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ABSTRACT

Moments before the launch of every space vehicle, engineering
discipline specialists must make a criticago/no-go decision. The
cost of a false positive, allowing a laurdein spite of a fault, or a false
negative, stopping a potentially successful launch, can be measured
in the tens of millions of dollarspot including the cost in morale and
other more intangible detriments. The Aerospace Corporation is
responsible for providing engineering assessments critical to the
go/no-go decision for every Department of Defense space vehicle.
These assessments are made byconstantly monitoring streaming
telemetry data in the hours before launch. We will introduce VizTree,
a novel time-series visualization tool to aid the Aerospace analysts
who must make these engineering assessments. VizTree was
developed at the University of California, Riverside and is unique in
that the same tool is used formining archival data and monitoring
incoming live telemetry. The use of a single tool for both aspects of
the task allows a natural and intuitive transfer of mined knowledge to
the monitoring task. Our visualization approach works by
transforming the time series into a symbolic representation, and
encoding the data in a modified suffix tree in which the frequency
and other properties of patternsare mapped onto colors and other
visual properties. We demonstrate the utility of our system by
comparing it with state-of-the-arbatch algorithms on several real
and synthetic datasets.
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1. INTRODUCTION

One of the crucial responsibilities oThe Aerospace Corporation is to
provide engineering assessmentsfor the government engineering
discipline specialists who make the criticalgo/no-go decision
moments before the launch of every space vehicle launched by the
DoD. The cost of a false positive, allowing a launch in spite of a
fault, or a false negative, stopping potentially successful launch, can
be measured in the tens of millionof dollars, not including the cost
in morale and other more intangill detriments to the U.S. defense
program.

The launch monitoring facilities at Aerospace are similar to the
familiar Hollywood movie recreations [26]. There are several rows of
work cells, each with a computer display and a headset. Each work
cell is devoted to one analyst,for example, propulsion, guidance,
electrical, etc. Each display presents some common data (say vehicle
location and orientation), as well as data specific to that discipline.

The analyst making the engineering assessments has access to data
from previous launches and mustconstantly monitor streaming
telemetry from the current mission.

Currently, the analysts use electronic strip charts similar to those used
to record earthquake shock on paper rolls. However, while these
charts illustrate the recent history of each sensor, they do not provide
any useful higher-level information that might be valuable to the
analyst.

To reduce the possibility of wrongo/no-go decisions, Aerospace is
continually investing in researchThere are two major directions of
research in this area.

e Producing better techniques to mme the archival launch data
from previous missions. Finding des, patterns, and regularities
from past data can help us know what to expect for future
missions, and allow more accurate and targeted monitoring,
contingency planning, etc [26].

e Producing better techniques to visalize the streaming telemetry
data in the hours before launchThis is particularly challenging
because an analyst may have to monitor as many as dozens of
rapidly changing sensors [26].

Although these two tasks are quite dtinct, and are usually tackled

separately, the contribution of this work is to introduce a single

framework that can address bothHaving a single tool for both tasks
allows knowledge gleaned in themining stage to be represented in

the same visual language of themonitoring stage, thus allowing a

more natural and intuitive transfer of knowledge.

More concretely, we propose VizTreeg time series pattern discovery

and visualization system basedon augmenting suffix trees. VizTree

simultaneously visually summaries both the global and local
structures of time series data. laddition, it provides novel interactive



solutions to many pattern dicovery problems, including the
discovery of frequently occurring perns (motif discovery) [7, 29,
38], surprising patterns (anomaly dection) [9, 24, 36], and query by
content [11, 15, 21, 34]. The useinteractive paradigm allows users
to visually explore the time serigsand perform real-time hypotheses
testing [1, 19].

We employ the widely referenced Overview, zoom & filter, details
on demand’ paradigm of Dr. Ben Shneiderman of the University of
Maryland [37]. As we will show in tis paper, our work fits neatly
into these principles. We give amverview of the global structure of
an arbitrarily long time series in constant space, while we allow the
user to zoom in on particular local structures and patterns, and
provide details on demandfor patterns and regularities that the user
has tentatively identified.

While there are several systems for visualizing time series in the
literature, our approach is unique iseveral respects. First, almost all

other approaches assume highlyperiodic time series [40, 41],

whereas ours makes no such assumfion. Other methods typically

require space (both memory space, and pixel space) that grows at
least linearly with the length ofthe time series, making them

untenable for mining massive datass. Finally, our approach allows

us to visualize a much richer sets of features, including global
summaries of the differences between two time series, locally
repeated patterns, anomalies, etc.

While the evaluation of visualizatin systems is often subjective, we
will evaluate our system with objective experiments by comparing
our system with state-of-the-arbatch algorithms on several real and
synthetic datasets.

The rest of the paper is organizeds follows. In Section 2 we review
necessary background material ad survey related work. We
introduce our system VizTree in Section 3. In Section 4, we extend
the idea to further allow comparison and contrast between two time
series. Section 5 contains a dailed empirical evaluation of our
system. We conclude in Section 6.

We note that all the figures in thigext suffer from their small scale
and monochromatic printing. We ensurage the interested reader to
visit [27] to view high-reolution full-color examples.

2. BACKGROUND AND RELATED WORK

We begin this section by brieflyreviewing the most important time
series data mining tasks. We will thn consider current visualization
techniques and explain why they are unsuited to the problem at hand.

2.1 Time Series Data Mining Tasks

For lack of space, this brief introduction to the important time series
data mining tasks is necessarilysubjective and somewhat domain
driven. Nevertheless, these three tasks cover the majority of time
series data mining research [6, 7, 911, 15, 18, 22, 24, 29, 30, 31, 38].

2.1.1 Subsequence Matching

Sequence matching is perhaps the most widely studied area of time
series data mining [11, 15]. The tsk has long been divided into two
categories: whole matching andsbsequence matching [11, 21].

e  Whole Matching a query time series is matched against a
database of individual time series to identify the ones similar to
the query.

e  Subsequence Matching a short query subequence time series
is matched against longer timeseries by sliding it along the
longer sequence, looking for thbest matching location.

While there are literally hundreds of methods proposed for whole
sequence matching (see, e.g., [22] andeferences therein), in practice,
its application is limitd to cases where some information about the
data is knowna priori

Subsequence matching can be genralized to whole matching by
dividing sequences into non-overlaping sections. For example, we
may wish to take a long electrocardiogram and extract the individual
heartbeats. This informal idea has been used by many researchers and
is also an optional feature of ViTree. We will therefore formally
name this transformationchunking, and define it below.

Definition 1 Chunking the process where a time series is broken
into individual time series by either a specific period or, more
arbitrarily, by its shape.

The former usually applies to prodic data, for example consider
power usage data provided by a Dutch research facility (this dataset
is used as a running example in tls work, see Figures 3 and 15): the
data can be chunked by days, weeksgtc. The latter applies to data
having regular structure or repetitive shape, but not necessarily
having the same length for each occurrence. Electrocardiogram data
are such an example, and they can be separated into individual
heartbeats.

There is increasing awareness that for many data mining and
information retrieval tasks, very fasaipproximate search is preferable
to slower exact search [5]. This is particularly true for exploratory
purposes and hypotheses testing. Consider the stock market data.
While it makes sense to look for pproximate patterns, for example,
“a pattern that rapidly decreases after a long plategii it seems
pedantic to insist onexact matches. As we will demonstrate in
Section 5.1, our application Hows rapid approximate sequence
matching.

2.1.2 Anomaly Detection

In time series data mining and moitoring, the problem of detecting
anomalous/surprising/novel patterns mattracted much attention [9,
30, 36]. In contrast to subsequrce matching, anomaly detection is
identification of previously unknown patterns. The problem is
particularly difficult because what constitutes an anomaly can greatly
differ depending on the task at hand. In a general sense, an
anomalous behavior is one that deiates from ‘“normal” behavior.
While there have been numerous dfinitions given for anomalous or
surprising behaviors, the one giveiby Keogh et. al. [24] is unique in
that it requires no explicit formulatin of what is anomalous. Instead,
they simply defined an anomalous pattern as onevhose frequency
of occurrences differs substantily from that expected, given
previously seen datd. Their definition was implemented in an
algorithm (called “Tarzan”) that was singled out by NASA as an
algorithm that has $reat promise in the long terni [17]. As it will
become clearer later, a subset ofthe system that we propose here
includes what may be considered a visual encoding of Tarzan.

2.1.3 Time Series Motif Discovery

In bioinformatics, it is well doemented that overrepresented DNA
sequences often have biological significance [2, 10, 35]. Other
applications that rely heavily on overrepresented (and
underrepresented) pattern discoverynclude intrusion detection, fraud
detection, web usage prediction, financial analysis, etc.

A substantial body of literature hs been devoted to techniques to
discover such overrepresented patterns in time series; however, each
work considered a different definition opattern[3, 32]. In previous
work, we unified and formalized th problem by defining the concept
of “time series motif”’ [29]. Timeeries motifs are close analogues of



their discrete cousins, although thdefinitions must be augmented to
prevent certain degenerating solutins. This definition is gaining
acceptance, and now being used in animation [4], mining human
motion data [38], and several otheapplications. The naive algorithm
to discover motifs is quadratic in the length of the time series. In
[29], we demonstrated a simple technique to mitigate the quadratic
complexity by a large constant factor; nevertheless this time
complexity is clearly untenable formost real datasets. As we shall
demonstrate in Section 5.2, VizTreallows users to visually discover
approximate motifs in real time.

2.2 Visualizing Time Series

Time series is perhaps the mostcommon data type encountered in
data mining, touching as it does, ahost every aspect of human life,
including medicine (ECG, EEG data)finance (stock market data,
credit card usage data), aerospace @unch telemetry, satellite sensor
data), entertainment (music, movies) [4], etc. Because time series
datasets are often massive (in gigabtes or even terabytes), time- and
space-complexity is of paramount importance.

Surprisingly, although the human eye is often advocated as the
ultimate data-mining tool [19, 37, 39], there has been relatively little
work on visualizing massive tim series datasets. We have
reimplemented the three most refeneced approaches in the literature.
Below, we will briefly review them and explain why they are not
suited to the task at hand.

2.2.1 TimeSearcher

TimeSearcher [14] is a time serieexploratory and visualization tool
that allows users to retrieve timeseries by creating queries. This is
achieved by use of “TimeBoxes”, which are rectangular query
locators that specify the region(s) in which the users are interested
within any given time series. In Igure 1, three TimeBoxes have been
drawn to specify time series that start low, increase, then fall once
more.

The main advantage of this tool ists flexibility. In particular, unlike
conventional query-by-content similarity search algorithms,
TimeSearcher allows users to specify different regions of interest
from a query time series, rather than feeding the entire query for
matching. This is useful when usrs are interested in finding time
series that exhibit similar behavions the query time series in only
specific regions.

While TimeSearcher and VizTree proposed here both serve as
visualization and exploratory tools for time series, their
functionalities are fundamentally different. For example,
TimeSearcher is a query-by-exampm tool for multiple time series
data. Even with its flexibility, usrs still need to specify the query
regions in order to find similar perns. In other words, some
knowledge about the datasets may baeeded in advance and users
need to have a general idea of whats interesting. On the other hand,
VizTree serves as a true pattern dicovery tool for a long time series
that tentatively identifies and isolas interesting patterns and invites
further inspection by the analyst.

