
A case-based reasoning framework for workflow
model management

Therani Madhusudan *, J. Leon Zhao, Byron Marshall

MIS Department, University of Arizona, Tucson, AZ 85721, USA

Available online 25 January 2004

Abstract

In order to support efficient workflow design, recent commercial workflow systems are providing tem-
plates of common business processes. These templates, called cases, can be modified individually or col-
lectively into a new workflow to meet the business specification. However, little research has been done on
how to manage workflow models, including issues such as model storage, model retrieval, model reuse and
assembly. In this paper, we propose a novel framework to support workflow modeling and design by
adapting workflow cases from a repository of process models. Our approach to workflow model man-
agement is based on a structured workflow lifecycle and leverages recent advances in model management
and case-based reasoning techniques. Our contributions include a conceptual model of workflow cases, a
similarity flooding algorithm for workflow case retrieval, and a domain-independent AI planning approach
to workflow case composition. We illustrate the workflow model management framework with a prototype
system called Case-Oriented Design Assistant for Workflow Modeling (CODAW).
! 2004 Elsevier B.V. All rights reserved.

Keywords: Case-oriented workflow modeling; Case-based reasoning; Ad hoc workflows; Model reuse

1. Introduction

Business process modeling is a critical activity in modern organizations to enable enterprise
application integration, standardization of business processes, and online B2B and B2C E-com-
merce. The importance of business process modeling in IT-enabled business process management

*Corresponding author.
E-mail addresses: madhu@email.arizona.edu (T. Madhusudan), lzhao@bpa.arizona.edu (J.L. Zhao), byronm@

eller.arizona.edu (B. Marshall).

0169-023X/$ - see front matter ! 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2004.01.005

www.elsevier.com/locate/datak

Data & Knowledge Engineering 50 (2004) 87–115

strategies is indicated by the recent calls for improving process modeling and process management
in organizations [14].

Workflow modeling involves the translation of high-level business requirements into workflow
schemas that can be executed by appropriate workflow engines. Specifying a workflow model is a
knowledge intensive endeavor because development of a typical workflow model requires detailed
understanding of the business process logic, the organizational chart, and the information systems
accessed by the workflow. Further, a given informal business process description may be modeled
in multiple ways, depending on the underlying IT infrastructure and business context.

Recent research has suggested the reuse of field tested process knowledge and associated process
models to guide workflow modeling and design efforts [18,20,24]. Towards this end, recent com-
mercial systems (such as Oracle Workflow–11i, INCOME [35], and ARIS [39]) provide basic
templates for business processes, such as order processing and procurement. These templates may
be instantiated and appropriately modified to an organization!s needs by a knowledgeable work-
flow designer. However, standards for template representation and associated ontologies, formal
guidelines for reuse of these templates, rules for their instantiation or modification, and procedures
for their composition into complex workflows are currently non-existent. Furthermore, there is a
lack of design guidelines and workflow modeling tools at present to support tasks such as gener-
ation of alternative workflow process models for a given set of business requirements [40].

Workflow modeling and design is the task of defining structured workflow schemas from
informal business requirements that satisfy a variety of business logic, organizational and resource
constraints. We note that the terms workflow schema, process model, and workflow model are
used synonymously in this paper. Workflow modeling involves definition and selection of
appropriate tasks (possibly from a task library), sequencing of the tasks to satisfy data and logical
dependencies, allocation of resources consumed by the tasks, allocation of agents to execute tasks,
scheduling of tasks considering concurrency, and finally, validating and verifying the model [1].
Manual workflow modeling is supported by graphical interfaces, where the workflow model is
defined as a graph. Workflow modeling involves searching (albeit implicitly) through a design
space defined by a large number of process model alternatives and selection of an optimal process
model to fulfill the given problem. With the increasing adoption of workflow management systems
and the advent of flexible process integration technologies such as web services, there is an acute
need for developing tools and approaches to support workflow design and modeling.

In this paper, we propose a workflow model management framework based on a structured
workflow design process, which enables reuse of process knowledge (both structured and
unstructured) from organizational process repositories. The workflow design process consists of
two phases. In the first phase, relevant business tasks are ordered into a seamless whole, satisfying
pre-conditions and post-conditions. The result of this phase is a workflow model, a project net-
work defined by a partial ordering amongst all the relevant tasks. Multiple workflow models may
be designed to fulfill a given set of business goals. In the second phase, a process model is selected
from the available alternatives and is further annotated with appropriate agents, resources and
timing information, followed by incorporation of routing details, such as appropriate forks and
joins to facilitate concurrent execution. Both phases of design may reuse process knowledge from
available repositories.

We use a case-based reasoning (CBR) approach [22], which consists of case retrieval, case reuse,
case adaptation and case verification tasks, to support workflow model reuse during workflow

88 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

design. CBR is a computational approach that supports explicit reuse of partial and possibly
incomplete, experiential knowledge (stored as cases) in solving ill-structured and complex cog-
nitive tasks, such as design. Past knowledge may be reused to explore the workflow design space
and synthesize new solutions. The CBR-approach to workflow model management has been
prototyped in a system called Case-Oriented Design Assistant for Workflow Modeling (CO-
DAW), which currently supports the first phase of design mentioned above. Development of an
effective case representation, similarity-based retrieval algorithms, and case composition tech-
niques are essential steps in the development of a CBR system to support workflow modeling and
design. The main contributions of our research are:

• The definition of a structured workflow case representation that includes both declarative and
procedural descriptions. The procedural description is based on the process graph metamodel
detailed in [3] and the declarative description is based on a predicate logic-based situational cal-
culus formalism of Artificial Intelligence (AI) planning [38].

• The development of a similarity flooding for workflow (SFW) algorithm to support retrieval of
procedural workflow models, based on inexact matching of graph queries. The algorithm is de-
rived from the similarity flooding (SF) algorithm [30], recently proposed for metadata model
management in database systems. It is based on identifying local structural similarities between
two directed labeled graphs, namely, a query graph and the process graph model of a workflow
schema.

• The development of a workflow composition procedure using the Hierarchical Task Network
(HTN) AI planning technique [32,34]. CODAW uses the declarative representation (mentioned
above) to compose workflow models consisting of both sequential and concurrent tasks that
support fulfillment of business requirements encoded as goals involving transformation of an
initial business state into a final goal state.

The remainder of the paper is organized as follows. In Section 2, we discuss the relevance of
case-based reasoning for workflow modeling and the recent advances in model management and
AI planning. Section 3 provides an overview of CODAW, including the representation for
workflow cases and organization of the process repository. In Section 4, we present the proce-
dures for case retrieval and composition. Discussion of the proposed approach and concluding
remarks are given in Section 5.

2. Literature review

Our research builds on multiple streams of related research, including workflow modeling, case-
based reasoning, design automation and AI planning. Research in workflow modeling has
addressed model reuse related issues in the context of standardizing workflow model represen-
tations, support for workflow design and workflow model acquisition. The need for structured
approaches to workflow modeling and developing workflow models for both buildtime and
runtime inter-operability is outlined in [8,40]. Recent research has focused on developing process
modeling languages [3] and extending workflow modeling to support on-the-fly process design
[13]. In the context of workflow design and management, process model reuse from organizational

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 89

memories has been discussed in [43]. The proposed system supports retrieval of workflows based
on a well-defined taxonomy. Modifications to retrieved cases are performed manually to a non-
obvious case representation. A system called EULE discusses a knowledge representation
framework to support modeling of business processes [37]. The need for case-based support for
ad hoc workflow model design is discussed in [42]. A catalog of workflow template patterns for
guiding manual design are listed in [2,12]. Manual retrieval and reuse of models from process
repositories is supported in tools such as ARIS Designer [19] and INCOME [35]. These tools use a
variety of process representations including process graphs, Event-Process-Chains and Petri Nets
to store workflow models. Process model reuse in the context of process mining is discussed in [4].
In summary, workflow model reuse has been addressed in a variety of contexts. However, these
systems use proprietary process representations and provide minimal support for intelligent
process model retrieval and automated model composition.

The proposed workflow model management framework is based on recent advances in case-
based reasoning techniques [22]. Case-based reasoning is a problem solving technique based on
the hypothesis that reasoning is reminding. That is, problem solving utilizes past experiences.
CBR systems have proven useful in domains with weak models and a large body of unstructured,
experiential knowledge [5,23]. Successful CBR-based systems have been developed for supporting
both product and process design [17,27,31,33]. A case-based approach to a process design activity
such as workflow modeling is feasible because of the recurrence of similar business tasks in dif-
ferent contexts, existence of similar types of data and task dependencies, and recurrence of
common types of business constraints across a variety of business processes. The generic CBR
problem solving cycle (called CBR cycle) is illustrated in Fig. 1, and consists of the following steps
[5]: retrieval of relevant (similar) cases from the repository based on cues derived from problem
requirements, reuse of applicable cases to suggest solutions to a new problem, knowledge-based
revision of relevant cases, testing-based verification and rule-based validation to ensure correctness,
and retention of past solutions and failures to enable learning. A variety of application-specific case
retrieval (during the reuse phase) and case adaptation (during the revise phase) techniques are
discussed in [22]. However, many of these techniques are not directly applicable for retrieval of
workflow models, represented as directed graphs, because of the need for a flexible notion of
similarity that combines features of domain knowledge and process graph structures in a reliable
manner. Appropriate computational techniques need to be developed for utilizing CBR for
workflow design.

