of individual
components, as mentioned earlier, is outside the scope of our
discussion. Instead, assuming an estimate is available, we use
it as a parameter to analyze the sensitivity of the application

YACOUB et al.: A SCENARIO-BASED RELIABILITY ANALYSIS APPROACH FOR COMPONENT-BASED SOFTWARE 469

reliability to variances in component reliabilities. Our system
reliability model (CDG) can also accommodate the application
of various software reliability growth models (SRGM) to com-
ponents. In the analysis algorithm discussed in Section IV-C,
the point reliability of the component could be substituted
with a time-based model. In the SBRA algorithm, the average
execution time of the component can be used in the compo-
nent’s SRGM to obtain an estimate. For instance, component
reliability can be , where is the accumulated execution
time, ; and is the visit to the component
during the execution of graph traversal algorithm.

Average Execution Time of a Component “ ”. The pa-
rameter represents the average execution time of compo-
nent . It is calculated using the following equation:

Time in (2)

where
is the probability of execution of scenario ,
Time is the execution time of , measured
as the sum of its active times in the execution of
scenario .

The average execution times of components may not be
available when applying SBRA methodology at the design
level (coding has not yet started). In those cases, the analyst
can make relative estimates of component execution times, for
example, by comparing the component complexities. While
this may be inaccurate, the methodology can be later used to
study the effect of such uncertainties on the system reliability.

3) Transition Related Parameters: Transition Reliability
“ ”. The reliability of a transition from one component
to another in the CDG model is the probability that the in-
formation is correctly delivered from the source component
to the destination in the course of an execution. We do not
describe in detail here how to calculate transition reliabilities.
We are primarily concerned with incorporating them (as first
class elements) in the model so that their effect on application
reliability could be analyzed.

Estimating the transition reliability depends on two important
factors: Component Interfaces Reliability and Link Reliability.
Thus, . In
the following, we briefly describe factors affecting interface and
link reliabilities.

Component Interface Reliability is defined as the probability
that two interacting components have matching interfaces. A
component’s interface defines how it interacts with other com-
ponents. Interfaces describe the import and export relationships.
A set of exported interfaces specifies the services that the com-
ponent can provide. A set of imported interfaces specifies the
services which this component requires from other (external)
components, needed in an execution. A mismatch in an inter-
face can be the result of an incompatibility in the structure or
the sequence of messages exchanged between components, in-
compatibilities in data formats, types and message protocols,
or misunderstood roles in an interaction (the client versus the
server). Client/Server relationship, for example, is defined by
import/export interface specifications. Formal specification of

component interfaces is an approach to improve their reliability.
Interface reliability improvement is an active research area [2],
[21], and it deserves further study.

Link Reliability (also referred to as delivery channel relia-
bility) is the probability of correct delivery of messages ex-
changed between components. This factor is essential in the
case of component distribution across a network. Heimdahl et
al. [7] estimate that almost 35% of faults in the system they
studied were related to interface mismatches between compo-
nents, and their underlying environments, which included com-
munication channels. A message exchanged between compo-
nents in a distributed environment is exposed to possible prob-
lems with the operating system calls, the underlying hardware
technology, communication subsystems, and the physical net-
work layer. Problems such as delays, congestion, physical fail-
ures, timing, and protocols affect link reliabilities. While their
analysis is outside the scope of this paper, we incorporate their
estimated effects in the SBRA algorithm.

Transition Probability “ ”. represents the prob-
ability of transition from to . It is calculated from the
number of interactions between two components across the
analysis scenarios as follows:

in
(3)

where
is the probability of execution of sce-
nario , is the number of compo-
nents, and
is the number of times interacts with

in scenario .
The sum of transition probabilities from any component should
be unity.

Transition probabilities depend on the scenarios and the sce-
nario profile. While uncertainties in the scenario profile affect
the accuracy of estimates [26], the proposed SBRA can
be used to study the sensitivity of overall system reliability to
changes in transition probabilities.

4) Data Sources: To calculate the above model parameters,
the following data sources are required:

— A set of scenarios which capture interactions between
components in the system. UML interaction diagram
representation is adequate, if enhanced with timeline
annotations.

— An initial scenario profile as estimated by the domain
analyst. The analysis algorithm will be used to analyze
the effect of uncertainties in the initial profile on the
system reliability.

— Initial estimates for the component and transition re-
liabilities, or an SRGM model for each. The analysis
algorithm is used to analyze the effect of uncertainties
in these estimates.

B. CDG Construction

The following steps outline the process of constructing CDG
graphs:

470 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 4, DECEMBER 2004

Fig. 2. The SBRA algorithm.

• Using the application analysis scenarios, estimate the
probability of execution of each scenario by es-
timating the frequency of execution of each scenario
relative to all other scenarios.

• Estimate the reliability of components and inter-
faces , or decide on likely values for these reliabil-
ities (see Sections IV-A-2 and IV-A-3).

• Calculate the average execution time for an application run
using the average execution time of a scenario,

the scenario probability, and (1) (Section IV-A-1).
• For each scenario, calculate the execution time of each

component (from the timeline of the sequence diagram),
and the transition probability from one component to an-
other.

• Calculate the average execution time of each compo-
nent using the execution time of a component
in each scenario, the probability of a scenario, and (2)
(Section IV-A-2).

• Calculate the transition probability for all sce-
narios using the probability of a scenario, the transition
probabilities between components in each scenario, and
(3) (Section IV-A-3).

• Construct the CDG according to the definitions in Sec-
tion III.

C. Reliability Analysis Algorithm

After constructing the CDG, we can analyze the reliability of
the application as the function of the reliability of components
and transitions using the algorithm shown in Fig. 2

The algorithm expands all branches of the CDG starting from
the start node. The breadth expansions of the tree represent log-
ical “OR” paths, and are hence treated as the summation of reli-
abilities weighted by the transition probability along each path.
The depth of each path represents the sequential execution of
components, the logical “AND”, and is hence treated as the mul-
tiplication of reliabilities. The “AND” paths take into consider-
ation the interface and link reliabilities between compo-
nents. The depth expansion of a path terminates when the exe-
cution time of that path sums up to the average execution time
of the application, or when the next node is a terminating node.