The functionality of TimeSearcher fosimilarity search is implicit in
the design of our system: similapatterns are automatically grouped
together.  Furthermore, TimeSBarcher suffers from its limited
scalability, which restricts its utility to smaller datasets, and is
impractical for the task at hand.
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Figure 1: The TimeSearcher visual query iterface. A user can filter away
sequences that are not interesting by insting that all sequences have at least
one data point within the query boxes.

2.2.2 Cluster and Calendar-Based Visualization

Another time series visualizationsystem is cluster and calendar-

based, developed by [40]. The tim series data are chunked into

sequences of day patterns, and theseay patterns are in turn clustered

using a bottom-up clustering algorithm. This visualization system

displays patterns represented by cluster averages, as well as a
calendar with each day color-coded bythe cluster that it belongs to.

Figure 2 shows just one view othis visualization scheme.
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Figure 2: The cluster and calendar-based visualization on employee working
hours data. It shows six clusters, repsenting different working-day patterns.

While the calendar-based approach provides a good overview of the
data, its application is limited to ca@hdar-based data, that is to say,
data which has some regularity impasd on it by social or financial
dependence on the calendar. This approach is of little utility for data
without obvious daily/weekly patterns and/or priori knowledge
about such patterns. In short, tis system works well to find patterns
within a specific, known time scal, while our system aims to
discover previously unknown patterns with little or no knowledge
about the data.

2.2.3 Spiral

Weber et. al developed a tool thatvisualizes time series on spirals
[41]. Each periodic section of timaeries is mapped onto one “ring”
and attributes such as color and line thickness are used to characterize
the data values. The main use of tis approach is the identification of
periodic structures in the data. Howeer, the utility of this tool is



limited for time series that do notxhibit periodic behaviors, or when
the period is unknown.

We reimplemented the spiral pproach and ran it on the power

consumption dataset. A screenshot othe resulting spiral is shown in

Figure 3

Friday 23:59

Monday 00:01

Figure 3: The Spiral visualization approaclof Weber et al. applied to the
power usage dataset.

Note that one can clearly visualize the normal “9-to-5” working week
pattern. In addition, one can see seval other interesting events. For
example, while it is apparent thaho one works during weekends in
general, on one Saturday in latsummer, there was a power demand
suggestive of a full days shift. Surprisingly, this idea for visualizing
time series predates computers, with elegant hand drawn examples
dating back to at least the 1880°s [12, 39].

While the Spiral approach is elegant, it does not meet our
requirements for several reasonsAs mentioned, it works well only
for periodic data (based on the original authors’ claims and our own
experiments). More importantly, it requires pixel space linear in the
length of the time series; this isimply untenable for our purposes.

3. OUR APPROACH: VIZ-TREE

Our visualization approach works by transforming the time series
into a symbolic representation, nd encoding the data in a modified
suffix tree in which the frequency ad other properties of patterns are
mapped onto colors and other visualproperties. Before explaining
our approach in detail, we will present a simple problem that
motivates our work.

Two sets of binary sequences oflength 200 were generated: the first
set by the pseudo-random-number gemator by the computer, and the
second set by hand by a group of volunteers. The volunteers were
asked to try and make the bit stringas random as possible, and were
offered a prize to motivate them. Figure 4 shows one sample
sequence from each set.

By simply looking at the original bit strings, it’s difficult, if not
impossible, to distinguish the cmputer-generated from the human-
constructed numbers. However, ifwe represent them with a tree
structure where the frequencies of subsequences are encoded in the
thickness of branches, the distinction becomes clear. For clarity, the
trees are pruned at depth three. Each tree represents one sequence
from each set, and each node in thé¢ree has exactly two branches: the

' Of all the figures in this paper, this one suffers the most from the small
scale of reproduction. In addition we did not optimize the anti-aliasing and
other graphic tricks to make the hard copy reproduction as good as the on
screen version. We encourage the interested reader to refer to the original
paper [29] for much higher quality images.

upper branch represents 1, and thdower branch represents 0. The
tree is constructed as follows: starting from the beginning of each
sequence, subsequences of length three are extracted with a sliding
window that slides across the sequece one bit at a time. So for the
first sequence we get a set of subsquences {(0,1,0), (1,0,1), (0,1,1),
..}
Sequence 1

010110010111100110100100001000101001
101101011100001010101110111110001101
101101111110100110010010001101000111
100110110100010111100010110100110110
011010000001001100010011100000111010
01100101100001010010

Sequence 2

100010001010010001010101000010101000
101011101111010110100101110100101010
011101010101001010010101011101010100
101010101101010100101100101110111101
000111000010100001001110101000111000
01010101100101110101

Figure 4: (Leff) Computer-generated random bits presented as an augmented
suffix tree Righf) Human-constructed bits presented as an augmented suffix
tree.

For the tree shown on the left in Figure 4, the branches at any given
level have approximately the samehickness, which means that the
probabilities of subsequences at any given level are approximately
evenly distributed. In contrast, the tree on the right shows that
subsequences of alternating 0’s and 1°’s dominate the whole
sequence. The “motifs” for the sequence, 101 and 010, can be easily
identified, since they appear more frequently than the other
subsequences.

The non-randomness, which can be seewery clearly in this example,
implies that humans usually try td‘fake” randomness by alternating
patterns [16]. Undoubtedly, there exist other solutions to uncover
these “patterns” (entropy, Hlden Markov models, etc.).
Nonetheless, what this visuhlization scheme provides is a
straightforward solution that allowsisers to easily identify and view
the patterns in a way intuitive to human perception.

The simple experiment demonstates how visualizing augmented
suffix trees can provide an overall visual summary, and potentially
reveal hidden structures in the data Since the strings represented in
the tree are in fact “subsequences” rather than “suffixes,” we call
such treessubsequence trees.

This simple experiment motivatesur work. Although time series are
not discrete, they can be discretized with little loss of information,
thus allowing the use ofuffix/subsequence trees.

Our system is partly inspired by Visualysis [25], a visualization tool
for biological sequences. Visualysis uses a suffix tree to store the
biological sequences and, through the properties of the tree, such as
bushiness, branch distribution, etcand user navigation, interesting
biological information can be discovered [25]. Visualysis
incorporates algorithms that utike suffix trees in computational
biology; more specifically, exactsequence matching and tandem
repeat algorithms. At a first glance, our visualization system is
similar to Visualysis in the sense that it also has the objective of
pattern discovery using a tree structure. However, several
characteristics that are unique to our application make it more
diversely functional than its cormutational-biology counterpart.
First, although the tree structure needs the data to be discrete, the



original time series data is not. Using a time-series discretization
method that we introduced in an earlier work [28], continuous data
can be transformed into discretedomain, with certain desirable
properties such as lower-bounding distance, dimensionality
reduction, etc. Second, insteadof using a suffix tree, we use a
subsequence tree that maps all subsquences onto the branches of the
tree. Thus, given the same parmeters, the trees have the same
overall shape for any dataset. This approach makes comparing two
time series easy and anomaly detection possible.

3.1 The Utility of Discretizing Time Series

In [28], we introduced Symbolic Aggregate approximation (SAX), a
novel symbolic representation for timeeries. It is ideal for this
application since, unlike all previously proposed discretization
methods for time series, SAX allows lower-bounding distance
measures to be defined on the symbolic space. In addition, its
dimensionality reduction feature miaes approximating large dataset
feasible, and its ability to converthe data using merely the local
information, without having to accesshe entire dataset, is especially
desirable for streaming time series. The utility of SAX has been
demonstrated in [28], and the adptation or extension of SAX by
other researchers further shows its impact in diverse fields such as
medical and video [6, 33]. For thse reasons, we choose to use SAX
as the discretization method for the input time series data.

Before converting a time series taymbols, it should be normalized.
The importance of normalization habeen extensively documented in
the past [22]. Without normalizatin, many time series data mining
tasks have little meaning [22]. After normalizatidn SAX performs
the discretization in two steps. First, a time series T of lengthw is
divided intow equal-sized segments; the values in each segment are
then approximated and replaced by a single coefficient, which is their
average. Aggregating thesew coefficients form the Piecewise
Aggregate Approximation (PAA) representation of T.

Next, to convert the PAA coefficiets to symbols, we determine the
breakpoints that divide the distribution space intet equiprobable
regions, wherea is the alphabet size specified by the user. In other
words, the breakpoints are determined such that the probability of a
segment falling into any of the regions is approximately the same. If
the symbols were not equi-probablesome of the substrings would be
more probable than others. As aconsequence, we would inject a
probabilistic bias in the process. I1{8], Crochemore et. al. showed
that a suffix tree automation algoritin is optimal if the letters are
equiprobable.

Once the breakpoints are determined, each region is assigned a
symbol. The PAA coefficients can then be easily mapped to the
symbols corresponding to the regions in which they reside. In [28],
the symbols are assigned in a bottom-up fashion so the PAA
coefficient that falls in the lowest region is converted taz” in the
one above to ‘b,” and so forth. In this paper, for reason that will
become clear in the next sectionwe reverse the assigning order, so
the regions will be labeled top-down instead (i.e. the top-most region
is labeled “a,” the one below it “b,’and so forth). Figure 5 shows an
example of a time series being converted to stringcdchbdba Note
the general shape of the time seriesis preserved, in spite of the
massive amount of dimensionality reduction, and the symbols are
equiprobable.

? In the unusual event where it might be more appropriate not to normalize,
for example, when offset and amplitude changes are important, VizTree
provides an option to skip the normalization step.

The discretization technique can be applied to VizTree by calling
SAX repeatedly for each subsequence. More specifically,
subsequences of specified lengthare extracted from the input time

series and normalized to have a mean of zero and a standard
deviation of one. Applying SAX orthese subsequences, we obtain a

set of strings. From this point on, the steps are identical to the
motivating example shown in the bginning of Section 3: the strings

are inserted into the subsequence tree one by one.
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Figure 5: A time series dataset “leleccum” of length 1024 is converted into an
eight-symbol string 4cdcbdba” Note that the general shape of the time series
is preserved, in spite of the masse amount of dimensionality reduction.

3.2 A First Look at VizTree

Figure 6 shows a screen shot of VizTree. When the program is
executed, four blank panels and a parameter-setting area are
displayed. To load a time series datset, the user selects the input file

using a familiar dropdown menu. The input time series is plotted in
the top left-hand panel. Next tohe time series plotting window is the
parameter setting area; the analyst can enter the sliding window
length, the number of SAX segmnts per window, and select

alphabet size from a dropdown menu. Once the parameters are
entered, the user can click on the “Show Tree” button to display the
subsequence tree on the bottom left panel.

Figure 6: A screenshot of Viztree. The top panel is the input time series.
The bottom left panel shows the subsequee tree for the time series. On the
right, the very top is the parameter setting area. Next to the subsequence tree
panel, the top window shows the zoom-in of the tree, and the bottom
window plots the actual subsequences when the analyst clicks on a branch.

The time series used forthis example is a rea) industrial dataset of
smog emissions from a motor vehicle.The length of the time series
is 2478. The length of the sliding widow is set to 53; the number of
segments (i.e., the depth of the te) is four, and the alphabet size
(i.e., the number of children for each node) is four.