Exact and inexact graph isomorphism algorithms for case retrieval are discussed in [41].
Workflow model retrieval can benefit from recent advances in the field of model management in
databases. Generic meta-model management operations such as match, difference, merge and
compose are outlined in [6]. For example, schema matching in databases is a particular instance of
the generic model matching task. The similarity flooding algorithm for inexact, similarity based
schema matching is presented in [30]. The similarity flooding algorithm for workflow case retrieval
is discussed in Section 4.

The reuse and revise phases of the CBR cycle may involve minor or major modifications (called
case adaptation) of the retrieved solutions. Compositional adaptation of cases in CBR systems is
called case-based planning. Case-based planning is based on domain-independent AI planning
technologies. Background to AI planning is provided in [38] and case-based planning is discussed
in [9]. The technology of case-based planning has been successfully used in various process design

90 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

contexts such as manufacturing process planning, space mission scheduling and route planning
[22]. Recent advances in the speed and performance of AI planning algorithms make it feasible to
embed them in real-world applications [44]. In [25], the use of AI planning is suggested for
software design at higher levels of abstraction, such as process modeling.

Recent research has also suggested the use of AI planning techniques for workflow manage-
ment [10]. A declarative definition of a workflow model is equivalent to a plan to fulfill a business
need. Case-based planning in our framework uses the Simple Hierarchical Ordered Planning
(SHOP) algorithm, an implementation of the Hierarchical Task Network planning technique [34].
The SHOP algorithm supports reasoning about interactions between task pre-conditions and
post-conditions during state-space search for developing plans. Additionally, SHOP allows reuse
of appropriate prototypical and instance-level cases from repositories during problem solving [32].
With this background, we discuss the features of our proposed framework in the subsequent
sections.

3. Overview of CODAW

The structured workflow design process, supported by the Case-Oriented Design Assistant for
Workflow modeling, is shown in Fig. 2. The design process supports the incremental refinement of
a workflow specification and is partitioned into the four phases of the CBR cycle (in Fig. 1),
namely, retrieval, reuse, revise and retain.

The repository stores workflow schemas (called prototypical cases) and workflow instances
(called instance-level cases). Note that we use the term case to refer to a unit of knowledge in the

Learned
Case

RETAIN

Tested
Repaired
Case

Confirmed
Solution

REVISE

Knowledge
General

Previous Cases

New
Case

PROBLEM

RETRIEVE

Retrieved
Cases

REUSE

Solved
Case

Suggested Solution

Fig. 1. The case-based reasoning cycle.

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 91

repository as is done in the CBR research community. Cases contain both structured and
unstructured information from all stages of the workflow modeling lifecycle such as business
specification, formal modeling and encoding, validation and execution.

The design process in Fig. 2 (flow shown by the solid arrow, numbers indicate steps) begins
when new business requirements are provided and used to initiate a search of the case repository
(Step 1). Appropriate cases from the repository may be retrieved using text query mechanisms for
unstructured textual data, Extensible Markup Language (XML) based query mechanisms for
semistructured data, and domain specific mechanisms for proprietary data structures. The re-
trieval phase ensures that available knowledge, which may be useful to model the new business
requirement, is identified upfront during the design process. Retrieved cases are analyzed (pri-
marily manually, possibly automated) to decide if any of the retrieved knowledge, particularly
process models, is appropriate for further modification or a new solution needs to be generated
from scratch (Steps 2 and 3).

During the reuse phase, a retrieved process model (selected from possibly multiple alternatives)
may be modified (Step 7). Appropriate domain knowledge may be used to alter the process se-
quence, new tasks may be added or deleted and constraints may be reconfigured (Step 7.1). Fol-
lowing task sequencing, resource allocation issues may be considered to enable concurrent
execution and infrastructural specifications such as data location and agents added to the workflow
model (Step 7.2). This refined model is then subject to validation and verification based on domain
dependent rules, animation, simulation and formal approaches (Step 8). Successful validation may

New Business Requirements

Search for process models

which fulfill similar requirements

If similar solutions exist and require minor
modifications, retrieve solutions and go to

Manually or using AI planning techniques
generate alternative process sequences

If similar solutions do not exist, but partial matches exist
compose new solution

Use domain
knowledge to modify
process model

Change sequence of tasks,
or modify task set to reflect
new constraints

Change resource allocation,

information

 Select tasks, check constraints,

Store new in repository

solution
Validate/Verify new

Use domain models and partial matches
to synthesize new process alternatives

Perform resource and agent allocation

Knowledge
in
Repository

Deploy solution
Observe behavior &
Update

Flow of
knowledge from
repository

Flow of process
model as it is being
developed

LEGEND

RETRIEVE

reuse

REVISE

REUSE

RETAIN

1

2

3

4

5

6

7

8

9

7.1

7.2
already existing in repository

agent routing, or IT Specific

Fig. 2. Structured workflow design cycle.

92 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

trigger deployment in the Workflow Management System (WFMS). Additionally, this newly
developed solution is stored in the repository during the retain phase of the design cycle (Step 9).

Alternatively, synthesis of a completely new solution may be chosen and initiated in the post
retrieval analysis step (Step 4). Two alternative scenarios are possible in the revise phase of the
CBR cycle. In the first scenario, partially matched process models from the retrieval step may be
adapted to develop a new workflow. This step is commonly referred to as customization in
workflow modeling. In the second scenario, no partial matches may be returned from the retrieval
phase and a new workflow model may need to be synthesized from scratch, based on first prin-
ciples domain knowledge. In CODAW, we support both scenarios using case-based planning.
Each workflow schema (a prototypical case) is modeled as a composite task consisting of prim-
itive tasks available in a pre-defined task library. In the first scenario, a new workflow may be
composed from composite tasks, whereas in the second scenario, a new workflow may be syn-
thesized by composition of primitive tasks. Both types of composition are supported by case-
based planning, described in Section 4.2. Steps 4 and 5 may lead to multiple workflow model
alternatives, which are then detailed with scheduling and resource information (Step 6). A
workflow model (selected from the alternatives based on criteria such as estimated cost, resource
usage and performance) is verified and then validated (Step 8).

It is important to note that each of these design steps relies on different snippets of knowledge
resident in the process knowledge repository (whose use is illustrated by the dashed arrows).
Successful completion of the design steps results in a workflow schema that fulfills the require-
ments, which may then be executed by a WFMS. We observe that each step of the design cycle
may be executed manually or supported by an automated design system. Further, execution of the
complete cycle may interleave manual and automated execution. Automated support is currently
provided in CODAW for Steps 1, 2, 3, 4, and 5. Steps 6, 7, 8, and 9 are performed manually.
Automated support for the above steps requires: (1) development of a case representation for
workflows and initialization of the case repository with appropriate cases, (2) development of case
retrieval algorithms based on exact and inexact (similarity) based matching, and (3) development
of a planning-based technique for composition of retrieved cases.

In the following sections, we describe the case representation and retrieval algorithms in the
context of a common workflow design scenario, namely, design of new product development
(NPD) workflows [36]. With the short product life-cycles and competitive markets in the current
business environment, many organizations are developing workflow models for managing the
NPD process effectively to reduce overall product costs.

3.1. Case representation

Two types of cases are stored in the CODAW repository. Workflow schemas are stored as
prototypical cases. Each instantiation of a prototypical case (a case in workflow terminology) is
stored as an instance-level case. Prototypical cases embed the overall sequence of activities that
fulfill a generic business requirement. Instance-level cases are execution traces of prototypical
cases for well-specified inputs. Each prototypical case may have one or more instance-level cases
associated with it. When a workflow schema is modified or updated, it is stored as a new pro-
totypical case in the repository. Prototypical and instance-level cases are represented in CODAW
with well-defined syntactic and semantic elements which are discussed below.