Due to the probabilistic nature of the dependency graph, when
calculating the reliability of an application, the SBRA algorithm
may loop between two or more components. However, these
loops never lead to a deadlock by virtue of using the average ex-
ecution time of the application to terminate the depth traversal
of the graph. Therefore, deadlocks are not possible when exe-
cuting the algorithm, and a termination of the algorithm execu-
tion is evident.

The reliability of an “AND” path is neither too pessimistic
nor too optimistic. The path is either truncated with a termina-
tion node (a natural end of an application execution), or with
an execution time limit, which is the average execution time
of a scenario. The algorithm assumes that each component is
wrapped such that failures in one component do not propagate
to another component in the “AND” path [10].

V. EXAMPLE 1: WAITING QUEUES SIMULATOR

We illustrate the applicability of the proposed technique to
a simple component-based application for simulating the be-
havior of waiting queues in which we deal with customers lining
up at checkout counters at supermarkets, a self-serve car wash,
etc. The application is built by composing software components
developed as a part of an educational experiment in software
reuse [1]. The domain was defined by a set of software com-
ponents, a generic architecture for communicating components,
and a set of possible execution scenarios. We limit our discus-
sion here to a specific application, the checkout counter.

A. The Architecture

Fig. 3 describes the architecture of the application using the
UML package diagram [20]. The architecture of the application
is centered around a dynamic event list as the communication
vehicle of events. In addition to the EventList component, the
primary components in the architecture are ArrivalGenerator,
a QueuingFacility, a ServiceFacility, a Measurement recorder,
and a ScheduleManager. The analysis identified a set of six
events which depict all scenarios in the execution of the appli-
cation.

• Events are maintained in the EventList, and are sorted by
arrival time. Each event triggers a specific execution sce-
nario.

• ArrivalGenerator uses a distribution function to generate
the next customer’s arrival time. We used a random
number generator with a uniform distribution of arrival
times.

• QueuingFacility consists of a set of queue categories,
where each queue category contains one or more queues.
Events which indicate an action for a queue category or a
queue are delegated to the queue facility, which, in turn,
delegates the action to the appropriate queue category.
In the case study, we used two categories for checkout
counters, Normal and Express, and one queue for each
category.

• The ServiceFacility component consists of a set of server
categories, where each server category contains one or

YACOUB et al.: A SCENARIO-BASED RELIABILITY ANALYSIS APPROACH FOR COMPONENT-BASED SOFTWARE 471

Fig. 3. The application architecture.

more servers. Events which indicate an action for a ser-
vice category or a server are delegated to the ServiceFa-
cility, which delegates the action to the appropriate service
category.

• The Measurement component updates statistical infor-
mation when a customer object completes the specified
number of service units.

• The ScheduleManager component serves as the main
routine for the simulation. It repeatedly dispatches events
from the event list, and delegates actions based on the
event type.

B. Scenarios

The interaction between components in the application is
analyzed using six execution scenarios, each triggered by an
event. The following summarizes the analysis scenarios, shown
in Fig. 4.

• The ARRIVAL scenario describes the sequence of actions
taken by components to process the arrival of a new cus-
tomer to the queuing facility.

• The REORDER scenario is executed when it is required
to reorder the customer in the queue category, or when a
queue is empty and could accept customers from a busy
queue.

• The DEQUEUE scenario is executed when a server is
ready to accommodate a customer from its waiting queue.

• The SERVE scenario is executed when a customer is
de-queued and needs to be served.

• The SERVICE_COMPLETE scenario is executed when-
ever a customer finishes its service at a station.

• The CHECK_SERVER scenario is executed to check
whether a server is available to serve a customer.

C. The Component Dependency Graph

In this particular example, some of the parameters estimated
below are calculated from the actual implementation of the
system because the source code for the example was available

when SBRA was applied. This may not be true for other
applications. Early in the lifecycle, actual values for the model
parameters may not be available. In such a case, feedback from
the actual system implementation may be used to validate the
assumptions made in the analysis phase about system model
parameters, such as execution times and scenario profile.

Calculating . Based on the execution profile of the ap-
plication, the probabilities of execution of the six scenarios are
listed in Table I. These probabilities are calculated based on
the numerous simulation runs for the application, and averaging
over the executions of each scenario.

Calculating and . In this experiment, we will as-
sume that the reliabilities of components and transitions are
known. We will use these parameters to discuss the sensitivity
of the application’s reliability to the variations in the reliabili-
ties of components and transitions.

Calculating . The average execution time of the ap-
plication is calculated using the average execution time of each
scenario, and the probability of execution of a scenario. Using
(1) (see Section IV-A-1), is 23.5.

Calculating . The average execution time of each com-
ponent is calculated using (2) (Section IV-A-2). Table II lists
the average execution time of each component.

Calculating . Using the analysis scenarios, the scenario
probabilities (Table I) and (3) (Section IV-A-3), the transition
probabilities are calculated. Using the definitions of Sec-
tion III, the CDG, shown in Fig. 5, was constructed.

D. Applying the SBRA Algorithm

We have implemented the SBRA algorithm defined in Sec-
tion IV-C, and applied it to the CDG of the application in Fig. 5.
The following describes the types of analyses we conducted.

A) Reliability of the application as a function of component
reliability. Using the SBRA algorithm, we are able to investi-
gate the variation in the reliability of the application as a func-
tion of the reliability of individual components. The graph in
Fig. 6 shows the application reliability as the function of varying
the reliability of one component, while the reliabilities of other
components are fixed to 1.0, for the sake of comparison.

472 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 4, DECEMBER 2004

Fig. 4. Scenarios for the waiting queue simulator.

B) Reliability of the application as function of transition re-
liability. Using the SBRA algorithm, we are able to investigate
the variation in the reliability of the application as a function of
the reliability of transitions (interfaces and delivery channels)
between components. Fig. 7 shows the reliability of the applica-
tion as a function of the reliability of a transition (one at a time),
while the reliabilities of other components and transitions are
fixed (equal to 1 for the sake of comparison).