Each branch represents one pattern As mentioned in the previous
section, we reverse the assigningrder of the symbols from bottom-



up to top-down. The reason is that when the symbols are arranged
this way, it is more consistent witlthe natural shape of the tree. For
example, for any given node, a branch at a higher position denotes
segments with higher values. Taversing breadth-first from the top-
most branch of any given node, the symbols that represent the
branches are a, b, ¢, and d, respectively. Each level of the tree
represents one segment (or one symbgl To retrieve any string, we
simply traverse down the appropriate branches.

Definition 2 Pattern: a patternp is the SAX representation of a
subsequence in the time sems, denoted by the strings formed by
following any path down the subsequence tree. The frequency gf
in time series A is denoted byf{p,), which is the number of
occurrences ofp over the number of all occurrences in A.

The frequency of a pattern is encoded in the thickness of the branch.
For clarity, the full tree is drawn.Branches with zero frequency are
drawn in light gray, while others are drawn in red with varying
thicknesses.

On the right hand side of VizTree, there are two panels. The upper
one shows the zoom-in of the tree show in the left panel. This is
very useful especially for deep and bushy trees. The user can click
on any node (on the subsequence tre window, or recursively, on the
zoom-in window) and the sub-tree rooted at this node will be
displayed in this upper panel. The sub-tree shown in Figure 6 is
rooted at the node representing the string dbxx,” where the “xx”
denotesdon 't-caresince we are not at the leaf level. If the user clicks
on any branch, then the actualsubsequences having the string
represented by this particular brach will be displayed in the bottom
panel and highlighted in the time series plot window. In the figure,
subsequences encoded to #bdb” are shown.

3.2.1 Parameter Selection

Three parameters need to be detemined: the length of the sliding
window, the number of segments, andhe alphabet size. In [29] we
showed the trade-off between th number of segments and the
alphabet size. In general, VizTree works very well even with
massive dimensionality reduction, asve will demonstrate in Section
5 (in the experiments we used no mre than 5 segments). The length
of the sliding window is data-depedent; however, the user can drag
a range over any pattern of interst on the time series plot window
and the window size will be filled in automatically.

3.3 Subsequence Matching

Subsequence matching can be done iy efficiently with VizTree.
Instead of feeding another time sees as query, the user provides the
query in an intuitive way. Recalthat each branch corresponds to one
of the equiprobable regions that are used to convert the PAA
coefficients to symbols. The dp branch corresponds to the region
with the highest values, and thebottom branch corresponds to the
region with the lowest values. Therefore, any path can be easily
translated into a general shape and can be used as a query. For
example, the top-most branch at depth one (i.e., stringa¥xx”)
represents all subsequences thatstart with high values, or more
precisely, whose values in the first segment have the mean value that
resides in the highest region. Inthe previous example, the user is
interested in finding a concave-down pattern (i.e., a U-shape). This
particular pattern, according to the domain experts, corresponds to a
change of gears in the motor vehicle during the smog emission test.
From the U shape, the user can approximate the query to be
something that goes down and comesip, or a string that starts and
ends with high branches, with low branches in the middle. As a

result, clicking on the branch representingdbdb” as shown in the
figure uncovers the pattern of interest.

3.4 Motif Discovery & Simple Anomaly Detection
VizTree provides a straightforward way to identify motifs. Since the
thickness of a branch denotes the frequency of the subsequences
having the same, corresponding stringswe can identify approximate
motifs by examining the subsequeces represented by thick tree
paths. A feature unique to VizTree is that it allows users to visually
evaluate and inspect the patterns retmed. This interactive feature is
important since different strings can also represent similar
subsequences, such as those thatdiffer by only one symbol. In
addition, the user can prune off uninteresting or expected patterns to
improve the efficiency of the system and reduce false positives. For
example, for ECG data, the motifilgorithm will mostly likely return
normal heart beats as the most important motif, which is correct but
non-useful. Allowing user to maually prune off this dominant
pattern, secondary yet more interdsng patterns may be revealed.
Figure 7 shows such an example. The dataset used here is meal,
industrial dataset, “winding,” whie records the angular speed of a
reel. The subsequences retrievedn the lower right panel have the
string representation dach.” Examining the motifs in this dataset
allowed us to discover an intersting fact: while the dataset was
advertised as real, we noted that repeated patterns occur at every
1000 points. For example, in Figure 7, the two nearly identical
subsequences retrieved are locatedit offsets 599 and 1599, exactly
1000 points apart. We checked with the original author and
discovered that this is actually a synthetic dataset composed from
parts of a real dataset, a fact thais not obvious from inspection of the
original data.
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Figure 7: Example of motif discovery on the winding dataset. Two nearly
identical subsequences are idetified, among the other motifs.

The complementary problem of motif discovery is anomaly
detection. While frequently occrring patterns can be detected by
thick branches in the Viztree, simple anomalous patterns can be
detected by unusually thin branhes. Figure 8§ demonstrates both
motif discovery and simple anomal detection on an MIT-BIH Noise
Stress Test Dataset (ECG recordigs) obtained from PhyioBank [13].
Here, motifs can be identified very easily from the thick branches;
more remarkably, there is one very thin line straying off on its own
(the path that starts with “a”). Tis line turns out to be an anomalous
heart beat, independently annotated by a cardiologist as a premature
ventricular contraction.



While anomalies can be detected tis way for trivial cases, in more
complex cases, the anomalies are usually detected by comparing the
time series against a normal, reference time series. Anything that
differs substantially from thisreference time series can signal
anomalies. This is exactly th objective of the Diff-Tree, as
described in the next section.

G ==

Figure 8:Heart-beat data with anomaly is shownWhile the subsequence tree
can be used to identify maifs, it can be used for simple anomaly detection as
well.

4. DIFF-TREE

We have described how global suctures, motifs, and simple
anomalies can be identified by a subsquence tree. In this section,
we extend these ideas to furtherallow the comparison of two time
series by means of a “diff-tree.” A diff tree is short for “difference
tree,” and as the name implies,shows the distinction between two
time series. The construction of aiff-tree is fairly straightforward
with the use of subsequence tree, since the overall tree shape is the
same regardless of the strings, prodied that the parameters selected
(i.e., alphabet size, number of segment, etc) are the same. The dift-
tree is constructed by computingthe difference in thickness (i.e.,
frequency of occurrence) for each branch. Intuitively, time series data
with similar structures can be exgcted to have similar subsequence
trees, and in turn, a sparse diff-treeIn contrast, those with dissimilar
structures will result in distinctisly different subsequence trees and
therefore a relatively dense diff-tree.

One or two datasets can be loaded to VizTree simultaneously. If
only one is loaded, then its subsquence tree will be shown. If two
datasets are loaded, the user has the option of viewing the
subsequence tree of either one, or thir diff-tree. The branches in the
difference tree are color-coded to distinguish between the
overrepresented and underrepresentd patterns. Given two time
series A and B, where A is the basis for comparison (the reference
time series), and B is the added time series, we can define the
following terms:

Definition 3.Overrepresented Patterna pattern is over-represented
in B if it occurs more frequently in B than it does in A.

Definition 4 Underrepresented Pattern a pattern is under-
represented in B if it occurs more frequently in A than it does in B.

Definition 5. Degree of Differencethe degree of difference for
any patternp between A and B is defined as follows:

S(py) = f(p,) (1

- max(max_ freq _in_A,max_ freq in_B)

P

Simply stated, D, measures how a pattern(i.e. branch) differs from
one time series to another, by computing the difference of
frequencies between A and B ad dividing by the maximum
frequency in A and B. Ifp occurs less frequently in B than in A, then
the pattern is underrepresented andD, < 0, otherwise it is
overrepresented andD,, > 0.

This is the measure ewoded in the diff-tree as the thickness of the
branch. Currently, discrete cbors are used to distinguish
overrepresentation  from underrepsentation:  overrepresented
patterns are drawn in green (same color as the test time series);
underrepresented patterns in blue(same color as the basis time
series); and if the frequency is the same, then the branch is drawn in
red. However, color intensity canbe used to further highlight the
degrees of difference.

4.1 Anomaly Detection

The datasets used for anomaly detction, constructed independently
of the current authors and provided by the Aerospace Corporation for
sanity check, are shown in Figure 9.The one on the top is the normal
time series, and the one below is similar to a normal time series,
except it has a gap in the middle as anomaly. Figure 10 shows a
screenshot of the anomaly detection by diff-tree. The tree panel
shows the diff-tree between the twadatasets. The two thick paths
denote the beginning and the end of the anomaly, respectively.

This is a very trivial example fo demonstration purpose. However,
the effect is similar for more complex cases.

::j_j,l;lll M AL

il:lll M A AL

Figure 9 The input files used for anomaly detection by diff-tre¢Top) Normal
time series. (Bottom) Anomaly is introduced as a gap in the middle of the
dataset.
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Figure 10: Diff-tree on the datasets shown in the previous figure. The gap is
successfully identified.

5. EXPERIMENTAL EVALUATION

In this section we evaluate (ad demonstrate) our approach on
datasets which are either very intitive to the average person or have
been extensively annotated by domain experts. In particular, we will
evaluate our work on human motion data and the power demand



data. Note that all datasets used here are available for free from the
UCR archive [20].

5.1 Subsequence Matching

This experiment incorporates bdt subsequence matching and motif

discovery. The dataset used is the human motion data of yoga
postures. A model postured yoga rotines in front of a green screen,

and her motion was captured by vanus sensors. The motion capture

is transformed into a time series byomputing the aspect ratio of the

minimum-bounding rectangle formed around her body. The length
of the time series is approximately 26,000 (i.e. there are
approximately these many frames in the original video).

Suppose we are interested in finding a yoga sequence like the one in
Figure 11:
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Figure 11:A sample yoga sequence forpproximate subsequence matching.

Then we would expect the shape of the query to descend rapidly after
the first position (the width-to-hght-ratio decreases), ascend slowly
after the second position, descend again, and finally ascend once
more. Assume that we set the nuther of segments to be five (an
arbitrary choice), then a reasonble start would be the branch
“adxxx.” Since there are only two paths extending from the node
“ad,” the matches are found very quicly without much refinement in
the search space. The result is shown in Figure 12 and the actual
yoga sequences for the matches are outlined in Figure 13. The
subsequence length is 400 (i.e. hout 6.5 seconds). As the figure
shows, the two sequences are verysimilar with only very minor
distinction.
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Figure 12: Matches for the yoga sequence in Figure 11. The bottom right
corner shows how similar these two subsequences are.
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Figure 13:Outline of the actual yoga sequeces that match the query.

There are several advantages of the approximate subsequence
matching by VizTree. One is thatthis feature is built-in to the
application, and it is relatively easy to specify the query without

explicitly providing it. More importantly, the system retrieves the
results very efficiently since the information is already stored in the
tree. With the current state-of-the-artxact subsequence matching
algorithms, retrieval is much too slow for a real time interaction.

5.2 Motif Discovery

For the motif discovery experiment, we will continue with the
previous human-motion example. There are obviously some
noticeable motifs such as the long spikes that occur throughout the
sequence (see the time series plot in Figure 12). They denote the
posture where the model is lying fit on the ground, when the aspect
ratio is at its maximum. Howeverpne of the desirable features of
VizTree is that it allows users tovisually identify secondary yet more
interesting motifs. The matches found in the previous section are
such example. We can zoom-in on these subsequences and examine
their similarity.