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 93

Our repository development efforts have focused on acquiring workflow models in the areas of
engineering design, product development and supply chain management. We have developed the
appropriate ontology based on current business practices in these functional areas, available
template descriptions for these functions in commercial workflow tools, previous research on
developing process repositories at higher levels of abstraction, such as process handbooks [28],
and current efforts on developing ontologies for supporting the Semantic Web [11,16]. We de-
scribe the ontology for NPD as needed in the ensuing discussions. In our process ontology, we
assume the existence of primitive tasks in a given business domain (as indicated earlier). These
primitive tasks may be combined into complex workflows. A workflow schema defines the internal
structure of a composite task, which may then be reused as component task in the design of
additional workflows. Consider the development of a case representation for the workflow
schemas shown as Unified Modeling Language (UML) activity diagrams in Fig. 3. The UML
activity diagram is only used for illustrative purposes and shows the activities and control flow
including concurrency nodes (such as forks and joins) for the schemas. Fig. 3A is a nominal NPD
workflow schema. Shown at the top of the figure are the different organizational roles (swimlanes)
that are involved in executing the activity (or task). Activities may be performed by a single agent
or teams of agents. The span of the activity boxes denotes the various roles involved in performing
the activity. For example, Project Selection and Project Plan Review are performed by
all roles. Each of the activities could be represented by a primitive or composite task. Fig. 3B is the
schema for a procurement process used to source design components from suppliers. This
workflow is used to source a variety of engineered components and materials via a bidding and

Production Release

Product Readiness

Alpha
TestingSales Planning

Quality Manuals
Field mgmt.

Tool Fabrication

Testing
Design Review

Project Selection

General
Manager

Marketing Engg.
Design

Generic Roles (Swimlanes)

(A)

Customer
Service

PurchasingQAManfg.

Execute Contracts

Award Contracts

Negotiate

Evaluate Bids

Collect Bids

Announce Tender Requests

Collect Internal Requests

Start

(B)

Start

Stop

Preliminary Design

Detailed Design

Beta Test

Product Definition

Product Plan Review

Concept Development

Stop

Fig. 3. Examples of workflow schemas: (A) product development and (B) procurement.

94 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

contracting process. In this process, offers from vendors, based on tender requests, are selected
based on a variety of criteria.

Both these workflow schemas are stored as prototypical cases in the CODAW repository.
Prototypical and instance-level cases are encoded in XML with appropriate tags for various
structural elements. Details of the structural elements, corresponding tags and example XML
representations are in Appendix A. Details of the structural elements of a prototypical case (a
workflow schema) is listed in the first table. The elements of an instance-level case (a workflow
instance) is listed in the third table. Table columns identify the element and its corresponding XML
tags, describe the semantics of the element and illustrate its computational representation. Note
that a single structural element may be described by multiple XML tags. We use standard object
and data modeling techniques for all the elements. The XML representation of the prototypical
case corresponding to the NPD schema of Fig. 3A is listed in Appendix B. The case representation
(encoded in XML) has been designed with a focus on extensibility and supports integration of
declarative and procedural process models. We have adopted tags from standardization efforts
such as XPDL, WSFL and XLANG and plan to develop appropriate XSLT based inter-conver-
sion mechanisms between the CODAW case representation and standards (as shown in [29]).

Prototypical cases include a procedural process graph model, denoted by the WSPGModel tag.
This process graph model is represented by the metamodel presented in [3]. The WSPGModel

includes subtags for the list of task nodes, decision nodes (with type), concurrency nodes (fork,
join) and a list of directed control flow edges. The XML encoding shows a partial representation
for the NPD workflow. The declarative first order predicate logic-based representation utilizes the
AI planning representation for composite (workflows) and primitive tasks [34,38]. The elements
WSPreconds and WSPostconds for the prototypical case define the pre-conditions and post-
conditions that ensure that the case can be treated as a composite task and used as a single unit.
WSInputs and WSOutputs define the input and output parameters (such as a design problem
and a budget) necessary to enact the case. The prototypical case also defines the types of resources
that may be needed to execute the case (defined by ResTypeList). The task list identifies the
primitive and composite tasks (other workflows) that define the workflow schema. Structural
elements of a primitive task are defined in the second table of Appendix A. The example repre-
sentation illustrates the task Project_Selection. This task can only be executed when a list of
projects and resources is available illustrated by the predicates in TPreCondns and upon com-
pletion, the task has the effect of adding new projects (denoted by TPostConds). The input
and output parameters of the task are denoted TParams and the actual procedural code
that implements this task is defined by TaskImpl. In the example in Appendix B, the task,
Project_Selection is executed manually by a group. Prototypical cases get instantiated for
different inputs, which are stored as instance-level cases whose structure is described in the third
table of Appendix A. The tag WSInstances lists all the different instance-level cases associated
with the schema.

A corresponding instance-level case (for the above example) is listed in Appendix C. Instance-
level cases are grounded versions of the prototypical cases. Tags WIInitState and
WIFinalState reflect the actual values of the parameters of variables in the predicates
that define the pre-conditions and post-conditions of prototypical cases (composite tasks) or
primitive tasks. A composite or primitive task is applicable in a given state, when predicate
variables can be logically unified with those in WIInitState. In Appendix B, the predicate

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 95

(available_new_problem ?designprob) in tag WSPreConds is unified with the predicate
(allocated_problem HAstarter) in tag WIInitState of the instance case in Appendix C,
when the logical variable ?designproblem takes on the value HAstarter. Satisfying all
predicates in this manner ensures that case WS2 can be applied to the current state. Successful
enactment of the task transforms the initial state into the final state, where the predicates of
WSPostConds are added to or deleted from the current state. The declarative representation
supports planning-based composition during which cases are retrieved using logical unification.
The Preference_ranking element in the prototypical case enables ranking amongst multiple
cases that may apply to a given situation. In summary, the process graph element of the repre-
sentation supports similarity-based retrieval and the declarative representation supports case
composition. Additional structural elements of instance-level cases include audit and monitoring
elements such as usage histories, events and exceptions, whose basic structure is shown in the
examples in the Appendix. Cases may be retrieved using this information via text or XQuery-
based retrieval. Further research is required to leverage such audit information to guide workflow
modeling.

3.2. Repository management

Case development and population of the case base is a key task in development of the
CODAW system. Workflow cases to populate the repository have been derived from best
practices handbooks for different functional areas, observations of manual process execution
and process elicit- ation from knowledge workers. In the initial development of CODAW, we
have populated our repository with cases acquired from real world projects in courses on
systems analysis and workflow modeling. Additionally, we have also collected workflow cases
from the research liter- ature and those bundled with available workflow software. The
repository in a CBR system needs to be bootstrapped with an initial population of cases, before
it can support the CBR cycle (Fig. 2). To develop this initial population of the case base, we
are currently manually encoding our acquired workflows by developing the associated declar-
ative and procedural work representations. Currently we have 60 prototypical cases of various
organizational business processes in our repository along with multiple execution instances for
each. Further, the repository also stores a corresponding collection of primitive tasks in the
library.

Currently the set of prototypical and instance-level cases is organized as flat XML files in a
directory hierarchy defined by the indexing structure shown in Fig. 4. The hierarchies based on
functional area, task and organizational structure provide multiple indices into the case base and
enable structured case management. The hierarchies were developed by analyzing the current
cases in our repository. The functional hierarchy is oriented towards supporting cross-domain
usage of cases such as a prototype case in supply chain being composed with a case in CRM. The
organizational hierarchy is oriented towards enabling retrieval based on organizational structure.
The task hierarchy is being developed to identify common tasks that may be performed in dif-
ferent functional areas. For example, the search for a case that includes a task described by the
keywords ‘‘tender generation for bidding’’, may retrieve bidding-related tasks across
multiple functional areas. An entry for the tender generation task in the task hierarchy
supports retrieval of appropriate process models from different functional areas. However, for

96 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

each type of bidding task, task parameters, inputs, outputs, preconditions and postconditions in
each context may be different.

The indexing hierarchy supports the development of efficient domain-specific query mecha-
nisms. As the number of cases increases, effective indexing is essential. Currently, during case
retrieval, the indexing scheme is primarily used for guiding search (text retrieval or XQuery based)
for a case across domains and also for effective filtering when there are large numbers of proto-
typical and instance cases. Text retrieval is supported using conventional term vector based
information retrieval techniques. XQuery supports queries on the contents of the XML tags using
exact matching. In the near future, we plan to extend the indexing scheme to include case
organization by event-types, performance, and usage. Development of the current repository has
focused on representational issues to support retrieval and composition, rather than minimizing
space requirements and improving efficiency.

3.3. A scenario of workflow modeling with CODAW

To illustrate the use of CODAW for workflow modeling, consider that business needs evolve
and changes are required to the NPD process of Fig. 3A. An organization (which is using this
NPD workflow) is considering a strategic change wherein internal manufacturing is being reduced
and upcoming product development efforts need to consider outsourcing of manufacturing. How
should the product development workflow model (in Fig. 3A) be modified such that the tool
fabrication step may be outsourced? Many alternatives may be possible. We outline a possible
solution scenario below using CODAW.