C) Reliability of the application as a function of the scenario
profile. The change in the manner an application uses a domain
component has a substantial effect on the sensitivity of the ap-
plication reliability. Our model accounts for changes in compo-
nent usage through the variations in scenario execution proba-
bilities (in Section IV-A-1). For our case study, the usage
of the components differs from one application to another, e.g.,
supermarket, immigration posts, car wash service, etc. For illus-

YACOUB et al.: A SCENARIO-BASED RELIABILITY ANALYSIS APPROACH FOR COMPONENT-BASED SOFTWARE 473

TABLE I
AVERAGE EXECUTION TIME OF SCENARIOS

TABLE II
AVERAGE EXECUTION TIME OF EACH COMPONENT IN THE CASE STUDY

Fig. 5. CDG of the waiting queues simulator.

tration, we consider four cases. Varying the maximum requested
service time, and the maximum limit on the period between cus-
tomers inter-arrival time, generated these cases. The profiles for
the four cases are shown in Table III.

We can analyze the reliability of the application as a function
of component reliabilities with different usage profiles. We se-
lected the three components EventList, QueueFacility and Ser-
viceFacility. The ensuing application reliabilities are plotted in
Fig. 8.

E. Results

• From Fig. 6, the application reliability varies significantly
with the variation in the reliability of SimulatorDriver
and EventList. As the reliability of these components de-
creases slightly, the system reliability decreases dramati-
cally. This is due to the fact that these two components are
at the core of the simulation application and, therefore, any

faults in these components will affect the correct operation
of the application.

• From Fig. 6, the reliability of the application does not
vary significantly with the variation in the reliability of the
Measurement component. This is due to the nature of that
component (it records simulation results), being invoked
a few times to record and retrieve statistics.

• From Fig. 7, transition reliabilities can significantly affect
the reliability of the application. For example, the interface
and/or link between the SimulatorDriver and EventList
components can significantly deteriorate the reliability of
the overall application if there are mismatches or errors in
the data flow.

• From Fig. 8, the sensitivity of the application reliability
to changes in the component reliabilities varies with
the usage of components. For example, the application
reliability becomes more sensitive to the reliability of the
components EventList and QueueFacility for Profile1 than

474 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 4, DECEMBER 2004

Fig. 6. Application reliability as function of component reliabilities (one at a time).

Fig. 7. Application reliability as function of transition reliabilities (one at a time).

TABLE III
SCENARIO PROBABILITIES FOR FOUR DIFFERENT PROFILES

in the case of Profile2, Profile3, and Profile4 (Fig. 8(a),
Fig. 8(b)). On the contrary, the application reliability is
less sensitive to the reliability of the component Service-
Facility for Profile1 than for Profiles 2, 3, and 4 (see
Fig. 8(c)).

The above results are logically sound for the application under
consideration. In a simulation environment, we expect that the
event dispatcher is the reliability bottleneck because a failure in
that component affects the system operation. Results from the
experiment illustrate that our model and method automatically
derives the same conclusion; i.e., failures in the event dispatcher
would significantly affect the overall system reliability.

VI. EXTENSIONS FOR DISTRIBUTED SYSTEMS

Distributed systems often require many services available as
course-grained or fine-grained design components. From this
viewpoint, the development of many distributed systems is con-
cerned with integrating components, and the resulting appli-
cations are component-based systems. The distributed nature

of software systems imposes additional requirements on relia-
bility analysis models and techniques. Due to their complexity,
distributed systems are often hierarchical in nature. Each sub-
system is further decomposed into components or other sub-
systems. Reliability analysis techniques should incorporate the
concepts of hierarchy and subsystem decomposition, i.e., we
should be able to assess the sensitivity of the system reliability
as the function of components or subsystems, and assess the sen-
sitivity of subsystem reliabilities as a function of the reliability
of their descendents. Another requirement imposed on a relia-
bility analysis technique for distributed systems is the ability to
deal with physically distributed components. The distribution of
components across the network makes the link or channel reli-
abilities even more critical factors in reliability analysis. Relia-
bility analysis techniques for distributed component-based sys-
tems must account for link reliabilities. In this section, we ex-
tend the application of CDG models and the SBRA algorithm to
analyze complex systems which are hierarchical and distributed
in nature. The extension incorporates subsystem concepts and
hierarchical CDG.

YACOUB et al.: A SCENARIO-BASED RELIABILITY ANALYSIS APPROACH FOR COMPONENT-BASED SOFTWARE 475

Fig. 8. Application reliability as function of scenario profiles.

A. Defining CDG for Distributed Systems

Reliability analysis based on flattening a hierarchically de-
signed complex system would be hard to conduct because of the
large number of components involved. Thus, it is easier to ana-
lyze the reliability of the system by incorporating the concepts
of layers or subsystems. A layer is a logical concept. It provides
specific services to the rest of the system [12]. A subsystem indi-
cates an “is composed of” relationship. In the following, we use
the term subsystem to refer to a composition of components. A
layer is also considered a subsystem if it is composed of a set of
components.

For our model, a system is defined by a set of subsystems,
components, and transitions. A component dependency graph
is used as a probabilistic reliability model. The CDG definition
is similar to that of Section III, with different interpretation of
nodes.

Node “ ”. A node models a subsystem , or a com-
ponent , , where is the component,

is the subsystem modeled by a separate called
, defined later.

Subsystem “ ”. A subsystem is a structural viewpoint
of a set of components bound together to interact and deliver
certain functionality. A subsystem is treated as a component
with composite nature. It consists of other components, thus
preserving the component approach to reliability analysis.
For the system level analysis, a subsystem is defined
by the tuple , where is the
subsystem’s name, is the subsystem’s reliability, and

is its execution time. A subsystem is defined by a
separate .

Subsystem Reliability “ ”. is the probability that
the subsystem provides failure free services for other sub-
systems or components upon an invocation. is the func-
tion of the reliability of its individual components, and their link
reliabilities.