From Figure 14 we can see that these two subsequences are indeed
very similar to each other. Note that they both have a small dip
towards the end of the sequence. However, there is a slight
difference there — the dip for the fitssequence occurs before that for
the second sequence, and is followd by a plateau. Examining the
motion captures we discover that the dip corresponds to the™6
position shown in Figure 13, righbefore the model stretched her
arms straight in front of her. Iraddition, for the first sequence, the
model held that last position fora longer period of time, thus the
plateau following the dip. These subtle differences are difficult to
notice without the motif discoveryand/or the subsequence matching
features in VizTree.
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Figure 14 Zoom-ins of the two matches found in the yoga subsequence match
example. Note that they both have dip towards the end of the sequences.

For comparison, we ran the fastest knowrexact motif discovery
algorithm [29] . Although the same motif can also be successfully
identified, it takes minutes to compute, while VizTree gives instant
(less than one second) feedbackon the results. Even with the
approximatemotif discovery algorithm [7], it takes tens of seconds to
complete. In addition, the visualization power of VizTree allows the
user to see exactly where the motif occurs and how it maps to the
original time series.

5.3 Anomaly Detection

For anomaly detection, we used th power demand data that was also
used in Figure 3. Electricity onsumption is recorded every 15
minutes; therefore, for the year of 1997, there are 35,040 data points.
Figure 15 shows the resulting tree with the sliding window length set
to 672 (exactly one week of dath and both alphabet size and number
of segments to 3. The majority of the weeks follow the regular
Monday-Friday, 5-working-day pattern, as shown by the thick
branches. The thin branches denote the anomalies. The one circled
is from the branch bab.” The zoom-in shows the beginning of the
three-day week during Christmas (Thursday and Friday off). The



other thin branches denote other anomalidsuch as New Year’s Day,
Good Friday, Queen’s Birthday, etc.

While other anomaly detection algorithms such as the TSA-Tree
Wavelet-based algorithm by Shahabi et. al. [36] and the
Immunology-based algorithm (IMM) by Dasgupta and Forrest [9]
can potentially find these anomalies as well given the right
parameters, both are much more computationally intensive. While
VizTree requires input of parametersthe results are almost instant.
In the contrary, the TSA-Tree takes tens of seconds, and IMM needs
re-training its data with every adjustment of parameters, with each
training session taking several minutes.This is clearly untenable for
massive datasets.

In addition to the fast computtional time, anomaly detection by
VizTree does not always require a tiining dataset. As demonstrated,
simple anomalies can be identified as an inverse to the motifs.
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Figure 15 Anomaly detection on power onsumption data.
shown here is a short week during Christmas.

5.4 Scalability

The pixel space of the subsequence tree is determined solely by the
number of segments and alphabet sizeIn particular, we note that the
pixel size of the tree isconstantand independent to the length of time
series. We have already shown that large amounts of dimensionality
reduction do not greatly affect the accuracy of our results (in Section
5.3, the dimensionality is reduced from 672 to 3, a compression ratio
of 224-to-1). However, the size ofhe dataset plays a role in memory
space, since each node in the e stores the offsets of its
subsequences. However, SAX allws efficient numerosity reduction
to reduce the number of subsequencebeing included into the tree, in
addition to alleviating the problem associated with trivial matches
(see below) [23, 29].

The anomaly

5.4.1 Numerosity Reduction

In [29] we showed that the besmatches for a subsequence tend to be
its immediate neighbors: the subsguence one point to the right and
the subsequence one point to the ft. We defined these matches to
be the “trivial matches.” In themooth regions of the time series, the
amount of trivial matches might be ke. If we include them in any
sliding-window algorithms, the trivial matches will dominate over the
true patterns due to over-countingand the results will likely be
distorted, or worse, become meaingless [23]. Therefore, when

3 Anomalies in the sense that the electricity consumption is abnormal
given the day of the week.

extracting subsequences from theime series by a sliding window,
the trivial matches should be excluded.

Different definitions can be used to identify trivial matches. The
easiest way is to compare the SAX strings and only record a
subsequence if its string is different from the last one recorded. In
other words, no two consecutive strings should be the same.

Additionally, we can check two strings symbol-by-symbol and
consider them trivial matches of onanother if no pair of symbols is
more than one alphabet apart. This extra check is based on the same
idea as the previous numerosity reduction option, that similar
subsequences have the same SAX repasentation. However, it is also
likely that similar subsequenceslo not have exactly the same SAX
representations; rather, they might have alphabets that differ by at
most one at any given position (i.e. thvalues could be very close but
reside on different sdes of a breakpoint).

Furthermore, the second option can be extended to also exclude non-
monotonic strings. Depending on thamature of the datasets, users
might only be interested in finding patterns with ups and downs.
Finally, the ultimate numerosity reduction can be achieved by
chunking, which allows no overlappingubsequences. This has been
used for many approaches; howeverye would like to note that it is
only useful if the dataset exhibits rgular patterns, either by shape or
by period. For example, if we use chunking for the power
consumption data used in Section5.3, then we get an even more
distinctive tree.

6. CONCLUSIONS AND FUTURE WORK

We proposed VizTree, a novel wualization framework for time
series that summarizes the global and local structures of the data. We
demonstrated how pattern discoveryan be achieved very efficiently
with VizTree.

As mentioned, VizTree will be formally evaluated by The Aerospace
Corp in the summer of 2004, and we will incorporate the feedback
into the system. We believe that researchers from other sectors of the
industry can greatly benefit from ousystem as well. For example, it
could potentially be used for indeing and editing video sequences.
We plan to have domain experts imther fields such as medicine and
animation evaluate our system.

In the beginning of the paper we mention that the system can be used
for monitoring and mining time serieslata. While we mainly focus
on the “mining” aspect in thispaper, we will extend VizTree to
accept online streaming data for monitoring purposes.

Reproducible Research StatementAll datasets and code used in
this work will be freely availalel For higher-quality images and
more information, please visit
http://www.cs.ucr.edu/~jessica/VizTree.htm.

7. ACKNOWLEDGMENTS

Thanks to Victor Zordan and Bhrigu Celly for providing the yoga
postures data.

8. REFERENCES

[1] Aggarwal, C. (2002). Towards Eéftive and Interpretable Data Mining
by Visual Interaction. IiS/IGKDD ExplorationsJan, 2002.

[2] Apostolico, A., Bock, M. E. & Lonardi, S. (2002). Monotony of Surprise
in Large-Scale Quest fo Unusual Words. Inproceedings of the 6th Int'l
conference on Research in Computational Molecular Biology
Washington, D.C., Apr 18-21. pp. 22-31.



(6]
(7]

[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Caraca-Valente, J. P& Lopez-Chavarrias, 1. (2000). Discovering Similar
Patterns in Time Series. Inproceedings of the 6th Int'l Conference on
Knowledge Discovery and Data MiningBoston, MA. pp. 497-505.
Cardle, M. (2004). Ph.D Thesis, in progress. University of Cambridge.
Chang, C. L. E., Garcia-Molina, H& Wiederhold, G. (2002). Clustering
for Approximate Similarity Search in High-Dimensional SpacellEE
Transactions on Knowledge and Data Engineeringvol. 14(4), July-
August. pp. 792-808.

Chen, L., Ozsu, T. & Oria, V.2003). Symbolic Representation and
Retrieval of Moving Object Trajectories. University of Waterloo. 2003.
Chiu, B., Keogh, E. & Lonardi, S(2003). Probabilistic Discovery of
Time Series Motifs. Inproceedings of the 9th ACM SIGKDD Int'l
Conference on Knowledge Discovery and Data MiningWashington
DC, USA, Aug 24-27. pp. 493-498.

Crochemore, M., Czumaj, A., Gasjeniec, L., Jarominek, S., Lecroq, T.,
Plandowski, W. & Rytter, W. (1994). Speeding Up Two String-
Matching AlgorithmsAlgorithmica vol. 12(4/5). pp. 247-267.

Dasgupta, D. & Forrest, S. (1999). Novelty Detection in Time Series
Data Using Ideas from Immunology. Iiproceedings of the 8th Int'l
Conference on Intelligent SystemDenver, CO, Jun 24-26.

Durbin, R., Eddy, S., Krogh, A. & Mitchison, G. (1998). Biological
Sequence Analysis: Probabilistic Modelsf Proteins and Nucleic Acids.
Cambridge University Press.

Faloutsos, C., Ranganathan,M. & Manolopulos, Y. (1994). Fast
Subsequence Matching in Time-Series DatabaseSIGMOD Record vol.
23(2), June. pp. 419-429.

Gabglio, A. (1888). Theoria Generale Della Statistica, 2nd ed. Milan.
Goldberger, A. L., Amaral, L. A., @ks, L., Hausdorff, J. M., Ivanov, P.
C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C. K. & Stanley, H.
E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Componenets of
a New Research Resource for Complex Physiologic SignalSirculation
vol. 101(23), June 13. pp. e215-¢220[Circulation Electronic Pages;
http://circ.ahajournals.org/gi/content/full/101/23/¢215]

Hochheiser, H. & Shneiderman, B. (2001). Interactive Exploration of
Time-Series Data. In proceedings of the 4th Int'l Conference on
Discovery Science Washington D.C., Nov 25-28. pp. 441-446.

Huang, Y. W. & Yu, P. S. (1999). Adaptive Query Processing for Time-
Series Data. Inproceedings of the 5th ACM SIGKDD Int'l Conference on
Knowledge Discovery and Data MiningSan Diego, CA, Aug 15-18. pp.
282-286.

Huettel, S., Mack, P. B. & McCarthy, G. (2002). Perceiving Patterns in
Random Series: Dynamic Processing of Sequence in Prefrontal Cortex.
Nature Neurosciencevol. 5. pp. 485-490.

Isaac, D. & Lynnes, C. (2003). Atomated Data Quality Assessment in
the Intelligent Archive,White Paper prepared fo the Intelligent Data
Understanding program. 2003. pp. 17.

Jin, X., Wang, L., Lu, Y. & ShiC. (2002). Indexingand Mining of the
Local Patterns in Sequence Database. Iproceedings of the 3rd Int'l
Conference on Intelligent Data Engineering and Automated Learning
Manchester, UK, Aug 12-14. pp. 68-73.

Keim, D. A. (2002). Information ¥ualization and Visual Data Mining.
IEEE Transactions on Visualization and Computer Graphicsol. §(1).
pp. 1-8.

Keogh, E. The UCR Time Series Data Mining Archive.
http://www.cs.ucr.edu/~eamonn/tsdma/index.html

Keogh, E., Chakrabarti, K. &Pazzani, M. (2001). Locally Adaptive
Dimensionality Reductionfor Indexing Large Time Series Databases.
SIGMOD Record vol. 30(2), June. pp. 151-162.

Keogh, E. & Kasetty, S. (2002). On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration. In
proceedings of the 8th ACM SIGKDD Int'l Conference on Knowledge
Discovery and Data Mining Edmonton, Alberta, Canada, July 23-26.
pp. 102-111.

Keogh, E. & Lin, J. (2004). Clustering of Time Series Subsequences is
Meaningless: Implications foPrevious and Future ResearchKnowledge
and Information Systems JournallTo Appear

Keogh, E., Lonardi, S. & Chiu, B(2002). Finding Surprising Patterns in
a Time Series Database in Linear Time and Space. Iwoceedings of the

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

8th ACM SIGKDD Int'l Conference on Knowledge Discovery and Data
Mining Edmonton, Alberta, Canada, Jul 23-26. pp. 550-556.