Firstly, a workflow designer may search the repository for workflows related to outsourcing. The
initial search may be performed using keywords (such as Outsourcing, Procurement) which
may match relevant terms in the textual Case Description element of the case representation.

DesignRepair&Overhaul Sales SupplyChain E–commerceProcurement CRMMarketing

ROOT

Proto–1 Proto–2 Proto–3

Instance–1 Instance–2

ORG–CHART

TASK HIERARCHY

Analysis tasks Selection tasks

Decide_forecast Run_LP

Check_component

Configure_product
Hire worker

Analyze supplier profile

Instances

Prototype cases

Primitive Task Library

Func–Mgr1 Func–Mgr2

Role1 Role2

Agent1 Agent2
Decision tasks

Fig. 4. Case organization hierarchy.

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 97

The retrieved cases may include workflows wherein outsourcing is modeled as a primitive or
composite task. One of the retrieved cases may be a procurement case (such as in Fig. 3B), which
may then be selected and used to replace the Tool Fabrication task to develop a new pro-
cess model as shown in Fig. 5. The instantiation of the composite task to replace the Tool

fabrication task of the initial NPD process is performed manually. During this step, the de-
signer may resolve pre-condition and post-condition requirements and modify tasks inside the
composite task to ensure validity. Notice that task Collect Internal Requests in the ori-
ginal procurement process is replaced by the task Collect Design Requirements in the new
process (shown in the dashed rectangular box in Fig. 5).

The development of the new NPD process illustrates how a particular type of outsourcing (via
bidding) process may be retrieved from the repository and instantiated in the context of tool
outsourcing. Additional design possibilities include: (a) the process repository may inherently
contain a product development process model with outsourcing which may be retrieved and
instantiated for the new product, (b) there may also be procurement processes wherein instead of
tender-based outsourcing, auction mechanisms may be used, and (c) a new product development
workflow may be composed by assembling one case (wherein the process model stops before tool
design) with a procurement workflow case, wherein fabrication and followup is outsourced.

The NPD workflow design example illustrates the manual execution of the structured design
process of Fig. 2. The process retrieval and adaptation phase of the design cycle provides a rich
source of process modification possibilities (leading to a large design search space), in contrast to a

General
Manager

Marketing Engg.
Design

Manfg. QA Purchasing Customer
Service

Generic Roles (Swimlanes)

Project Selection

Testing
Design Review

Testing
AlphaSales Quality

Planning
Manuals
Field mgmt.

Production Release
Product Readiness

TOOL OUTSOURCING

Start

Collect Design Reqmts

Announce Tender Requests

Collect Bids

Evaluate Bids

Negotiate

Award Contracts

Execute Contracts

Stop

Product Definition

Project Plan Review

Concept Development

Preliminary Design

Detailed Design

Beta Test

Fig. 5. A modified product development process.

98 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

conventional approach to workflow design. Manually designing a product development workflow
that handles each plausible task, resource and product combination for various business scenarios
while capturing all the business rules and constraints is an overwhelming task. Automated support
in CODAWwould enable design steps such as recognizing and substituting tasks with appropriate
workflows or composing individual workflow cases into new processes. Automated support for
case retrieval and case composition is essential for effective use of a case-based design system. In
the following section, we describe the similarity flooding algorithm for case retrieval and a
planning-based approach for case composition.

4. Computational support for design in CODAW

The research objective in developing CODAW is to provide automated support for each step
of the structured design process in Fig. 2. Fig. 6 illustrates the architecture of the CODAW
prototype. Modules in CODAW support the different phases of the CBR cycle including retrieval,
reuse, composition, adaptation and verification. Numbers in the figure indicate the different steps
in supporting the CBR processes, which are coordinated by the CBR Process Control module.
Case retrieval is initiated by a query (1), cues are generated from the problem description (2), and
retrieval (3) is performed at the case manager, cases are ranked (6) and returned (7). Case addition
may be supported by the indexing and repository update steps (4 and 5.1). Alternatively, retrieved
cases may be adapted and verified (8 and 5.2) or multiple cases composed (8 and 5.3) and the

1
2 3

67

5.1

5.2

5.3

89

CBR
PROCESS
CONTROL

CASEBASE
MANAGER

INDEXER

ENGINE

CLIENT

(SHOP)

(eXist)

(Lucene)

4
(SFW)
(XQL)
(JDSL)

ADAPTATION

Planning
based
Composer

PetriNet
Verifier

Repository
XML-based

Problem
Description

New

SERVLET FRAMEWORK

Fig. 6. Architecture of the CODAW system.

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 99

solution returned (9). The figure also illustrates the different open source software technologies
used in the prototype. Text retrieval is supported by the Apache-Lucene engine. XPath and
XQuery mechanisms of XML-based search are supported by the eXist native XML database
framework. Basic graph isomorphism algorithms have been prototyped using the open-source
Java Data Structures Library (JDSL). Similarity-based retrieval is supported by the SFW algo-
rithm. Case composition is supported by the SHOP algorithm. These modules are implemented as
LISP and JAVA servlets. The verifier and adaptation modules are currently under development.
In the following subsections, we discuss our approaches for similarity-based case retrieval and
planning-based case composition.

4.1. Case retrieval using similarity flooding for workflow algorithm

Similarity-based case retrieval in CODAW is based on the similarity flooding algorithm, and is
called Similarity Flooding for Workflow (SFW). Similarity-based case retrieval may be initiated
by a workflow designer (during manual execution) or by the process control module during
automated execution of the design cycle. The input provided for case retrieval is a labeled query
graph defining the task and control nodes. The output of retrieval is a collection of cases, with
similar process graph structures. The similarity flooding algorithm is applicable for matching
directed labeled graphs and we have adapted the same for matching workflow process models.
The basic SF algorithm matches nodes in two process models, the query graph ðQGÞ and a source
graph ðSGÞ. The algorithm uses an iterative fix-point computation, results of which suggest, which
node (or arc) in QG is equivalent to a node (or arc) in SG. For computing similarities, the
algorithm relies on the idea that elements of two distinct graphs are similar, when their adjacent
elements are similar. Similarity values are initially assigned to the elements that we may expect to
match such as nodes or edges. The algorithm propagates the similarity from a node to its
respective neighbors based on the topology in the two graphs. The spreading of similarities is akin
to IP packets flooding a network, hence the name similarity flooding algorithm. The algorithm
produces a mapping, M , which for each node in the query graph, suggests the best candidate
matches in the source graph. This mapping is filtered based on a variety of domain-dependent
filters to identify the best possible match between the query and source graphs.

The SFW algorithm for case retrieval is based on matching the nodes of the process graph
element (as the source graph SG) of each prototypical case to the nodes of the query graph QG
provided as input. In a prototypical case, the process graph element is represented explicitly as
graph structure, PðN ;AÞ, with labeled control nodes, Nc, task nodes, Nt, concurrency nodes, Nr

along with labeled arcs, A, such that N ¼ Nt [Nc [Nr. This process graph structure is represented
by the metamodel presented in [3] (see Appendix B for example). Our choice of the SF algorithm
was guided by its ability: (a) to cope with edge and node labeling mismatches between the query
and source graphs, and (b) to cope with missing graph elements in query and source graphs
(unlike exact graph isomorphism matching techniques). Similarity metrics may be defined in a
flexible manner to consider a variety of domain-dependent features. Further, such an inexact
matching technique may be useful in retrieving process graphs from buildtime databases of
commercial workflow systems, which exhibit a variety of noisy features such as the above. Exact
matching techniques required costly pre-processing to obtain effective results in our preliminary
studies.

100 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

We illustrate the SFW algorithm with an example shown in Fig. 7. The source graph ðSGÞ is a
variant of the product development process shown in Fig. 3. Task nodes are (labeled T1,T2,. . .),
decision nodes are (labeled C1,C2,. . .) and concurrent nodes are (labeled R1,R2,. . .). We use
the labels for illustrative purposes. In the CODAW implementation, appropriate labels extracted
from the WSPGModel tag of the case representation are used for the source graph. Note that after
every task completion, a task selection step is executed by the workflow engine, indicated by
control nodes. Similarly the query graph ðQGÞ is labeled. Associated with each task node in either
graph is a Name property that denotes its functionality. For example, the Name property of TB in
QG is Review. Similarly, the Name property of each control node reflects its type, such as AND,
OR, SPLITOR, JOIN and FORK. These are also extracted from the WSPGModel tag. For
illustrative purposes, assume that name properties of nodes in each of the two sets (C1, C2, CA)

and (C2, C4, CB) are same in the example. The first and second columns in Table 1 show a
partial list of labels and the name properties for task nodes in QG and SG respectively. The third
column in Table 1 is the initial similarity estimated for the labels in the example. The initial
similarity between labels of the various nodes in the two graphs is estimated automatically by a
rule-based name matching routine based on Natural Language Processing and string matching
techniques [21]. For instance, Define and Product_define share common substrings with
similar semantics and are assigned a similarity of 1.0. Such algorithms for parsing and matching
are well-developed in the field of text retrieval and a discussion is beyond the scope of this paper.
The fourth column in Table 1 is the similarity computed at the convergence of the iterative SFW
algorithm.