Execution Time of a Subsystem “ ”. is the exe-
cution time of a subsystem . The execution time of a sub-
system varies according to the type of service it provides, the
scenario which activates this service, and the average execution
times of its constituting components.

A Subsystem Component Dependency Graph .
An is a component dependency graph which rep-
resents the control flow dependency of the subsystem’s com-
ponents. It has all the parameters defined for the system CDG
and, hence, CDG become hierarchical in nature. Additionally,

has a terminate-and-return node which returns exe-
cution to the parent CDG graph. To summarize,

where , and is the termina-
tion node for the subsystem which indicates return to the calling
system’s .

Transition Reliability “ ”. is the probability that
the data and/or control sequence sent from component (sub-
system) to component (subsystem) is de-
livered error-free. This probability includes possible interface
errors, and possible channel delivery errors.

Transition Probability “ ”. is the conditional prob-
ability that executes next, given that is cur-
rently executing.

Thus, a CDG is defined as follows:

and are the start and

termination nodes respectively

An example of a hierarchical CDG is shown in Fig. 9.

B. Constructing a CDG for Distributed Systems

First, we evaluate the parameters required to construct the
CDG graphs for the system and subsystems, then we construct
their component dependency graphs. Some of these parameters
have been defined in Section IV. We describe them here with
modifications suitable for the distributed system pradigm.

1) Scenario-Related Parameters: A Scenario “ ”. has
the same definition as in Section IV-A-1. However, for hierar-
chical systems, a scenario could have a local or global scope.
By global scope we mean interaction between components and
subsystems at the system level. Local scope means interaction
between components within a subsystem. Within a global sce-
nario, one or more local scenarios could be triggered. We use
the same symbol for local and global scenarios because the
construction of CDG for systems and subsystems is similar.

Probability of a Scenario “ ”. is the probability of
execution of scenario with respect to all other scenarios. For
each subsystem, we define a scenario profile, a set of scenario
execution probabilities for that particular subsystem.

476 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 4, DECEMBER 2004

Fig. 9. (a) A system CDG, (b) an SS_CDG for SS3.

Average Execution Time of a Global Scenario “ ”.
is defined by (1), Section IV-A-1, where is a global

scenario.
2) Component-Related Parameters: Component-related

parameters, and , are the same as defined in Sec-
tion IV-A-2.

3) Transition Related Parameters: Transition Probability
“ ”. is the probability of utilizing the transition from
component/subsystem to component/subsystem . It is esti-
mated from the number of interactions between components
and subsystems in the analysis scenarios, as defined in Sec-
tion IV-A-3. A transition probability in the system graph
is calculated from the set of global scenarios of interaction be-
tween elements of the system graph. A transition probability

in a subsystem graph is calculated using the set of local
scenarios.

Transition Reliability “ ”. In distributed systems, link
reliabilities become a special concern. In addition to compo-
nent interface mismatches, component distribution across a net-
work adds more factors affecting link reliabilities. A message
exchanged between components in a distributed environment is
exposed to possible problems in the operating system calls, the
underlying hardware technology, communication subsystems,
and the physical network itself.

4) Subsystem-Related Parameters: Execution Time of a
Subsystem “ ”. depends on its local scenarios,
and the execution times of its constituent components. De-
pending on the nature of the subsystem and the services it
provides, several approaches can be used to estimate .
For instance, for subsystems where the standard deviation of
the execution time of its local scenarios is low, we can use the
following point estimate for :

Time (4)

where is a local scenario for

For subsystems where the standard deviation of the execution
time of scenarios is high, a probability distribution for
can be used. These often occur for subsystems where physical
network elements are encapsulated, and there is a high level
of uncertainty about network delays. In such cases, the
graph traversal algorithm, discussed later, consults a procedure
to estimate the subsystem execution time, based on the proba-
bility distribution each time the subsystem is traversed.

Subsystem Reliability “ ”. is a function of the
reliabilities of subsystem’s components, their link reliabilities,
and local scenarios. The algorithm in Section VI-C can be used
to give an estimate for the reliability of the subsystem. How-
ever, our objective is to study the sensitivity of the system re-
liability as a function of component and subsystem reliabili-
ties, and to study the sensitivity of a subsystem reliability as
function of the reliability of its components and link reliabili-
ties. From system analysis, we can identify critical subsystems;
while from subsystem analysis, we can identify critical compo-
nents. An can also be traversed for point estimates of
the subsystem reliability.

C. Extending Reliability Analysis Algorithm

We extend the graph traversal algorithm, defined in Sec-
tion IV-C, to incorporate the traversal of subsystems.

By analyzing the algorithm in Fig. 10, we note that:

• is used as a node in the graph, representing a
component or a subsystem.

• returns all the successors nodes of a
node .

• In case the algorithm is used to analyze the sensitivity of
a subsystem to reliabilities of its children, the algorithm
requires a point estimate of the subsystem’s average exe-
cution time instead of .

• is the reliability of the system or subsystem based on
the inputs to the algorithm (the and for the
system, and and for a subsystem).

YACOUB et al.: A SCENARIO-BASED RELIABILITY ANALYSIS APPROACH FOR COMPONENT-BASED SOFTWARE 477

Fig. 10. The extended CDG traversal algorithm.

• returns the estimate of
the execution time of the subsystem. For subsystems with
point estimates, this value is a constant. For subsystems
with execution-time probability distribution function, a
procedure is used to get an estimate from the distribution.

• is used to return
an estimate of the reliability of the subsystem. This proce-
dure can use the same algorithm to traverse the
of the subsystem recursively.

The proposed algorithm extends the algorithm in Sec-
tion IV-C to allow traversal of hierarchical , where a node
can be a subsystem defined by an . For a subsystem
node, the algorithm estimates its execution time and reliability,
and can traverse the subsystem graph. The algorithm can also
be used to analyze the reliability for subsystems as a function
of its constituting components, and transition reliabilities.