Kim, S., Kim, Y., Ahn, T., Nam, H. K., Han, B. J. & Kim, S. M. (2000).
Visualysis: A Tool for Biological Sequence Analysis. proceedings of
the 4th Int'l Conference on Computational Molecular Biolog¥okyo,
Japan, Apr 8-11.

Lankford, J. P. & Quan, A. (2002). Evolution of Knowledge-Based
Applications for Launch Support. Iproceedings of Ground System
Architecture WorkshopEl Segundo, CA.

Lin, J. VizTree Websitehttp.//www.cs.ucr.edu/~jessica/viztree.htm

Lin, J., Keogh, E., Lonardi,S. & Chiu, B. (2003). A Symbolic
Representation of Time Series, with Implications for Streaming
Algorithms. In Workshop on Research Issues in Data Mining and
Knowledge Discoverythe 8th ACM SIGMOD San Diego, CA. June 13,
2003.

Lin, J., Keogh, E., Patel, P. & dnardi, S. (2002). Finding Motifs in Time
Series. Inthe 2nd Workshop on Temporal Data Miningthe 8th ACM
Int'l Conference on Knowledge Discovery and Data Miningdmonton,
Alberta, Canada. July 23-26, 2002.

Ma, J. & Perkins, S. (2003). Online Novelty Detection on Temporal
Sequences. Inproceedings of the 9th Int'l Conference on Knowledge
Discovery and Data MiningWashington D.C., Aug 24-27.

Oates, T. (1999). Identifying Distutive Subsequences in Multivariate
Time Series by Clustering. Iproceedings of the 5th Int'l Conference on
Knowledge Discovery and Data MiningSan Diego, CA, Aug 15-18. pp.
322-326.

Oates, T., Schmill, M. & CohenP. (2000). A Method for Clustering the
Experiences of a Mobile Robot that Accords with Human Judgements.
In proceedings of the 17th National Conference on Artificial
Intelligence pp. 846-851.

Ohsaki, M., Sato, Y., Yokoi, H. & Yamaguchi, T. (2003). A Rule
Discovery Support System for Sequential Medical Data, in the Case
Study of a Chronic Hepatitis Dataset. IWiscovery Challenge Workshop
the 14th European Conference on Machine Learning/the 7th European
Conference on Principles and Practice of Knowledge Discovery in
Databases Cavtat-Dubrovnik, Croatia. Sep 22-26, 2003.

Park, S., Chu, W., Yoon, J. & Hsu, C. (2000). Efficient Searches for
Similar Subsequences of Differeniengths in Sequence Databases. In
proceedings of the 16th IEEE InltConference on Data EngineeringSan
Diego, CA, Feb 28 - Mar 3. pp. 22-32.

Reinert, G., Schbath, S. & Watenan, M. S. (2000). Probabilistic and
Statistical Properties of Words: An Overviewurnal of Computational
Biology. vol. 7. pp. 1-46.

Shahabi, C., Tian, X. & Zhao, W. (2000). TSA-Tree: A Wavelet-Based
Approach to Improve the Efficiencyf Multi-Level Surprise and Trend
Queries. Inproceedings of the 12th Int'l Conference on Scientific and
Statistical Database ManagementBerlin, Germany, Jul 26-28. pp. 55-
68.

Shneiderman, B. (1996). The Eyes Have It: A Task by Data Type
Taxonomy for Information Visualizations. Iproceedings of the IEEE
Symposium on Visual LanguagesBoulder, CO, Sep 3-6. pp. 336-343.
Tanaka, Y. & Uehara, K. (2003)Discover Motifs in Multi Dimensional
Time-Series Using the Principal Component Analysis and the MDL
Principle. In proceedings of the 3rd Int'l Conference on Machine
Learning and Data Mining in Pattern Recognitior_eipzig, Germany,
Jul 5-7. pp. 252-265.

Tufte, E. R. (1983). The VisuaDisplay of Quantitative Information.
Cheshire, CT. Graphics Press.

van Wijk, J. J. & van SelowE. R. (1999). Cluster and Calendar Based
Visualization of Time Series Data. Inproceedings of 1999 IEEE
Symposium on Information VisualizatiorSan Francisco, CA, Oct 24-29.
pp. 4-9.

Weber, M., Alexa, M. & Muller, W. (2001). Visualizing Time Series on
Spirals. In proceedings of 2001 IEEE Symposium on Information
Visualization San Diego, CA, Oct 21-26. pp. 7-14.



V7 WestVirginiaUniversity.
/

June 15, 2010
download: http://menzies.us/pdf/07anomalies-pits.pdf

wp: http://now.unbox.org/all/trunk/doc/07/tellingmore/reporté.

Improving IV&V Techniques Through the Analysis of Project Anomalies:
Text Mining PITS issue reports - final report

Tim Menzies

Lane Department of Computer Science and Electrical Engineering, West Virginia University, USA

tim@menzies.us
http://menzies.us

Abstract This project is in two parts. The second part will
try to combine two (or more) of the IV&V data sources into
an active monitoring framework where data collected during
an active IV&V project will trigger an alert if a project be-
comes unusual” (and defining “unusual” is one of the goals
of this project).

But before we can generalize between sources, we need to
study each source in isolation to determine its strengths and
weaknesses. Hence, the first part of this project aims to gain
experience with the various IV&V data sources available to
researchers like myself; i.e.

— SILAP, from the IV&V planning and scoping team;

— James Dabney’s Bayes networks that describe the IV&V
business practices of the L3 IV&V contractor;

The PITS issue tracking data;

The LINKER database project that intends to join PITS
to other data sources;

Balanced score card strategy maps from NASA Langley.
and the COCOMO data sets from JPL.

This is the second year of a three year project that started

in June 2006. The project is data-rich project and much progress

has already been achieved.

— At SAS’06, a preliminary report described what had been
learned from the SILAP data. A ranking was offered on
the most common IV&V work-breakdown structure (WBS)
activities. This ranking can be used for (e.g.) identifying
what WBS tasks would benefit most from optimization.

— This report on SILAP was finalized in the first part of
2007. In summary, there exists a very strong signal in the
SILAP data for issue frequency and severity.

— In October’06, a preliminary report was delivered on the
Bayes network. On a limited case study, it was shown that
Bayes nets and treatment learning could generate parsi-
monious explanations for project events.

— A preliminary report on text mining from the PITS issues
tracking database that generated an expert system which
audited a test engineer’s proposed severity level.

This document updates the preliminary PITS report. Before,
the PITS report studied two projects with a limited range of

severities (mostly severity 3 and 4). Here, we explore five
projects with a much wider range of severities. The results
from the PITS preliminary report is confirmed. Using text
mining, PITS can be used to generate an expert system that
audits a test engineer’s proposed severity level for an issue.

Credits: This work was made possible due to the heroic ef-
forts of Ken Costello (chief engineering at NASA IV&V)
who provided the PITS defect reports. The text mining tech-
nology used here was inspired by the trace-ability work of
Jane Hayes and Alex Dekhtyar. Alex was particularly help-
ful is mapping out the ABCs of text mining. Jane also of-
fered extensive advice on how to extend the current system.
This research was conducted at West Virginia University un-
der NASA sub-contract project 100005549, task Se, award
1002193r.

Cautions Reference herein to any specific commercial prod-
uct, process, or service by trade name, trademark, manufac-
turer, or otherwise, does not constitute or imply its endorse-
ment by the United States Government.

Revision history : Much of the introductory and exposition

text of this document comes from the preliminary report. How-
ever, all the results of this document have been recomputed

for the five new projects. Also new in this report are the rule

minimization results.




Menzies: Text Mining PITS - preliminary report

20f 13

Contents

1

3

Introduction: We don’t need another hero . . . . . . . ..
Concept of Operations . . . . . .. ... ... ......

How it Works

3.1
3.2
33
34
35
3.6
3.7

Tokenization . . . . . ... ... ... ... ...,
Stoplists . . . . . ... L o
Stemming
TIDF. . . .00 o
InfoGain . . . . ... ... ... L.
Rule Learning
Assessing the Results

Results . . . . . . ... . ...

4.1
4.2
4.3
44

Data
Stopping and Stemming . . . . . ... ... ...
TE*1df
Learning . . . . . .. ... ... ...

Discussion . . . . . . . . ... ...

List of Figures
1 Heroic successes with PITS . . . . . . .. ..
2 Severities for robotic missions. . . . . . . ..
3 Severities for human-rated missions. . . . . .
4 Reviewing severity levels . . . . .. ... ..
5 Tokenization. . . . .. ... .. .......
6 Stopwords . . ... ...
7 Applying astop-list. . . . . . . ... ...
8 Some stemmingrules. . . . . ... ... ...
9 Using a downloaded stemmer. . . . ... ..
10 Preparation. . . . ... ............
11 thdfawk. . ... ... ... ... ......
12 Finding the 100 highest Tf*Idf words
13 Sample 10-way classification results. . . . . .
14 Some precision, recall, f-measures from Fig-
ure 13. . . . ..o
15 Datasetsinthe thisstudy.. . . . . ... ...
16  Effects of stopping and stemming. . . . . . .
17  Tf*1df scoring for the stopped, stemmed tokens
18 Top 1 to 50 terms found by TF*IDF, sorted
by infogain. . . . .. ... ... ...
19  Top 51 to 100 terms found by TF*IDF, sorted
by infogain. . . . ... ... ... ... ...
20  Re-writing issue reports as frequency counts.
21  Frequency countsinthedata . .. ... ...
22 Data set “a”; top 100 tokens; learned rules. . .
23 Data set “a”; top 3 tokens; learned rules. . . .
24 Data set “b”; top 100 tokens; learned rules.
25 Data set “b”; top 3 tokens; learned rules.
26  Data set “c”; top 100 tokens; learned rules. . .
27 Data set “c”; top 3 tokens; learned rules. . . .
28 Data set “d”; top 100 tokens; learned rules.
29 Data set “d”; top 3 tokens; learned rules.
30 Data set “e”; top 100 tokens; learned rules. . .
31 Data set “e”; top 3 tokens; learned rules. . . .

9

10
10
12
12
12
12
12
13
13
13
13
13



Menzies: Text Mining PITS - preliminary report

30f 13

1 Introduction: We don’t need another hero

NASA’s software IV&V
Program captures all of
its findings in a database
called the Project and
Issue Tracking System
(PITS). The data in PITS
has been collected for
more than 10 years and
includes issues on robotic
satellite missions and
human-rated systems.

It is difficult, to say
the least, to generate
conclusions from a mov-
ing target like PITS. Several heroic studies have made signif-
icant conclusions using PITS data (see Figure 1). These stud-
ies were heroic in the sense that the “heroes” reached their
goals after tedious and complex struggling. Worse, the ex-
tracted data was only accessible with the help of NASA civil
servants- a scarce and expensive resource.

The problem with PITS is that there is a lack of con-
sistency in how each of the projects collected issue data. In
virtually all instances, the specific configuration of the infor-
mation captured about an issue was tailored by the IV&V
project to meet its needs. This has created consistency prob-
lems when metrics data is pulled across projects. While there
was a set of required data fields, the majorities of those fields
do not provide information in regards to the quality of the
issue and are not very suitable for comparing projects.