Fig. 7. Example of similarity matching.

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 101

From a cursory glance at the two graphs, it is possible to say that QG is embedded in SG, with
two possible structural embeddings, shown as M1 and M2 in the figure. However, if one were to
match the value of named properties between the two graphs, M1 is the preferred match, because
the task labels are more ‘‘similar’’, (denoted by v) between the two graphs. Define v Prod-

uct_define, Review v Project_review and Develop v Concept_development,
whereas the similarity in the matching M2 is much lower as the name properties are not seman-
tically equivalent. The SFW algorithm matches elements of the two graphs based on the similarity
between their graph elements and returns multiple mappings. Given a mapping threshold con-
sisting of the number of nodes (from QG) matched with high-similarity, the first mapping is se-
lected and returned as a viable match for the query. The inputs to the SFW algorithm are SG, QG
and a similarity table, T for elements (equivalent to the third column in Table 1) of the respective
graphs. The steps of SFW algorithm are summarized below (readers are referred to [30] for
complete details).

Similarity Flooding for Workflow Algorithm

• InitialMap¼CreateInitMap(QG,SG,T). The InitialMap is based on deriving an
auxiliary data structure called an induced similarity propagation graph from QG and SG.
The first step is to develop a pairwise connectivity graph ðPCGÞ such that: ððx; yÞ; p; ðx0; y 0ÞÞ 2
PCGðQG; SGÞ () ðx; p; x0Þ 2 QG and ðy; p; y0Þ 2 SG. x; x0 are nodes in QG connected by a direc-
ted arc, p. y; y 0 are nodes in SG, connected by a an arc, p, having the same label. Thus each node
in PCG is an element of QG$ SG, called a map pair. The PCG for two sub-graphs, A from SG
and B from QG is shown in Fig. 7. The triple C4 ! T6 matches CB ! TD. In the context of
workflow process graphs, all arcs implicitly share the same label, namely, ControlFlow

(not shown in Fig. 7 for clarity). The nodes, C4,CB form a map pair as shown in Fig. 7.
Two map pairs may be connected by an edge only when the corresponding edges in each indi-
vidual graph overlap. The PCG for just the task nodes in the example will have a subset of the
44 entries (11$ 4). The initial similarity between members of a map pair is provided by T ,
shown by the third column in Table 1. Decision and concurrency node similarities are binary.
If their named property matches, similarity¼ 1 or 0 otherwise. Similarity between task nodes
and control is assigned 0. This PCG is then transformed into an induced propagation graph

Table 1
Similarity table for the example

Element of query graph Element of source graph Initial similarity Final similarity

Define (TA) Product_define (T1) 1.0 0.78
Review (TB) Project_review (T2) 1.0 1.0
Outsource (TD) Concept_sourcing (T4) 0.4 0.38
Develop(TC) Concept_development (T3) 1.0 0.85
Define (TA) Manfg_concept (T8) 0.0 0.09
Define (TA) Project_review (T2) 0.4 0.32
Review (TB) Concept_sourcing (T4) 0.6 0.54
Develop(TC) Select_supplier (T6) 0.0 0.05
Outsource (TD) Alt_strategy(T7) 0.4 0.38

102 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

with the addition of two weighted (weight denoted wi) propagation edges between each map
pair (shown by dashed arrows in the induced propagation graph) that allows similarity to flow
between neighboring map pair nodes. The weights ð06wi 6 1Þ on the edges of the induced
propagation graph indicate how much of the similarity of a given pair of nodes propagates
to its neighboring map pairs. For each map pair node in the induced propagation graph, with
Ntotal outgoing edges,

P
1<i<Ntotal

wi ¼ 1:0. Initial weight, wi, assigned to each outgoing
arc¼ 1:0=Ntotal. Hence each outgoing arc from map pair, (C4,CB) in Fig. 7, is assigned a
weight of 0.25. Incoming weights depend on the adjacent map pair nodes. Once weights are
assigned, the InitialMap data structure is complete. The induced propagation graph for the
example is illustrated in Fig. 7.

• product ¼ SFW(QG,SG,InitialMap) executes an iterative fix-point computation as
follows: Let rðx; yÞP 0 be the similarity, called a mapping, between nodes x 2 QG and
y 2 SG defined as a function over QG$ SG. The algorithm computes r-values iteratively. Let
ri denote the mapping between QG and SG after the ith iteration. r0 denotes the initial
similarity provided, shown in the third column of Table 1. The basic update formula is

riþ1ðx; yÞ ¼ riðx; yÞ þ
X

ðau;p;xÞ2QG;ðbu;p;yÞ2SG
riðau; buÞ:wððau; buÞ; ðx; yÞÞ

þ
X

ðav;p;xÞ2QG;ðbv;p;yÞ2SG
riðav; bvÞ:wððav; bvÞ; ðx; yÞÞ for ðau; buÞ; ðav; bvÞ 2 PCG:

The iteration terminates when Dðrn;rn&1Þ6 ! for nP 0; !P 0. A variety of variations of this
update formula are discussed in [30] which we have implemented and experimented with. The
resultant product is a ranked list of map pairs––a multimapping, from which many possible
distinct subsets can be chosen. The fourth column of Table 1 indicates the final similarity upon
convergence for the example.

• result¼Filter(product) uses a set of similarly thresholds rules to select the best candi-
date match. These filtering rules are determined experimentally. Changing the threshold value af-
fects the number ofmatches considered for post-processing. Specific domain knowledgemay also
be used to aid the filtering step. In the example, the best match(see the relative similarity values
between the different choices) is TA v T1, TB v T2, TC v T3, TD v T4. SFW also produces
alternative mappings such as TD v T3 and TC v T4, which however have a low similarity value.

The SFW algorithm matches a pair of directed labeled graphs. When the initial similarities
between the labels are all unity, the algorithm is equivalent to a graph isomorphism procedure. To
search the repository for all possible matches for a query graph, we currently perform an SFW
algorithm based match routine for the set of cases selected based on the name property, task and
domain hierarchy. The SFW algorithm reaches a fix-point because of the directionality of arcs
guiding the flow of similarity between map pair nodes in the induced propagation graph. The
similarity flooding algorithm does not converge and performs poorly on undirected labeled
graphs. The similarity-based retrieval only accounts for semantic similarity reflected by the node
and edge labels and the similarity in topology of the query and source graphs. Extensions of the
SFW algorithm to match collections of graphs efficiently, improve the similarity metric estimation
procedure and filtering criteria are under development.

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 103

4.2. Case composition with SHOP-based planning

Case composition may be triggered (either manually or by the process control module), when
retrieved cases need to be composed or a new process model needs to be generated via compo-
sition of primitive tasks. Inputs for composition include the initial and final states of a business
problem defined in a planning language (defined below). The output is a set of declarative process
models. Workflow case composition is based on the idea that a workflow––a sequence of tasks or
a plan––defines a path in a state-space implicitly defined by the pre-conditions and post-condi-
tions of all the tasks in the domain. The initial and final states of such a path are defined by the
business goal requirements. Composition of tasks to develop a workflow is equivalent to iden-
tifying tasks in a sequence that can transform an initial world state into a final required world
state. The SHOP planning algorithm relies on a domain theory consisting of composite tasks
called methods and primitive tasks called operators for generating plans. A method specifies how
to decompose a higher-level task into a set of subtasks. Each method is associated with various
constraints that limit the applicability of the method to certain conditions on the current state and
define the relations between the subtasks of the method. A method is an expression of the form
M ¼ ðh; P ; TLÞ, where h (the method!s head) is a composite task, P is a set of preconditions, and TL
is the set of M !s subtasks. M is applicable to a task, relative to a current state, S defined by a set of
propositions, iff matches ðh; t; SÞ (i.e., h and t have the same predicates and arity and a consistent
set of bindings)––there exist consistent values for variables both in S and P––such that P is sat-
isfied. An operator is an expression of the form O ¼ ðh;C; aL; dLÞ, where h is the head, C is the set
of preconditions, and aL and dL are add and delete lists. These lists define how the operators
application transforms the current state S; every element of aL is added to S and every element of
dL is removed from S. An operator O is applicable to a task t, relatively to state S, iff matches
ðh; t; SÞ.