VII. EXAMPLE 2: A DISTRIBUTED MEDICAL

INFORMATICS SYSTEM

We use the example of a distributed medical informatics
system to illustrate the proposed reliability analysis approach.
The Digital Imaging and Communication in Medicine standard
(DICOM) [3] defines the communication messages and appli-
cation services between distributed medical systems. It is not
the objective of this section to assess the reliability of applica-
tions developed in compliance with DICOM. Instead, we use
few scenarios to illustrate how CDG, and the reliability analysis
algorithm could be applied. Fig. 11(a) illustrates a high-level
structure of the system as a set of client/server application
entities (AE Client and AE Server subsystems) connected via a
network (Network subsystem). DICOM specifies the transport
and presentation layer for a network protocol as DICOM Upper
Layer (DICOM UL Client and DICOM UL Server subsys-
tems). Fig. 11(b) shows a simplified version of the next level

decomposition of subsystem AE Client. AE Client consists of
another subsystem which manages Information Object Defini-
tions (IOD), such as patients, visits, studies, image, overlays,
etc. (defined in Part 3 of the DICOM standard [3]). DICOM
Message Service Elements (DIMSE) subsystem defines the set
of possible message services which a client could use (defined
in Part 7,8 of [3]). The AE Client Manager subsystem is the
interface for the application which passes requests to Service
Class User (SCU). An SCU is the core of the client’s side
which manages the creation of IOD, and DIMSE Primitive
Messages according to the required service class. The services
which an SCU can request are defined as a pair of IOD and
DIMSE (defined in Part 4 of [3]). The DIMSE Protocol Machine
subsystem is responsible for sending and receiving messages
from the lower-level layers (DICOM UL Client subsystem).
The Message Factory subsystem is responsible for translating
internal messages (primitives) to external messages, to be sent
to the server, and vice versa.

We identified three simplified scenarios to construct the
system level CDG. The three scenarios are Association Estab-
lishment using ASSOCIATE messages, Connection Verification
service using C_ECHO messages, and Retrieval service using
N_GET messages. DICOM specifies many more services and
messages; these three provide an illustration.

The Association Establishment scenario is executed when-
ever a link to the server is required. Once a link is established,
the Verification scenario is periodically executed. We assume
that the execution probabilities of the three scenarios are 0.25,
0.5, and 0.25, respectively. Using these probabilities, the
parameters identified in Section VI-A, and the sample applica-
tion scenarios, we construct a for the system, as shown in
Fig. 12.

To illustrate the analysis of the sensitivity of the system relia-
bility to subsystem, component or link reliabilities, we apply the
extended SBRA algorithm (Section VI-C) to the system
from Fig. 12. We assume perfect subsystem transitions, and 40%

478 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 4, DECEMBER 2004

Fig. 11. (a) A DICOM system structure (b) structure of DICOM subsystem AE Client.

Fig. 12. CDG for the medical informatics system.

Fig. 13. Sensitivity of system reliability to component reliabilities.

of the execution time being spent in the network subsystem,
10% for each of the DICOM UL subsystems, and 20% for each
of the AE subsystems. Fig. 13 shows sample results.

From Fig. 13, we recognize that the reliability of the system
is severely affected by the degradation in the reliability of the
Network and UL Client subsystems. Due to the selected set of
scenarios, the Network subsystem is heavily utilized, while the
Server subsystem is lightly involved. From a more detailed set
of scenarios, we would be able to more precisely identify sub-
systems which critically affect the reliability of the system.

For each subsystem, we can construct an . For
example, for the AE Client subsystem, shown in Fig. 11(b),

and using just one scenario for simplicity, we construct the
for AE Client subsystem, as shown in Fig. 14.

To illustrate the type of analysis we can conduct from
an , we apply the extended SBRA algorithm (of
Section VI-C) to the of the AE Client subsystem
(Fig. 14). The goal is to analyze the subsystem reliability as a
function of the reliabilities of various components. Here, we
assume perfect component transitions. Fig. 15 shows the sensi-
tivity of the application reliability to component reliabilities.

From Fig. 15, we recognize that the reliability of the AE
Client subsystem is severely affected by the degradation in the
reliability of Protocol Machine and SCU components, and pe-
ripherally influenced by the reliabilities of DIMSE or IOD com-
ponents.

Another type of analysis we can conduct using the SBRA al-
gorithm and is the sensitivity of the system or subsystem
reliabilities to the transition reliabilities. For instance, using the

in Fig. 14, and assuming perfectly reliable compo-
nents for the AE Client subsystem, we can analyze subsystem re-
liability as a function of transition reliabilities between its com-
ponents (Fig. 16).

From Fig. 16, we recognize that the AE Client subsystem reli-
ability is more sensitive to the transition reliability between the
Protocol Machine and the Message Factory, and less sensitive to
transition reliability between the SCU and DIMSE components.

YACOUB et al.: A SCENARIO-BASED RELIABILITY ANALYSIS APPROACH FOR COMPONENT-BASED SOFTWARE 479

Fig. 14. SS_CDG for the AE Client subsystem.

Fig. 15. Sensitivity of the AE Client subsystem reliability to component
reliabilities.

Fig. 16. Sensitivity of the AE Client subsystem reliability to transition
reliabilities.

Similarly, we can construct for each subsystem based
on a complete set of scenarios to further analyze the sensitivity
of system and subsystem reliabilities to the reliability of their
constituents.