NASA is very aware of the problems with PITS and is
taking active steps to improve it. At the time of this writing,
there is an on-going effort to implement a mandatory data set
in each IV&V project database to support IV&V effective-
ness metrics. This effort has been in development for about
a year and is currently being executed by several projects.
However, it is too early to make any useful observations from
that data.

— Ken Costello (IV&V’s chief engineer) compiled statistics for
NASA headquarters that showing, in nine IV&V tasks, the
majority of issues found by IV&V were found via an analy-
sis of requirements documents.

— Marcus Fisher (IV&V’s research lead) applied a “mid-
course correction” to one IV&V project after checking the
progress of the IV&V against historical records in PITS.

— David Raffo (University of Portland), working with Ken
Costello and other civil servants, found enough cost data to
partially tune his waterfall-based model of IV&V;

— In a prior report in this project, Melissa Northey (Project
Manager) performed some joins across PITS to return costs
for different IV&V tasks;

Fig. 1 A partial list of past heroic successes with PITS.

To be fair, PITS is hardly unique. Based on my experi-
ence with data mining at other corporations, I assert that PITS
is a typical database, useful for storing day-to-day informa-
tion and generating small-scale tactical reports (e.g. “list the
bugs we found last Tuesday”), but difficult to use for high-
end business strategic analysis (e.g.. “in the past, what meth-
ods have proved most cost effective in finding bugs?”). Like
many other databases, it takes heroes to extract information
from PITS. Sadly, most of the heroes I know are so busy sav-
ing their own part of the world that they have little time to
save researchers like me.

Hence, in this report, we try a new approach for extracting
general conclusions from PITS data. Unlike previous heroic
efforts, our text mining and machine learning methods are
low cost, automatic, and rapid. We find we can build an agent
to automatically review issue reports and alert when a pro-
posed severity is anomalous. Better, the way we generated
the agent means that we have probabilities that the agent is
correct. These probabilities can be used to intelligently guide
decision making.

An extremely surprising conclusion from this report is
that the unstructured text might be a better candidate for gen-
erating lessons learned than the structured data base fields.

— While the database fields in PITS keep changing, the na-
ture of the unstructured text remains constant.

— In other words, the reason it is so hard in the past to reason
about PITS is that we have been looking at the wrong
data.

If we could properly understand unstructured text, this would
be a result of tremendous practical importance. A recent study'
concluded that

— 80 percent of business is conducted on unstructured in-
formation;

— 85 percent of all data stored is held in an unstructured
format (e.g. the unstructured text descriptions of issues
found in PITS);

— Unstructured data doubles every three months;

That is, if we can tame the text mining problem, it would
be possible to reason and learn from a much wider range of
NASA data than ever before.

' http://www.b—eye-network.com/view/2098
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2 Concept of Operations

NASA uses a five-point scale to score issue severity. The
scale ranges one to five, worst to dullest, respectively. A dif-
ferent scale is used for robotic and human-rated missions (see
Figure 2 and Figure 3). The data used in this report comes
from robotic missions.

Using text mining and machine learning methods, this re-
port shows that it is possible to automatically generate a re-
view agent from PITS issue reports via the process of Fig-
ure 4. This agent can check the validity of the severity levels
assigned to issues:

— After seeing an issue in some artifact, a human analyst
generates some text nofes and assigned a severity level
severityX.

— An agent learns a predictor for issue severity level from
logs of {notes, severityX}. A training module (a) up-
dates the agent beliefs and (b) determines how much self-
confidence a supervisor might have in the agent’s conclu-
sions.

— Using the learned knowledge, the agent reviews the ana-
lysts’s text and generates its own severityY level.

— If the agent’s proposed severityY differs from the severi-
tyX level of the human analyst, then a human supervisor
can decide to review the human analyst’s severityX. To
help in that process, the supervisor can review the self-
confidence information to decide if they trust the agent’s
recommendations.

This agent would be of useful under the following circum-
stances:

— When a less-experienced test engineer has assigned the
wrong severity levels.

— When experienced test engineers are operating under ur-
gent time pressure demands, they could use the agent to
automatically and quickly audit their conclusions.

— For agents that can detect severity one and two-level er-
rors with high probability, the agent could check for the
rare, but extremely dangerous case, that an [IV&V team
has missed a high-severity problem.

Severity 1: Prevent the accomplishment of an essential capability;
or jeopardize safety, security, or other requirement designated
critical.

Severity 2: Adversely affect the accomplishment of an essential ca-
pability and no work-around solution is known ; or adversely
affect technical, cost or schedule risks to the project or life cycle
support of the system, and no work-around solution is known.

Severity 3: Adversely affect the accomplishment of an essential ca-
pability but a work-around solution is known; or adversely af-
fect technical, cost, or schedule risks to the project or life cycle
support of the system, but a work-around solution is known.

Severity 4: Results in user/operator inconvenience but does not af-
fect a required operational or mission essential capability; or
results in inconvenience for development or maintenance per-
sonnel, but does not affect the accomplishment of these respon-
sibilities.

Severity 5: Any other issues.

Fig. 2 Severities for robotic missions.

Severity 1: A failure which could result in the loss of the human-
rated system, the loss of flight or ground personnel, or a perma-
nently disabling personnel injury.

Severity IN: A failure which would otherwise be Severity 1 but
where an established mission procedure precludes any opera-
tional scenario in which the problem might occur, or the number
of detectable failures necessary to result in the problem exceeds
requirements.

Severity 2: A failure which could result in loss of critical mission
support capability.

Severity 2N: A failure which would otherwise be Severity 2 but
where an established mission procedure precludes any opera-
tional scenario in which the problem might occur or the number
of detectable failures necessary to result in the problem exceeds
requirements.

Severity 3: A failure which is perceivable by an operator and is nei-
ther Severity 1 nor 2.

Severity 4: A failure which is not perceivable by an operator and is
neither Severity 1 nor 2.

Severity 5: A problem which is not a failure but needs to be cor-
rected such as standards violations or maintenance issues.

Fig. 3 Severities for human-rated missions.
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artifact
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Fig. 4 An agent for reviewing issue severity levels. Gray nodes denote humans.
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3 How it Works

The essential problem of text mining is dimensionality re-
duction. Standard machine learners work well for instances
that are nearly all fully described using dozens (or fewer) at-
tributes [6]. But text mining applications (e.g. analyzing PITS
detect reports) must process thousands of unique words, and
any particular paragraph may only mention a few of them [1,
5]. Therefore, before we can apply machine learning to text
mining, we have to reduce the number of dimensions (i.e. at-
tributes) in the problem.

There are several standard methods for dimensionality re-
duction such as tokenization, stop lists, stemming, Tf*Idf and
InfoGain. All these methods are discussed below.

3.1 Tokenization

Figure 5 shows the tokenizer used in this study:

— Clean replaces certain punctuation with blanks spaces.

— The file bad.txt contains some non-printable escape
characters which are removed from the issue reports.

— Finally, lowerCase sends all text to lower case.

3.2 Stop lists

Another way to reduce dimensionality is to remove “dull”
words via a stop list of “dull” words. Figure 6 shows a sample
of the stop list used in this study. IV&V’s chief engineer, Ken
Costello, reviewed this list and removed “counting words”
such as “one”, “every”, etc, arguing that “reasoning about
number of events could be an important requirement”. Fig-
ure 7 shows code for a stop-list function. Note that our code
supports use a keep list of words we want to retain (but, in
this study, the keep list was empty).

3.3 Stemming

Terms with a common stem will usually have similar mean-
ings. For example, all these words relate to the same concept.

clean() {
gawk ’{gsub(Bad,""); print $0}’ \
Bad=‘cat S$Here/bad.txt‘ $1 |
sed s/ [\"\AFN/NANN D) NNININTI><N(\) 1/ /g’
}
lowerCase () {
tr A-Z a-z $1 ;
}

Fig. 5 Tokenization

a about across again against
almost alone along already also
although always am among amongst
amongst amount an and another
any anyhow anyone anything anyway
anywhere are around as at

Fig. 6 24 of the 262 stop words used in this study.

60f 13
stops () { gawk ’
NR==1 {
while (getline < Stops) Stop[$0] = 1;
while (getline < Keeps) Keep[$0] = 1;

}
{ for(I=1;I<=NF;I++)
if (Stop[$I] && ! Keep[$I])
$I=""
print $0
PN

Stops="$Here/stop_words.txt" \
Keeps="$Here/keep_words.txt" \

S1

Fig. 7 Applying a stop-list.

RULE EXAMPLE
ATIONAL -> ATE relational -> relate
TIONAL -> TION conditional —-> condition
rational -> rational
ENCI —-> ENCE valenci -> valence
ANCI -> ANCE hesitanci -> hesitance
IZER -> IZE digitizer -> digitize
ABLI -> ABLE conformabli -> conformable
ALLI -> AL radicalli -> radical
ENTLI -> ENT differentli -> different
ELI -> E vileli -> vile
OUSLI -> 0US analogousli -> analogous
IZATION -> IZE vietnamization -> vietnamize
ATION -> ATE predication -> predicate
ATOR -> ATE operator -> operate
ALISM -> AL feudalism -> feudal
IVENESS -> 1IVE decisiveness —> decisive
FULNESS -> FUL hopefulness —> hopeful
OUSNESS -> 0US callousness -> callous
ALITI -> AL formaliti -> formal
IVITI -> 1IVE sensitiviti -> sensitive
BILITI -> BLE sensibiliti -> sensible

Fig. 8 Some stemming rules.

stemming () { perl $Here/stemming.pl $1 ; }

Fig. 9 Using a downloaded stemmer.

CONNECT
CONNECTED
CONNECTING
CONNECTION
CONNECTIONS

Porter’s stemming algorithm [4] is the standard stemming
tool. It repeatedly replies a set of pruning rules to the end of
words until the surviving words are unchanged. The pruning
rules ignore the semantics of a word and just perform syntac-
tic pruning (e.g. Figure 8).

Porter’s stemming algorithm has been coded in any num-
ber of languages® such as the Perl stemming.pl used in this
study (see Figure 9).

Stemming is the end of our pre-processing (a sequence
that began with the clean function shown above). Recall
that the complete sequence was

clean — lowerCase — stops — stems

This full sequence is shown in Figure 10.

2 http://www.tartarus.org/martin/
PorterStemmer
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selectColumns () {
gawk -F, ’$3 {OFS=","; print $4 "," $3}’ -
}
cleans () {
for 1 in $Files; do
(cd $Dir; clean tab${i}5.csv 2> /dev/null
lowerCase |
stops
stemming
selectColumns > $Temp/ok_S$i
done
}
Files="a b c d e
Dir=$Root/mine/trunk/doc/07/telling/data/raw
cleans

Fig. 10 Preparation.

#update counters for all words in the record
function train() {
Documents++;
for (I=1; IKNF; I++) {
if( ++In[S$I,Documents]==1)
Document [SI]++
Word[$I]++
Words++
}
}
# computer tfidf for one word
function tfidf (i) {
return Word[i]/Words*log (Documents/Document [1])

}

Fig. 11 tfidf.awk.

tfidf () |
gawk —-f tfidf.awk --source '
{ train() }
END { OFS=","; for(I in Word) print I, tfidf(I) } ’ $1 ;
} sl

}
tfidf | sort -t, -n +0 | tail -100

Fig. 12 Finding the 100 highest Tf*Idf words using the ¢ fidf.awk
code of Figure 11.