The afore-mentioned domain model of planning is supported by the declarative representation
of prototypical cases, instance-level cases and primitive tasks (defined in Section 3). Each method
in SHOP is equivalent to a declarative definition of a prototypical case in Section 3. Instance-level
cases are grounded instances of methods (as defined above) that provide a one-level decompo-
sition into a sequence of operators that transform a particular ground state into a final ground
state. Each instance-level case C, is denoted by C ¼ ðh; P ; ST Þ, where h is the head, P is the set of
preconditions such that the case can be applied to the current state, ST is the actual sequence of
tasks that transform the current state and consists of primitive operators. The declarative defi-
nition of a primitive task models an operator as defined above.

Fig. 8 shows the declarative description of two cases (from the domain of NPD) extracted from
their corresponding XML case representations. Detailed description of the syntax is in [15]. Each
case is described by the predicates that define its pre-conditions and post-conditions. One case
supports the detailed design task, where a configuration of components is selected from a pre-
defined component library, and the other case from procurement, defines a process to source
particular components from a given supplier. Note that the pre-conditions apply different pred-
icates (such as valid-curr-state,is-assembly-finalized) to the current state
descriptor to ensure that the cases may be applicable in a given state. The post-conditions (also
called effects) of the cases define the actual plan steps (primitive tasks are prefixed by !) that may
be executed from the current state, namely, (!Obtain *),(!Check_new_assembly *),

104 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

(!Test_assembly *),(!Review_assembly *) for the product design case in the figure.
Note that * in each predicate refers to grounded values initialized in the pre-conditions.

A planning problem for SHOP is defined by an initial task network ðT ; S;DÞ, where T is a set of
tasks, S is the initial state and D is a domain theory consisting of operators ðOÞ, methods ðMÞ and
cases ðCÞ. A plan is the collection of primitive operators obtained by decomposing, ðT ; S;DÞ. The
SHOP planning algorithm performs recursive search of the planning state space via task
decomposition and constraint satisfaction. The basic SHOP algorithm for solving the case
composition problem, ðS; T ;DÞ, where SHOP is refining a tasklist T 0 relative to state S and domain
theory D is based on ordered task decomposition. Initially the plan, p, is empty; SHOP proceeds
as follows:

The SHOP Algorithm
• Step 1 Based on current state S, search case base for a case C that may be applicable. If so,

apply case C and update S, else do Step 2.
• Step 2 If t is primitive and has an applicable operator O, then O is applied to t, S is updated

accordingly, t is removed from T 0 and added to the end of p. Go to Step 1. If Steps 1 and 2
are not applicable, go to Step 3.

Fig. 8. Two new product development related cases.

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 105

• Step 3 Else if t is composite and has an applicable method M , then apply M and replace t in T 0

with the appropriate subtasks.
• Step 4 Else if T 0 is empty, then backtrack.
• Step 5 Else fail.

The algorithm terminates when T 0 is empty in which case p is the solution or when SHOP tries
to backtrack on a composite task t whose applicable methods have been exhausted.

Case matching is an integral step before every task decomposition phase in the algorithm. For a
single state, multiple cases may match because their preconditions may be fulfilled in the current
state. Choices among these cases may be based on the distance from the required goal state,
estimated by comparing the add and delete lists of the operators with the goal state. In our current
implementation, an applicable case is chosen non-deterministically and upon failure during search
on that path, SHOP will backtrack to explore alternative branches. Methods and cases are
matched based on unification of the predicates in the ground state with their respective pre-
conditions. Planning-based composition uses all methods (prototypical cases), cases (instance-
level cases) and operators (primitive tasks) to generate plans. Planning is a combinatorially
difficult problem [38]. The effectiveness of the SHOP algorithms may be considerably improved
with appropriate design of the predicates, operators and methods. In the worst case, the planner
will explore the complete search space incurring exponential costs. In the context of CODAW,
time-out mechanisms are implemented in SHOP to ensure termination and return control to the
CODAW process controller. Case selection may also be performed interactively to guide the
planner [32]. Cases are retrieved and presented to the user, who may select the case to apply to
the current state. The state is appropriately updated and the cycle is repeated.

We have adapted a LISP implementation of the SHOP planner for case composition in CO-
DAW. To illustrate case composition using cases shown in Fig. 8, consider a design scenario
where a new product development process requires a detailed design task that combines an online
catalog-based design approach with sourcing of components from a supplier. This new problem is
defined by providing an initial state and a final goal state in terms of appropriate predicates. The
initial state is defined by ground predicates (a partial list) shown below:

(GOAL (CONFIG_PRODUCT 00TRANSFORM ROTARYPOWER INTO ELECTRICAL STORAGE00)
(FINALPRODUCTSTATE (HASCOMPS !(C49)))
(ASSEMBLY_FINALIZED)
(SUPPLIER_SELECTED)
(ORDER_PLACED))

(CURRPRODUCTSTATE !())

(SUPPLIER_CATALOG S32 !(C1 C23 C24. . .))
(SUPPLIER_CATALOG S17 !(C19 C11 C37. . .))

The (GOAL *) predicate defines the function of the product to be designed and indicates that a
particular component needs to be part of the final design ((HASCOMPS *), the assembly is
finalized, the supplier is selected and order has been placed. The (CURRPRODUCTSTATE nil)

indicates that the process is yet to begin. Additionally the state description includes suppliers with
their available components and description of component libraries (not shown). Applying the

106 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

SHOP planning methodology, results in one of the alternative plans including the combination
CASE35 fi CASE25 (from Fig. 8), wherein the right arrow indicates sequence. The process
model on composing these two cases is (operator arguments are not shown): !Obtain fi
!Check_new_assembly fi !Test_assembly fi !Review_assembly fi !Finalize_
assembly fi !Place_order fi !Receive_invoice fi !Receive_shipped_order fi
!Check_components fi !Init_pmt. This sequential plan is then post-processed to identify
concurrent tasks, such as !Check_components and !Init_pmt, by analyzing data depen-
dencies as outlined in [7]. Alternative plans may be generated based on multiple paths through
the state space. The workflow thus generated is in a declarative form and converted into an
appropriate procedural process graph by instantiating the tasks with their procedural
descriptions (based on the TaskImpl tag in the case representation).

5. Discussion and concluding remarks

Development of effective case retrieval and case composition algorithms is essential for the
utilization of CODAW for workflow modeling in real world scenarios. The proposed case rep-
resentation supports similarity-based case retrieval using the process graph formalism and
planning-based case composition is facilitated using the declarative representation. Our experi-
ence in developing the case repository in CODAW has highlighted the complexity of obtaining
workflow cases that may be reusable in an automated manner. Commercial workflow represen-
tations are proprietary and their buildtime XML-based representations (if available) are cum-
bersome to manipulate. Further, workflows created using such tools may use non-standard
ontologies for labeling the workflow process models. This has motivated our development of the
SFW algorithm to cope with the ontological mismatch problem. The underlying SF algorithm has
proven to be reliable in large-scale conventional database schema matching problems. We have
conducted extensive simulated experiments to evaluate the robustness of the SFW algorithm to
changes in similarity and graph topologies. SFW is sensitive to relative values of initial similarity
estimated by the string-matching algorithm. We are currently developing reliable means to assign
initial similarities based on other properties (of cases) such as the different structural elements in
the case representation such as the task types, inputs, outputs and history.

The development of the declarative representations, including the associated predicates and
state descriptors, to support case composition is a complex task. A process graph does not provide
explicit insight into the underlying design intent of why a particular task was chosen and
instantiated in a given schema. It does not support reasoning about the interaction between the
tasks. In contrast, a plan is a process model with state, developed from explicit encoding of the
domain knowledge, which facilitates reasoning about choices of tasks and their inter-relation-
ships. Developing appropriate declarative representations requires background domain knowl-
edge and acquiring such knowledge is difficult. Development of such declarative representations is
essential for the convergence of the Semantic web and workflow technologies in the short term.
We note that our choice of first order predicate logic representation for case composition has been
guided by its use in real-world planning systems and formal models of Semantic Web ontologies.
Currently in CODAW, the SHOP algorithm generates a sequential workflow, which is then post-
processed into a workflow with concurrent tasks by analyzing data dependency constraints. This

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 107

staged approach has been adopted to identify if a solution to a new problem exists, in a timely
manner. Consideration of concurrency explicitly during the planning process increases the size of
the search space and requires models for temporal and resource reasoning. We are currently
experimenting with partial-order planners, that consider concurrency, to compose cases [38]. Our
research on planning-based process composition techniques has been successfully used for dy-
namic web services composition [26]. The declarative and procedural instance-level case repre-
sentations may be used to infer generic process models using learning techniques such as Inductive
Logic programming and statistical machine learning [38].