VIII. DISCUSSION

This paper defines a new approach to analyze the reliability
of component-based, and distributed software systems. The
proposed SBRA algorithm is suitable for systems whose anal-
ysis is based on usage scenarios. The execution profile of these
scenarios is assumed to be available. Component Dependency
Graphs serve as reliability models for component-based sys-
tems. They are extended to suit complex distributed systems by
incorporating the effects of physical component distribution,
and the hierarchy of subsystems. The proposed SBRA is a

stack-based algorithm suitable for analyzing the sensitivity of
system level reliability as a function of component, link, and
subsystem reliabilities. The same algorithm is applicable to
analyze the sensitivity of subsystem reliability as a function of
component reliabilities, and link reliabilities. Algorithm appli-
cation results in identifying critical components, subsystems,
and links which require increased attention in testing, verifica-
tion, and validation. The algorithm can also be used to impose
reliability constraints on acquired off-the-shelf components.
Two case studies, Waiting queues simulator and Distributed
medical informatics system, illustrate the application of the
approach. SBRA is based on scenarios, execution times, and
component usage patterns. Using the proposed CDG model,
we incorporate the effect of frequently executed components,
interfaces, and links; hence, we can direct more testing and
development effort to critical artifacts. The approach is ap-
plicable early in the development phase because it is based
on scenarios involving reusable components, which could be
objects or patterns. Using scenarios to derive CDG allows us to
incorporate uncertainties in the component’s usage patterns in
reliability analysis. Applications using the same components,
but with different usage scenarios, are likely to exhibit different
sensitivity to the component reliabilities. Our reliability models
can be used as the basis for other types of analysis. For instance,
in [33], Yacoub and Ammar describe a reliability-based risk
analysis approach which builds on top of the CDG models
defined in this paper. Reliability estimates, as well as impact
and severity factors, are used for risk analysis.

The proposed approach has some limitations. Currently, the
algorithm does not consider the overall application reliability
growth as a function of time. Further, some scenarios may be
more critical than others, but they are seldom executed. The
model could be expanded to consider the impact of the failure
severity of critical scenarios in the analysis. The algorithm does
not consider failure dependencies among components either.
Future work could investigate how to treat COTS components,
and their specific requirements, in CDG, and in the SBRA algo-
rithm. Evaluation and empirical assessment of the methodology
is also a topic of future investigation. Currently the CDG model
does not take into consideration parallel execution of compo-
nents. More research effort is required to extend the model, and
the algorithm, for reliability analysis of parallel systems.

480 IEEE TRANSACTIONS ON RELIABILITY, VOL. 53, NO. 4, DECEMBER 2004

REFERENCES

[1] E. Addy et al., “A controlled experiment in software reuse,” Software
Qual. J., vol. 8, no. 3, pp. 169–195, Nov. 1999.

[2] M. Delamaro et al., “Integration testing using interface mutations,” in
Proc. 7th Int. Symp. Software Reliability Engineering (ISSRE’96), White
Plains, New York, Oct. 30–Nov. 2, 1996, pp. 112–121.

[3] National Electrical Manufacturers Association (NEMA), Digital
Imaging and Communication in Medicine (DICOM) Standard. Wash-
ington, DC, USA: NEMA Office of Publication.

[4] W. Everett, “Software component reliability analysis,” in Proc. IEEE
Symp. Application-Specific Systems and Software Engineering & Tech-
nology (ASSET’99), Richardson, Texas, Mar. 24–27, 1999, pp. 204–211.

[5] S. Gokhale and K. Trivedi, “Dependency characterization in path-based
approaches to architecture-based software reliability prediction,” in
Proc. IEEE Workshop on Application Specific Software Engineering
and Technology (ASSET’98), Richardson, Texas, Mar. 26–28, 1998, pp.
86–89.

[6] S. Gokhale et al., “Reliability simulation of component-based software
systems,” in Proc. 9th Int. Symp. Software Reliability Engineering
(ISSRE’98), Paderborn, Germany, Nov. 1998, pp. 192–201.

[7] M. Heimdahl et al., “Specification and analysis of intercomponent com-
munication,” IEEE Comput., pp. 47–54, Apr. 1998.

[8] J. Horgan and A. Mathur, “Software testing and reliability,” in Hand-
book of Software Reliability Engineering, M. R. Lye, Ed. New York:
McGraw-Hill, 1996, ch. 13, pp. 531–566.

[9] International Telecommunication Union (ITU-T) Recommenda-
tion Z.120 (10/96) for Message Sequence Charts (MSC). [On-
line]http://www.itu.int/itudoc/itu-t/rec/z/z120.html

[10] T. Khoshgoftaar et al., “Identifying modules which do not propagate
errors,” in Proc. IEEE Symp. Application-Specific Systems and Software
Engineering & Technology (ASSET’99), Richardson, Texas, Mar. 24–27,
1999, pp. 185–193.

[11] S. Krishnamurthy and A. P. Mathur, “On the estimation of reliability of
a software system using reliabilities of its components,” in Proc. 8th Int.
Symp. Software Reliability Engineering (ISSRE’97), Albuquerque, New
Mexico, Nov. 1997, pp. 146–155.

[12] J. Laprie and K. Kanoun, “Software reliability and system reliability,”
in Handbook of Software Reliability Engineering, M. R. Lyu, Ed. New
York: McGraw-Hill, 1996, ch. 2, pp. 27–69.

[13] D. Mason and D. Woit, “Problems with software reliability composi-
tion,” in 9th Int. Symp. Software Reliability Engineering (ISSRE’98),
Paderborn, Germany, Nov. 1998, Fast Abstracts, pp. 41–42.

[14] B. Meyer et al., “Building trusted components to the industry,” IEEE
Comput., pp. 104–105, May 1998.

[15] J. Musa et al., Software Reliability: Measurement, Prediction and Ap-
plication. New York: McGraw Hill, 1987.

[16] J. Musa et al., “The operational profile,” in Handbook of Software Re-
liability Engineering, M. R. Lyu et al., Ed. New York: McGraw-Hill,
1996, ch. 5, pp. 167–216.

[17] R. Pressman, Software Engineering: A Practitioner’s Approach, 4th ed:
McGraw Hill, Inc., 1997.

[18] S. Sanyal et al., “Framework of a software reliability engineering
tool,” in Proc. IEEE High-Assurance Systems Engineering Workshop
(HASE’97), Washington, DC, 1997, pp. 114–119.

[19] V. Shah and S. Bhattacharya, “Fault propagation analysis based variable
length checkpoint placement for fault tolerant parallel and distributed
system,” in Proc. 21st Annu. Int. Computer Software and Applications
Conf. (COMPSAC’97), Bethesda, Maryland, Aug. 1997.