3.4 Tf*IDF

Tf*1df is shorthand for “term frequency times inverse docu-
ment frequency”. This calculation models the intuition that
jargon usually contains technical words that appear a lot, but
only in a small number of paragraphs. For example, in a doc-
ument describing a space craft, the terminology relating to
the power supply may be appear frequently in the sections
relating to power, but nowhere else in the document.
Calculating Tf*1df is a relatively simple matter. If there be
W ords number of document and each word I appear Word|I|

number of times inside a set of Documents and if Document[I]

be the documents containing /, then:
T fxId = Word[i|/Wordsxlog( Documents/ Document][i])

The standard way to use this measure is to cull all but
the & top Tf*Idf ranked stopped, stemmed tokens. This study
used £ = 100 (see Figure 11 and Figure 12).

3.5 InfoGain

According to the In foGain measure, the best words are those
that most simplifies the target concept (in our case, the distri-

bution of severities). Concept “simplicity” is measured us-
ing information theory. Suppose a data set has 80% sever-
ity=5 issues and 20% severity=1 issues. Then that data set
has a class distribution Cy with classes ¢(1) = severityb
and ¢(2) = severityl with frequencies n(1) = 0.8 and
n(2) = 0.2. The number of bits required to encode an ar-
bitrary class distribution Cy is H(C)) defined as follows:

N =3 .conlc)
p(c) =n(c)/N 1)
H(C) = =3 ccplc)logap(c)

If A is a set of attributes, the number of bits required to
encode a class after observing an attribute is:

H(ClA) == pla))]

The highest ranked attribute A; is the one with the largest
information gain; i.e the one that most reduces the encoding
required for the data after using that attribute; i.e.

p(cla)log(p(cla)

InfoGain(A;) = H(C) — H(C|A4;) )
where H(C) comes from Equation 1. In this study, we will
use InfoGain to find the top N € {100, 50, 25,12, 6, 3} most
informative tokens.

3.6 Rule Learning

A data miner was then called to learn rules that predict for
the severity attribute using the terms found above. The learner

used here was a JAVA version of Cohen’s RIPPER rule learner [2,

7]. RIPPER is useful for generating very small rule sets. The
generated rules are of the form i f — then:

Feature; = Valuei; A Features = Values A ... —> Class
\—.\/—/
condition conclusion

RIPPER, is a covering algorithm that runs over the data in
multiple passes. Rule covering algorithms learns one rule at
each pass for the majority class. All the examples that satisfy
the conditions are marked as covered and removed from the
data set. The algorithm then recurses on the remaining data.
The output of a rule covering algorithm is an ordered decision
list of rules where rule; is only tested if all conditions in
rule;«; fail.

One way to visualize a covering algorithm is to imag-
ine the data as a table on a piece of paper. If there exists a
clear pattern between the features and the class,define that
pattern as a rule and cross out all the rows covered by that
rule. As covering recursively explores the remaining data, it
keeps splitting the data into:

— what is easiest to explain, and
— any remaining ambiguity that requires a more detailed
analysis.
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a b c d <-- classified as
321 12 21 0 | a =1
157 41 8 1] b =2
49 3 259 0 | c =3
21 1 2 2 d =4

Fig. 13 Sample 10-way classification results.

3.7 Assessing the Results

It is a methodological error to assess the rules learned from
a data miner using the data used in training. Such a self-test
can lead to an over-estimate of the value of that model.

Cross-validation, on the other hand, assesses a learned
model using data not used to generate it. The data is divided
into, say, 10 buckets. Each bucket is set aside as a test set
and a model is learned from the remaining data. This learned
model is then assessed using the test set. Such cross-validation
studies are the preferred evaluation method when the goal is
to produce predictors intended to predict future events [7].

Mean results from a 10-way cross-validation can be as-
sessed via a confusion matrix such as Figure 13. In that fig-
ure, some rule learner has generated predictions for classes
{a,b,c,d} which denote issues of severity {1,2,3,4} (respec-
tively). As shown top left of this matrix, the rules correctly
classified issue reports of severity=1 as severity=1 321 times
(mean results in 10-way cross-val). However, some sever-
ity=1 issues were incorrectly classified as severity=2 and sever-
ity=3 in 12 and 21 cases (respectively).

A confusion matrices can be summarized as follows. Let
{A, B, C, D} denote the true negatives, false negatives, false
positives, and true positives (respectively). When predicting
for class “a”, then for Figure 13:

— A are all the examples where issues of severity=1 were
classified as severity=1; i.e. A=321.

B are all the examples where lower severity issues were
classified as severity=1; i.e. B=157+49+21;

C are all the examples where severity=1 issues were clas-
sified as something else; i.e. C=21+12

— D are the remaining examples; i.e. D=414+8+1=2+259+0+1+2+2.

A, B,C, D can be combined in many ways. Recall (or pd)
comments on how much of the target was found.

pd =recall = D/(B + D) 3)

Precision (or prec) comments on how many of the instances
that triggered the detector actually containing the target con-
cept.

prec = precision = D /(D + C) )

The f-measure is the harmonic mean of precision and recall.
It has the property that if either precision or recall is low, then
the f-measure is decreased. The f measure is useful for dual
assessments that include both precision and recall.

2 - prec- pd

f-measure = W (5)

precision pd = recall  f-measure | severity
0.893 0.833 0.862 1
0.586 0.907 0.712 2
0.719 0.198 0.311 3
0.667 0.077 0.138 4

Fig. 14 Some precision, recall, f-measures from Figure 13.

Note that all these measures fall in the range
0 < {pd,prec, f} <1

Also, the larger these values, the better the model. Figure 14
shows the precision, recall, and f-measure values for Fig-
ure 13.

4 Results
4.1 Data

The above methods where applied to {a,b,c.d,e}, five anony-
mous PITS projects supplied by Ken Costello (see Figure 15).
All these systems were robotic. Note that this data has no
severity one issues (these are quite rate and few severity five
issues (these often not reported since they have such a low
priority).

dataset severity number
a 1 0
2 311
3 356
4 208
5 26
b 1 0
2 23
3 523
4 382
5 59
c 1 0
2 0
3 132
4 180
5 7
d 1 0
2 1
3 167
4 13
5 1
e 1 0
2 24
3 517
4 243
5 41

Fig. 15 Data sets in the this study.



Menzies: Text Mining PITS - preliminary report

90of 13

4.2 Stopping and Stemming

Figure 16 shows some disappointing results for stopping and
stemming. In these data sets, stopping and stemming methods
barely reduced the number of tokens.

4.3 TFIdf

Tf*1df proved to be more powerful than stopping or stem-
ming. Figure 17 shows that in all data sets, there exist a very
small number of words with high Tf*Idf scores. These top
100 terms are shown in Figure 18 and Figure 19. We have
shown these lists to domain experts but, to date, we have not
found any particular domain insights from these words. How-
ever, as shown below, even if we don’t understand why these
terms were chosen, they are can be used very effectively for
the task of predicting issue severity.

4.4 Learning

The issue reports for each data set were then rewritten as
frequency counts for those top 100 tokens (with the sever-
ity value for each record written to the end of line- see Fig-
ure 20). As shown in Figure 21 the resulting data sets are
quite sparse. This figure shows the distributions of the fre-
quency counts of the cells in the data sets. Note that most
cells have a zero frequency count; 10% of the cells have a
frequency count of one, and frequency counts higher than 10
occur in only W%o% of cells, or less.

Figure 22 shows the rules and confusion matrix see when
learning from the top 100 tokens of data set “a”. This rule

a b
1e+06 T " 100000 T T
al —
100000 F ~Unigue—eee- 4 unique
10000 ¢ E
10000 ¢ E
1000 2 5 5 1000 . 5 5
Z 3 3 z 3 3
[ <3 £ g oy £
9] £ Qo £
% 2 @ L
c d
100000 T T 100000 T T T
all all
—unique unique
10000 ¢ E 10000 f T A
1000 s s s 1000 . s L
= ° ° = ° °
s g ¢ & & ¢
o £ g £
k7] 2 k7] 2
e
100000 = T T
unique
10000 £ 9
1000 s 5 5
= kel gl
& & £
S £
® 2

Fig. 16 Effects of stopping and stemming.

TF*IDF
1 T
a
b
C un un
0.1 d
e
0.01 ]
0.001 ]
0.0001 ¢ E
1e-05 L L L L L L

0 1000 2000 3000 4000 5000 6000 7000
all tokens, sorted by TF*IDF

Fig. 17 Tf*Idf scoring for the stopped, stemmed tokens. Note that
most tokens can be ignored since they have very low Tf*Idf scores.

data set

rank a b c d e
1 rvim fsw softwar switch  convent
2 sr declar fsw  default the
3 script requir specifi statement capabl
4 engentrl arrai command  contain state
5 set sr parent case interfac
6 differ parent sc trace  control
7 cdh  comment trace code word
8 14 us ground line declar
9 indic verifi perform violat variabl
10 verifi step section comment line
11 section gce spec detail fsw
12 link ac matrix avion instS
13 flight  scenario cdh spacecraft document
14 paramet defin initi appear  conduct
15 state valid who/what would  septemb
16 obc base pip data set
17 system command child downward  hardwar
18 onli valu tim fsw artifact
19| spacecraft els $919-er2342 defin stp
20 all test icd  presum condit
21 trace includ mu pixel compon
22 check onli spacecraft mask icd
23 vm  complet verif spec st
24 softwar state glori  process  version
25| bootload control comm fpa check
26 capabl all traceabl  packet releas
27 number page data on flight
28 vml alloc configur  collater statu
29 sequenc caus card scienc implement
30 13 verif channel sc  current
31 specif flag artifact oper  number
32 issu inform downlink logic specifi
33 oper fail valid mode power
34 messag trace mechan tabl 14
35 support detail satellit document rqmt
36 defin read system initi list
37 fp pse oper ffi macro
38 address ivv includ  collect unsign
39 code  function instrument onli  messag
40 uplink condit launch  column assign
41| document interfac possibl black fault
42| command on adac within short
43 task tabl scienc Zero test
44 rt thruster electr and/or rev
45 note document tp point time
46 monitor initi mode  apertur design
47 ground true safehold  support mode
48 accept the note fault jpl
49 load in _vbuf exist clear
50 initi fprintfsetup common2/includ/vbufh /line data

Fig. 18 Top 1 to 50 terms found by TF*IDF, sorted by infogain.
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data set

rank a b c d e
51 calcul  correct ‘common?2 hdlclite hdlclitec’ cadenc oper
52 attitud rate struct dure int
53| telemetri two refer all  paramet
54 fsw end list store tefsw
55 within reset store csc rafsw
56 point req packet momentum read
57 dure telemetri all fine all
58 log  packet telemetri target inst6
59 packet address point kav refer
60 receiv  buffer ap protect inst9
61 rate  counter syspciinbyt second function
62 fault list interfac  autonom reset
63 event  uint32 ’common2 gener tim_cmdc’ capabl inst4
64 reset rvtm  ’glori cdh comm genportc’ level command
65 process error "'common?2 gener com_cmdc’ note  configur
66 mode level detail manag enabl
67 refer issu rate ground dl
68 memori note em_map_pageunsign command us
69 engin can common?2/includ/emsfunch ced code
70 error data int implic trace
71 data plan collect bin long
72 second sdn  ’common?2 router routerc’ long flow
74 enabl paramet subsystem appar discret
75 perform number valu  perform chart
76 ac algorithm ’common? vbuf vbufc’ short c
71 transit  specifi short flight b
78 includ  execut compar engin gener
79 design  exampl control field posit
80 time void capabl set spacecraft
81 execut time hlite_freestruct ~ hardwar section
82 arrai line us valu m
83 specifi  current soh softwar defin
84 control set float implement case
85 respons  review char enter fail
86 current indic vbuf_freestruct respect call
87| checksum case power could initi
88| interrupt  variabl unsign nim 15
89 power  specif accuraci smear actuat
90 case  chang commun us  descript
91 tabl  section asec fg tabl
92 singl code document signal subsystem
93 list[ statement ’common2 gener mm_utilc’  segment valu
94 dump  instanc long fulli  softwar
95 us updat specif error issu
96 valu procedur compon safe error
97 scrub need orbit design switch
98 safe check ignor requir level
99| procedur softwar _hlite_cntl_blk check requir
100 word charact common2/includ/hl_protoh period temperatur

Fig. 19 Top 51 to 100 terms found by TF*IDF, sorted by infogain.