This paper has described a case-based reasoning approach to support workflow modeling and
design. The innovative features proposed in the paper are: (1) a case representation for workflow
schemas and instances that combines both declarative and procedural representations, (2) a
similarity based retrieval algorithm for retrieving process graphs of workflow schemas based on
graph-based queries, and (3) the use of a domain independent AI planning technique to facilitate
composition of cases into a workflow.

Our future work will continue the development and testing of the CODAW framework. We
intend to further develop the adaptation and verification modules for CODAW, provide tech-
niques for retrieval based on events, and integrate the different phases of the CBR design cycle.
Enabling case composition using partial-order planners for developing workflow models with
concurrent tasks is an interesting and challenging problem. Furthermore, we plan to perform real
world user studies comparing the CODAW prototype with commercial workflow tools such as
Oracle Workflow–11i.

Acknowledgements

The authors wish to sincerely thank the anonymous reviewers for their comments, which have
helped to improve the quality of this paper considerably.

Appendix A. Structural elements of prototypical and instance-level cases

Elements of a prototypical case

Element, XML Tag Description Representation

Prototypical CaseID WSID Each schema is allocated
Case ID a unique identifier

A symbol (WS2)

Case Description WSName,

WSDesc

A textual annotation or
summary of the case

Free text

Instances list WSInstances List of instance-level cases
of schema

List of symbols

TaskList TaskList A list of identifiers for prim-
itive and composite tasks

(collect-order,
check-credit)

Process Graph WSPGModel Provides the workflow
process model as graph

An attributed directed graph
with task, control, join and
fork nodes

108 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

Appendix A (continued)

Element, XML Tag Description Representation

Inputs WSInputs List of arguments to initiate
workflow

Each argument is an
attributed data entity
such as Customer

Outputs WSOutputs List of arguments after
completion of workflow

Each argument is an attrib-
uted data entity such as
Completed_transaction

Preconditions WSPreConds Conditions that need to
exist in current organiza-
tional state to instantiate
prototype case

Described as first order logic
predicates (available_
customer_data
?customer)

Postconditions
WSPostConds

Conditions that will exist
in state after completion
of case

Described as first order logic
predicates (order_
shipped ?customer

?date)

Resource Types
ResTypeList

List of resource types, roles
used in the case

Attributed data objects

Preference ranking
WSRating

Usage ranking for filtering
choices during retrieval

A number

Elements of a primitive task

Element, XML Tag Description Representation

Task ID TID Unique task identifier across
all domain descriptions

A symbol TI-21

Task Parameters
TParams

List of state variables that
are used by task

A parameter list such as
(?name ?address ?order)

Task Preconditions
TPreConds

Conditions that need to exist
in the current state to initiate
task

Described as first order logic
predicates (previous_
task_completed TK-15)

Task Postconditions
TPostConds

Conditions that will exist in
state after completion of task

Described as first order logic
predicates (customer_
registered ?c)

Task Implementation
TImpl

Refers to executable procedural
code for task or manual steps

Implemented as a method
call or named procedure

Elements of an instance case

Element, XML Tag Description Representation

Instance CaseID, WIID Unique identifier for an instance A symbol (WI22)
Inputs, WIInputs Values for input arguments to

case
Actual data element,
Customer_no 121

(continued on next page)

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 109

Appendix B. Prototypical case representation of a NPD workflow schema

<?xml version¼ 001.000?><!DOCTYPE WorkflowSchema []>
<WSCase> <WSID> WS2</WSID>
<WSName> Market-Pull Workflow </WSName>
<WSType> Product Development</WSType>
<WSDesc> A generic product development process used

in routine product design.</WSDesc>
<TaskList> ((TID-1 Project_Selection)(TID-21 Product_Definition)
(TID-31 Project_Plan_review),
(WS21 Detailed_design)..)</TaskList>
<!List of Composite tasks and associated subprocess schema>
<ComponentWorkflows>(Detailed_design WS21) </ComponentWorkflows
Modified>
<!Instances of this workflow>
<WSInstances> (WI1 WI22 WI23 . . .) </WSInstances>
<WSInputs> (Design_problem Budget) </WSInputs>
<WSOutputs>(Design_Solution Estimated_cost Actual_Cost)</WSoutputs>
<!–Problem, Budget, Solution are attributed objects>

Appendix A (continued)

Element, XML Tag Description Representation

Outputs, WIOutputs Values for output arguments Actual data element,
Transaction_ID 221

Initial State
WIInitState

Describes state when case was
started

Described in terms of
first-order predicate logic

Final State
WIFinalState

Describes state when case was
completed

Described in terms of
first-order predicate logic

State History WIHistory A sequence of interim states
recorded at specific points

Stored in special state data-
structures for predicate values

EventsList WIEventlist List of systemic and
application-specific events

Stored as attributed event data
types

Exception-Handling
Actions, WIActions

List of failure handling actions Stored as attributed action
data entities

Current Case Status
WIStatus

Describes execution status
(halted, in-progress etc.)

Stored as attributed state
description entities

Performance Metrics
WIMetrics

Describes metrics of case such as
flowtime, resource utilization

Time in minutes, percentages

Agents WIAgents Maps specific roles to agents used
in the case

Attributed data entities for
agents

Resources WIResources Maps specific resource instances
to tasks used in the case

Attributed resource instances

110 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

<WSPreConds> (available_new_problem ?designprob) (prioritized ?design-

prob)

(soln_reqd ?designprob) </WSPreConds>
<WSPostConds> (completed_workflow WS2) (available_newsoln ?newsoln)

</WSPostConds> <WSRating> (times_used 12) (average_time 7mos). . .
</WSRating>

<WSPGModel> <NodeList>
<Tasknodes> (TID-1, TID-21, TID-31. . .) </Tasknodes>
<Decisionnodes> (DN-1 SEQ),(DN-2 SEQ)..</Decisionnodes>
<Concurrencynodes> (FK-1 FORK) (JN-1 JOIN) </Concurrencynodes>
</Node-List>
<EdgeList> (START TID-1) (TID-1 DN-1) (DN-1 TID21)..</EdgeList>
</WSPGModel>
<Tasks> <Task> <!–For each task its declarative and procedural defn is

provided>
<TaskType> Business </TaskType>
<TaskName> Project_Selection</TaskName>
<TaskDesc> Selects a list of new product ideas to work on </TaskDesc>
<TaskID> TID-1 </TaskID> <!–Task descriptions–>
<TParams> <Param> ?project_list </Param> <Param> ?total_budget
</Param>
<Param> ?resource_list</Param> </TParams>
<TPreConds> <!–Each predicate is FOL predicate with appropriate variables>
<Predicate> (available ?project_list) </Predicate>
<Predicate> (available ?resource_list) </Predicate>
</TPreConds> <TPostConds>
<Effect> (add (new_proj_list ?new_list)) </Effect>
<Effect> (add (new_budget ?new_budget)) </Effect>
</TPostConds> <TImpl>
<Agent> General_Manager </Agent>
<Agent> Marketing </Agent>
<Agent> Engg_Design </Agent>
<Agent> Manfg </Agent>
<Agent> QA </Agent>
<Agent>Purchasing</Agent>
<Agent> Customer_Service</Agent>
<Procedure> <ProcedureName> Select_Project </ProcedureName>
<ProcedureSource> HandBook </ProcedureSource>
<Implementation_type> Manual_Team_Execution </Implementation_type>
</Procedure> <Inputs>
<DataItem> budget </DataItem>
<DataItem> resources </DataItem>
<DataItem> projects </DataItem>
</Inputs> <Outputs>

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 111

<DataItem> selected_projects </DataItem>
<DataItem> remaining_budget </DataItem>
</Outputs> </TImpl> </Task>. . ..
<WSResTypeList> (Engineers 10) (Draftsmen 7). . .</WSResTypeList>
</WSCase>

Appendix C. Instance-level case representation

<?xml version¼ 001.000?><!DOCTYPE WorkflowInstance []>
<WIID> WI22</WIID>
<WIInputs> Honeywell_AeroStarter, 75000$ </WIInputs>
<WIOutputs> AeroStarter_PartNumber_1729, 60000$, 85000$ </WIOutputs>
<WIInitState> (allocated_problem HAstarter) (allocated_budget 75000)

</WIInitState>
<WIFinalState> (newdesign PN1729) (cost 85000) </WIFinalState>
<WIHistory> </StateList>
<State> S2 (date jan/25/03) (Project_initiated)(team_selection_
begun)</State>
<State> S3 (date jan/29/03)(team_size 10)(team_selection_complete)
(request_new_employee enggr) . . .
</State></StateList>
<WIEventsList>
<!Events classifed by type,date occurred, desc, which task, possible

cause, repair action>
<Event> DB_down, feb/14/03, 00Project database server down00,TID-31,

00corrupt_file00,Recover_action_21</Event>
<Event> Agent_unavailable, march/19/03, 00Enggr.resigned00,TID-42,

00corrupt_file00,Recover_action_45</Event>
.
</WIEventList>
<!–Action descriptions include type of action, date initiated, status>
<WIActions>
<Action> Recover_action_21, perform_backup_recoveryof element,

initiated feb/17/03,completed feb/21/03 </Action>
<Action> Recover_action_45, initiate_new_hire_process,

initiated april/11/03,inprogress </Action>
</WIActions> </WIHistory>
<WIStatus> Complete, 100% </WIStatus>
<WIMetrics> 25% Schedule overrun, 15% Overrun budget, Design_accepted
</WIMetrics>
<WIAgents> (Agent EmpNo_12345003 General_Manager)</WIAgents>
<WIResources> (Engineers_used 17) (Overhead_consumables 25000)..