[20] Unified Modeling Language Resource Center. Rational Rose Inc.. [On-
line]http://www.rational.com/uml/documentation.html

[21] J. Voas et al., “Tolerant software interfaces: can COTS-based systems be
trusted without them?,” in Proc. 15th Int. Conf. Computer Safety, Relia-
bility, and Security (SAFECOMP’96), Vienna, Oct. 1996, pp. 126–135.

[22] J. Voas, “Error propagation analysis for COTS systems,” IEEE Comput.
Control Eng. J., vol. 8, no. 6, pp. 269–272, Dec. 1997.

[23] , “Certifying off-the-shelf software components,” IEEE Comput.,
pp. 53–59, June 1998.

[24] K. Weidenhaupt et al., “Scenarios in system development: current prac-
tice,” IEEE Software, pp. 34–45, Mar./Apr. 1998.

[25] D. Woit and D. Mason, “Component independence for software system
reliability,” in 2nd Int. Software Quality Week Europe (QWE’98), Brus-
sels, Belgium, Nov. 9–13, 1998.

[26] A. Wesslen et al., “Assessing the sensitivity of usage profile changes in
test planning,” in Proc. 11th Int. Symp. Software Reliability Engineering
(ISSRE 2000), San Jose, California, Oct. 2000, pp. 317–326.

[27] N. Scheidewind, “Software reliability engineering for client-server sys-
tems,” in Proc. 7th Int. Symp. Software Reliability Engineering (ISSRE
1996), White Plains, New York, Oct. 1996, pp. 226–235.

[28] A. Whittaker and M. Thomason, “A Markov chain model for statis-
tical software testing,” IEEE Trans. Software Eng., vol. 20, no. 10, pp.
812–824, Oct. 1994.

[29] A. Whittaker, K. Rekab, and M. Thomason, “A Markov chain model for
predicting the reliability of multi-build software,” J. Inform. Software
Technol., vol. 42, no. 12, pp. 889–894, Sept. 2000.

[30] J. Poore et al., “Planning and certifying software system reliability,”
IEEE Software, pp. 88–99, Jan. 1993.

[31] T. Firley et al., “Timed sequence diagrams and tool-based analysis—a
case study,” in The 2nd Int. Conf. The Unified Modeling Language, Be-
yond the Standard (UML’99), vol. 1723, Lecture Notes in Computer Sci-
ence, Springer-Verlag, Oct. 1999, pp. 645–660.

[32] K. Goseva-Popstojanova and K. Trivedi, “Architecture-based approach
to reliability assessment of software systems,” Performance Evaluation,
an International Journal, vol. 45, pp. 179–204, 2001.

[33] S. Yacoub and H. Ammar, “A methodology for architectural-level risk
analysis,” IEEE Trans. Software Eng., vol. 28, pp. 529–547, June 2002.

[34] V. Cortellessa et al., “Early reliability assessment of UML based soft-
ware models,” in 3rd Int. Workshop on Software Performance, Rome,
Italy, July 2002, pp. 302–309.

[35] H. Singh et al., “A Bayesian approach to reliability prediction and as-
sessment of component based systems,” in 12th IEEE Int. Symp. Soft-
ware Reliability Engineering (ISSRE ’01), Hong Kong, Nov. 2001, pp.
12–21.

[36] H. Jin and P. Santhanam, “An approach to higher reliability using soft-
ware components,” in 12th IEEE Int. Symp. Software Reliability Engi-
neering (ISSRE ’01), Hong Kong, Nov. 2001, pp. 1–11.

[37] D. Hamlet et al., “Theory of software reliability based on components,”
in 23rd Int. Conf. Software Engineering, Toronto, Canada, May 2001.

Sherif Yacoub is a member of the Research Staff at Hewlett-Packard Laborato-
ries, Palo Alto, California. Dr. Yacoub earned a Ph.D. in Computer Engineering
from West Virginia University in 1999, where he worked as a Research Assis-
tant Professor until July 2000. He received an M.Sc. in Electrical Engineering
in 1997 and a B.Sc. in Computer Engineering in 1994 from Cairo University,
Egypt, where he also lectured in software engineering. Dr. Yacoub is a member
of the IEEE and the ACM professional organizations. His research interests in-
clude software design, design patterns, software reuse at the architectural level,
content understanding, interactive voice response systems, design quality, risk
analysis, and software reliability.

Bojan Cukic is an Associate Professor at the Lane Department of Computer Sci-
ence and Electrical Engineering, West Virginia University. He received the Dipl.
Ing. degree from the University of Ljubljana, Slovenia, and M.S. and Ph.D. in
Computer Science from the University of Houston, TX. He investigates testing,
analysis, and software reliability assessment methodologies for safety critical
and intelligent flight control systems. Dr. Cukic is the co-director of the Center
for Identification Technology Research (CITeR), an NSF IUCRC (Industry Uni-
versity Cooperative Research Center) concentrating on biometrics. Dr. Cukic
served as the program co-chair of the 14th IEEE International Symposium on
Software Reliability Engineering (ISSRE 2003) and the 8th IEEE International
High Assurance Systems Symposium (HASE 2004). He is a member of the
IEEE, IEEE Computer Society, and IEEE Reliability Society.