NR == {
# grab the words we want to count
while (getline < "toplOO0") Want[$0] = 1;

# write the header
for (I in Want)
printf("%s,",I);
print "severity"
}
NR > 1 { # rewrite each record as counts of "Want"
gsub(/ /,"",$2); counts(S$1l,Want, $2)
}
function counts (str,want,klass,
n=split (str,tmp," ");
for (i=1;i<=n;i++)
if (tmp[i] in want)
got [tmp[1]]++;
for(j in want) {
sum += got[j]
out = out got[j]+0 ",";

sum, out, i, j, n, tmp, got)

}
if (sum)
print out "_" klass

Fig. 20 Re-writing issue reports as frequency counts.

Percent occurences of frequency X of top 100 terms
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Fig. 21 Frequency counts seen in the cells of our data. Note that
our data is mostly sparse: only 10% of the time (or less) were there
frequency counts at or over 1. In most data sets, frequency counts of
0 (i.e. empty cell) appeared in 90% of the cells..

set is a little hard to read so Figure 23 shows the same ex-
periment, but only using the top 3 ranked tokens. In those
rules sr is a stemmed version of srs; i.e. systems require-
ments specification. Note that the rules of Figure 22 use only
a subset of the 100 terms in the data set. That is, for data set
“a”, there exists a handful of terms that most predict for is-
sue severity. Similar results hold for same results repeat for
data sets {b,c,d,e} (see Figure 24 to Figure 31). That is, even
when learning from all 100 tokens, most of the rules use a
few dozens terms or less. Even though few tokens were used,
in many cases, the f measures are quite large:

— Data set “a”, for issues of severity=2, f = 78...82%;
— Data set “a”, for issues of severity=3, f = 69...71%;
— Data set “b”, for issues of severity=3, f = 70...71%;
— Data set “c”, for issues of severity=3, f = 80...92%;
— Data set “c”, for issues of severity=4, f = 86...92%;
— Data set “d”, for issues of severity=3, f = 96...98%);
— Data set “d”, for issues of severity=4, f = 87...87%);
— Data set “e”, for issues of severity=3, f = 79...80%;

These results are better than they might first appear:

— These results are listed in the format, e.g. of f = 79...80%.
and show the results from using the N = 3...N = 100
tokens. Note how using just a vanishingly small number
of tokens performed nearly as well as using a much larger
number of tokens.

— Recall that these are all results from a 10-way cross-validation

which usually over-estimates model error [3], That is, the
real performance values are higher than the values shown
above.

For other severities, the results are not as positive. Recall-
ing Figure 15, none of our data sets had severity=1 errors so
the absence of severity=1 results in the above list is not a con-
cern. However, not all datasets resulted in good predictors for
severity=2 errors. In all cases where this was observed, the
data set had very few examples of such issues:
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Data set “b”, only has 22 records of severity=2;
Data set “c”, has zero records of severity=2;
Data set “d”, only has 1 record of severity=2;
Data set “e”, only has 21 record of severity=2;

5 Discussion

Over the years, the Project Issue Tracking System (PITS) has
been extensively and repeatedly modified. Prior attempts at
generating generalized conclusions from PITS have required
significant levels of manual, hence error-prone, processing.

Here, we show that conclusions can be reached from PITS
without heroic effort. Using text mining and machine learn-
ing methods, we have shown that it is possible to automati-
cally generate predictors for severity levels from the free text
entered into PITS.

Better yet, our rules are self-certifying. Our data mining
generation methods builds the rules and prints performance
statistics (the confusion matrix). With those statistics, these
rules support the following dialogue:

Tim wrote the problem report and he says this is a
severity 5 issue. But the agent says that its a severity 3
issue with probability 83%. Hmmm... the agent seems
pretty sure of itself- better get someone else to take a
look at the issue.

When this work began, we thought that we were conducting
a baseline text mining experiment that would serve as a (low)
baseline against which we could assess more sophisticated
methods. However, for data sets with more that 30 examples
of high severity issues, we always found good issue predic-
tors (with high f-measures).

Further, we did so using surprisingly little domain knowl-
edge. In call cases where large f-measures were seen using
the top 100 terms, similar f measures were seen when us-
ing 3 terms. This is a very exciting result since it speaks to
the usability of this work. It would be a simple to matter to
apply these rules. E Given that a few frequency counts are
enough to predict for issue severity, even a manual method
would suffice.

We end this report with one caution. As seen in Figure 22
to Figure 31, the learned predictors are different for differ-
ent data sets. We hence recommend adding these text mining
tools to PITS and, on a regular basis, generate new rules rel-
evant to just one project.
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if CONDITION then SEVERITY USED / INCORRECT
if (script <= 0) and (section >= 2) and (14 >= 1) and (cdh >= 1) then 4 35.0 / 0.0
else if (sr <= 1) and (issu >= 1) and (code >= 3) then 4 12.0 / 1.0
else if (sr >= 2) and (rvm >= 1) then 2 183.0 / 9.0
else 1if (sr >= 2) and (14 >= 1) then 2 55.0 / 1.0
else if (within >= 2) and (state <= 0) and (system <= 0) then 2 22.0 / 2.0
else if (verifi >= 1) and (fsw >= 1) then 2 10.0 / 1.0
else if (control >= 1) and (code >= 1) and (attitud >= 4) then 2 5.0 / 0.0
else if (13 >= 2) and (obc <= 0) and (perform <= 0) then 2 19.0 / 7.0
else if (script >= 1) and (trace >= 1) then 2 3.0 / 0.0
else 1if true then 3 554.0 / 219.0
a b c d <-—- classified as
321 12 21 0 | a =3
157 41 8 1] b =4
49 3 259 0 | c =2
21 1 2 2 | d =5
Fig. 22 Data set “a”; top 100 tokens; learned rules.
if CONDITION then SEVERITY USED / INCORRECT
if (rvm <= 0) and (sr = 3) then 4 52.0 / 21.0
else if (sr >= 2) then 2 289.0 / 54.0
else if true then 3 557.0 / 245.0
a b c d <-- classified as
314 13 27 0 | a =3
158 25 24 0 | b =4
69 10 232 0 | c =2
25 0 1 0 | d=2>5
Fig. 23 Data set “a”; top 3 tokens; learned rules.
if CONDITION then SEVERITY USED / INCORRECT
if (arrai >= 2) and (line >= 1) and (us <= 1) then 2 7.0 / 0.0
else if (base >= 4) then 2 3.0 / 0.0
else if (fsw <= 0) and (declar >= 1) then 4 86.0 / 26.0
else if (fsw <= 0) and (complet >= 1) and (section <= 0) then 4 27.0 / 4.0
else 1f (fsw <= 0) and (statement >= 1) and (need <= 0) and (valu <= 0) then 4 36.0 / 10.0
else if true then 3 819.0 / 332.0
a b c d <-- classified as
120 253 0 4 | a =4
69 445 0 71 b =3
11 47 0 0 | c =5
2 9 0 11 | d=2

Fig. 24 Data set “b”; top 100 tokens; learned rules.

if CONDITION then SEVERITY USED / INCORRECT
if (fsw <= 0) and (declar >= 1) then 4 94.0 / 34
else if true then 3 884.0 / 383.0
a b c d <-- classified as
60 317 0 0 | a=_4
20 501 0 0 | b =_3
3 55 0 0 | c=_5
11 11 0 0 | d=_2
Fig. 25 Data set “b”; top 3 tokens; learned rules.
if CONDITION then SEVERITY USED / INCORRECT
if (section >= 2) and (matrix >= 1) and (icd >= 1) then 5 7.0 / 1.0
else if (softwar >= 1) then 3 95.0 / 3.0
else if (parent <= 0) and (trace <= 0) then 3 48.0 / 14.0
else if true then 4 167.0 / 4.0
a b c <-- classified as
162 14 4 | a = _4
7 123 0 | b=_3
2 1 4 | c=_5

Fig. 26 Data set “c”;

top 100 tokens; learned rules.
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if CONDITION then SEVERITY USED / INCORRECT
if (softwar >= 1) then 3 95.0 / 3.0
else 1if true then 4 222.0 / 44.0
a b c <-- classified as
169 11 0 | a=_4
37 93 0 | b=_3
6 1 0 | c=_5

Fig. 27 Data set “c”; top 3 tokens; learned rules.

if CONDITION then SEVERITY USED / INCORRECT
if (switch >= 2) then 4 11.0 / 1.0
else if true then 3 167.0 / 4.0

a b c d <-- classified as
0 0 1 0 | a = _2
0 10 2 0 | b= _4
0 1 163 0 | c=_3
0 0 1 0 | d=_5

Fig. 28 Data set “d”; top 100 tokens; learned rules.

if CONDITION then SEVERITY USED / INCORRECT
if (switch >= 2) then 4 11.0 / 1.0
else if true then 3 167.0 / 4.0)

a b c d <-— classified as

0 0 1 0 | a=_2

0 10 2 0 | b=_4

0 1 163 0 | c=_3

0 0 1 0 | d=_5

Fig. 29 Data set “d”; top 3 tokens; learned rules.

if CONDITION

if (trace >= 1) and (test >= 1) and (case >= 3)

else if (error >= 1) and (line >= 2)
else if (convent >= 2) and (declar <= 0) and (function <= 0)
else 1f (case >= 2) and (sr >= 3)
else if (refer >= 1) and (section >= 3) and (refer <= 1)
else if (the >= 1) and (fsw >= 2)
else if (control <= 0) and (convent >= 3)
else 1if true

a b c d <-- classified as

1 20 0 0 | a=_2

3 490 3 20 | b=_3

0 26 9 6 | c=_5

0 167 1 74 | d=_4

Fig. 30 Data set “e”; top 100 tokens; learned rules.

if CONDITION then
if (the >= 1) and (convent >= 3) then 4 30.0 /
else if true 3
a b c d <-- classified as
0 21 0 0 | a = _2
0 515 0 1| b=_3
0 34 0 7 c=_5
0 222 0 20 | d=_4

Fig. 31 Data set “e”; top 3 tokens; learned rules.
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