Hany H. Ammar is a Professor of Computer Engineering in the Lane Depart-
ment of Computer Science and Electrical Engineering at West Virginia Univer-
sity. He joined the faculty at WVU in 1990 after five years of service on the fac-
ulty at Clarkson University. Dr. Ammar has published over 98 articles in pres-
tigious journals and conference proceedings such as the IEEE TRANSACTION

ON SOFTWARE ENGINEERING, and the IEEE TRANSACTIONS ON RELIABILITY.
Dr. Ammar has served on the Program Committees of several Prestigious con-
ferences, served as the program co-chair of the 2002 International Symposium
of Software Reliability Engineering (ISSRE 2002), and is now serving as the
steering committee chair of the ACS/IEEE International Conference on Com-
puter Systems and Applications (AICCSA). He is a member of the IEEE and
the ACM professional organizations.

	toc
	A Scenario-Based Reliability Analysis Approach for Component-Bas
	Sherif Yacoub, Member, IEEE, Bojan Cukic, Member, IEEE, and Hany
	A cronyms 1
	N otation
	I. I NTRODUCTION
	II. B ACKGROUND
	III. C OMPONENT D EPENDENCY G RAPH (CDG)
	Definition 1: A Component Dependency Graph CDG: A CDG is defined
	Definition 2: A Node n: $n\in N$ models a component C_{i}, a
	Definition 3: Component Reliability RC_{i}: RC_{i} is the pr
	Definition 4: Average Execution Time of a Component EC_{i}: $E
	Definition 5: A Directed Edge e: $e\in E$ models the control f
	Definition 6: Transition Reliability RT_{ij}: RT_{ij} is the
	Definition 7: Transition Probability PT_{ij}: PT_{ij} is the

	IV. S CENARIO -B ASED R ELIABILITY A NALYSIS (SBRA)

	Fig.€1. A sample CDG.
	A. Parameter Estimation
	1) Scenario-Related Parameters: Scenario ${\bf S}_{\bf k}$. A s
	2) Component-Related Parameters: Component Reliability ${\bf RC}
	3) Transition Related Parameters: Transition Reliability ${\bf R
	4) Data Sources: To calculate the above model parameters, the fo

	B. CDG Construction

	Fig.€2. The SBRA algorithm.
	C. Reliability Analysis Algorithm
	V. E XAMPLE 1: W AITING Q UEUES S IMULATOR
	A. The Architecture

	Fig.€3. The application architecture.
	B. Scenarios
	C. The Component Dependency Graph
	D. Applying the SBRA Algorithm

	Fig.€4. Scenarios for the waiting queue simulator.
	TABLE€I A VERAGE E XECUTION T IME OF S CENARIOS
	TABLE€II A VERAGE E XECUTION T IME OF E ACH C OMPONENT IN THE C
	Fig.€5. CDG of the waiting queues simulator.
	E. Results

	Fig.€6. Application reliability as function of component reliabi
	Fig.€7. Application reliability as function of transition reliab
	TABLE€III S CENARIO P ROBABILITIES FOR F OUR D IFFERENT P ROFIL
	VI. E XTENSIONS FOR D ISTRIBUTED S YSTEMS

	Fig.€8. Application reliability as function of scenario profiles
	A. Defining CDG for Distributed Systems
	B. Constructing a CDG for Distributed Systems
	1) Scenario-Related Parameters: A Scenario ${\bf S}_{\bf k}$. $

	Fig.€9. (a) A system CDG, (b) an SS_CDG for SS3.
	2) Component-Related Parameters: Component-related parameters, $
	3) Transition Related Parameters: Transition Probability ${\bf P
	4) Subsystem-Related Parameters: Execution Time of a Subsystem $
	C. Extending Reliability Analysis Algorithm

	Fig.€10. The extended CDG traversal algorithm.
	VII. E XAMPLE 2: A D ISTRIBUTED M EDICAL I NFORMATICS S YSTEM

	Fig.€11. (a) A DICOM system structure (b) structure of DICOM sub
	Fig.€12. CDG for the medical informatics system.
	Fig.€13. Sensitivity of system reliability to component reliabil
	Fig.€14. SS_CDG for the AE Client subsystem.
	Fig.€15. Sensitivity of the AE Client subsystem reliability to c
	Fig.€16. Sensitivity of the AE Client subsystem reliability to t
	VIII. D ISCUSSION
	E. Addy et al., A controlled experiment in software reuse, Softw
	M. Delamaro et al., Integration testing using interface mutation
	National Electrical Manufacturers Association (NEMA), Digital Im
	W. Everett, Software component reliability analysis, in Proc. IE
	S. Gokhale and K. Trivedi, Dependency characterization in path-b
	S. Gokhale et al., Reliability simulation of component-based sof
	M. Heimdahl et al., Specification and analysis of intercomponent
	J. Horgan and A. Mathur, Software testing and reliability, in Ha

	International Telecommunication Union (ITU-T) Recommendation Z.1
	T. Khoshgoftaar et al., Identifying modules which do not propaga
	S. Krishnamurthy and A. P. Mathur, On the estimation of reliabil
	J. Laprie and K. Kanoun, Software reliability and system reliabi
	D. Mason and D. Woit, Problems with software reliability composi
	B. Meyer et al., Building trusted components to the industry, IE
	J. Musa et al., Software Reliability: Measurement, Prediction an
	J. Musa et al., The operational profile, in Handbook of Software
	R. Pressman, Software Engineering: A Practitioner's Approach, 4t
	S. Sanyal et al., Framework of a software reliability engineerin
	V. Shah and S. Bhattacharya, Fault propagation analysis based va

	Unified Modeling Language Resource Center . Rational Rose Inc..
	J. Voas et al., Tolerant software interfaces: can COTS-based sys
	J. Voas, Error propagation analysis for COTS systems, IEEE Compu
	K. Weidenhaupt et al., Scenarios in system development: current
	D. Woit and D. Mason, Component independence for software system
	A. Wesslen et al., Assessing the sensitivity of usage profile ch
	N. Scheidewind, Software reliability engineering for client-serv
	A. Whittaker and M. Thomason, A Markov chain model for statistic
	A. Whittaker, K. Rekab, and M. Thomason, A Markov chain model fo
	J. Poore et al., Planning and certifying software system reliabi
	T. Firley et al., Timed sequence diagrams and tool-based analysi
	K. Goseva-Popstojanova and K. Trivedi, Architecture-based approa
	S. Yacoub and H. Ammar, A methodology for architectural-level ri
	V. Cortellessa et al., Early reliability assessment of UML based
	H. Singh et al., A Bayesian approach to reliability prediction a
	H. Jin and P. Santhanam, An approach to higher reliability using
	D. Hamlet et al., Theory of software reliability based on compon