</WIResources>

112 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

References

[1] W.M.P. van der Aalst, K. van Hee, Workflow Management, MIT Press, 2002.
[2] W.M.P van der Aalst, A.P. Barros, A.H.M. ter Hofstede, B. Kiepuszewski, Workflow patterns, Technical Report

FIT-TR-2002-02, Queensland University of Technology, Brisbane, Australia, 2002. Available from: <http://
www,tm.tue.nl/it/research/patterns>.

[3] W. van der Aalst, A. Kumar, XML-based schema definition for support of interorganizational workflow, ISR 14
(1) (2003) 23–46.

[4] W. van der Aalst, B. van Dongen, J. Herbst, L. Maruster, G. Schimm, A. Weijters, Workflow mining: a survey
of issues and approaches, Data & Knowledge Engineering 47 (2003) 237–267.

[5] A. Aamodt, E. Plazas, Case-based reasoning: Foundational issues, methodolgical variations, and system
approaches, AI Communications 7 (1) (1994) 39–52.

[6] P.A. Bernstein, A. Halevy, R. Pottinger, A vision for management of complex models, ACM SIGMOD Record 29
(4) (2000) 55–68.

[7] C. Backstrom, Finding least constrained plans and optimal parallel executions is harder than we thought,
in: C. Backstorm, E. Sandewall (Eds.), Proceedings of the European Workshop on Planning––EWSP!93,
1993.

[8] A. Basu, A. Kumar, Research commentary: workflow management issues in e-business, Information Systems
Research 13 (1) (2002) 1–14.

[9] H. Bergmann, R. Munoz-Avila, M. Veloso, E. Melis, Case-based reasoning applied to planning tasks, in: B.M.
Lenz, Bartsch-Sp€orl, H. Burkhard, S. Wess (Eds.), Case-Based Reasoning Technology from Foundations to
Applications, Springer, 1998.

[10] J. Blythe, E. Deelman, Y. Gil, Planning for workflow construction and maintenance on the grid, in: Proceedings
of ICAPS!03 Workshop on Planning for Web Services, Trento, Italy, 2003.

[11] C. Bussler, A. Maedche, D. Fensel, A conceptual architecture for semantic enabled web services, ACM SIGMOD
31 (4) (2002).

[12] F. Casati, S. Castano, M. Fugini, I. Mirbel, B. Pernici, Using patterns to design rules in workflows, IEEE
Transactions in Software Engineering 26 (8) (2000).

[13] F. Casati, M. Shan, Dynamic and adaptive composition of e-services, Information Systems 6 (3) (2001).
[14] L. Fahey, R. Srivastava, J.S. Sharon, D.E. Smith, Linking e-business and operating processes: the role of

knowledge management, IBM Systems Journal 40 (4) (2001) 889–906.
[15] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, D. Wilkins, PDDL––the

planning domain definition language, 1998. Available from: <http://www.cs.yale.edu/homes/dvm/daml/
pddl_daml_translator1.html>.

[16] M. Gruninger, C. Menzel, The process specification language (PSL): theory and applications, AI Magazine (2003)
63–74.

[17] S. Henninger, K. Baumgarten, A case-based approach to tailoring software processes, in: Proceedings of ICCBR
2001, vol. 2080, LNAI, 2001, pp. 249–262.

[18] J. Herbst, D. Karagiannis, Integrating machine learning and workflow management to support acquisition and
adaptation of workflow models, in: Ninth International Workshop on Database and Expert Systems Applications,
1998, pp. 745–752.

[19] IDS Scheer AG, ARIS Design Platform, 2003. Available from: <http://www.ids-scheer.com>.
[20] G. Joeris, O. Herzog, Managing evolving workflow specifications. in: Proceedings of the 3rd IFCIS International

Conference on Cooperative Information Systems, 1998, pp 310–319.
[21] D. Jurafsky, J.H. Martin, Speech and Natural Language Processing, Prentice-Hall, 2000.
[22] J.L. Kolodner, Case-Based Reasoning, Morgan Kaufmann Publishers, San Mateo, CA, 1993.
[23] D.B. Leake (Ed.), Case-Based Reasoning: Experiences, Lessons, and Future Directions, The AAAI Press/The MIT

Press, 1996.
[24] K. Lenz, A. Oberweis, Modeling interorganizational workflows with xml nets, in: Proceedings of the 34th Hawaii

International Conference on System Sciences, vol. 7, 2001.

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 113

http://www,tm.tue.nl/it/research/patterns
http://www,tm.tue.nl/it/research/patterns
http://www.cs.yale.edu/homes/dvm/daml/pddl_daml_translator1.html
http://www.cs.yale.edu/homes/dvm/daml/pddl_daml_translator1.html
http://www.ids-scheer.com

[25] T. Linden, Representing software designs as partially developed plans, in: M. Lowry, R. McCartney (Eds.),
Automating Software Design, AAAI Press/The MIT Press, 1991, pp. 603–625.

[26] T. Madhusudan, N. Uttamsingh, A declarative approach for composition of web services in dynamic
environments, Decision Support Systems, under review.

[27] M.L. Maher, A.G. De Silva Garza, Case-based reasoning in design, IEEE Expert 12 (2) (1997) 34–41, Special issue
on AI in Design.

[28] T. Malone, K. Crowston, J. Lee, B. Pentland, C. Dellarocas, G. Wyner, J. Quimby, C. Osborn, A. Bernstein, G.
Herman, M. Klein, E. O!Donnell, Tools for inventing organizations: towards a handbook of organizational
processes, Management Science 45 (3) (1999) 425–433.

[29] K. Mannel, From UML to BPEL, http://www-106.ibm.com/developerworks/webservices/library/ws-uml2bpel/,
2003.

[30] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity flooding: a versatile graph matching algorithm and its
application to schema matching, in: Proceedings of the 18th International Conference on Data Engineering,
2002.

[31] S. Mukkamalla, H. Munoz-Avila, Case acquisition in a project planning environment, in: Proceedings of 6th
European Conference on CBR, LNAI, vol. 2416, Springer, 2002.

[32] H. Munoz-Avila, D. Aha, D. Nau, R. Weber, L. Breslow, F. Yaman, SiN: integrating case-based reasoning
with task-decomposition, in: Proceedings of International Joint Conference on AI, AAAI, Seattle, WA, USA,
2001.

[33] H. Munoz-Avila, F. Weberskirch, Planning for manufacturing workpieces by storing, indexing and replaying
planning decisions, in: Proceedings of the 3rd International Conference on AI Planning Systems (AIPS-96),
1996.

[34] D.S. Nau, Y. Cao, A. Lotem, H. Munoz-Avilla, SHOP: simple hierarchical ordered planner, in: Proceedings of
IJCAI-99, 1999, pp. 968–973.

[35] PROMATIS Software GmbH, INCOME Suite, 2003. Available from: <http://www.promatis.com>.
[36] H. Reijers, Design and Control of Workflow Processes, in: LNCS, vol. 2617, Springer-Verlag, 2003.
[37] U. Reimer, A. Margelisch, M. Staudt, Eule: a knowledge-based system to support business processes, Knowledge-

based Systems 13 (5) (2000) 261–269.
[38] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, second ed., Prentice-Hall, 2003.
[39] A.W. Scheer, ARIS––Business Process Modeling, Springer-Verlag, 1999.
[40] E.A. Stohr, J. Leon Zhao, Workflow automation: overview and research issues, Information System Frontiers 3 (3)

(2001) 281–286.
[41] G. Valiente, Algorithms on Trees and Graphs, Springer-Verlag, Berlin, 2002.
[42] M. Voorhoeve, W. van der Aalst, Ad-hoc workflow: problems and solutions, in: Proceedings of the Eighth

International Workshop on Database and Expert Systems Applications, 1997, pp. 36–40.
[43] C. Wargitsch, Workbrain: merging organizational memory and workflow management systems, in: Workshop on

Knowledge-Based Systems for Knowledge Management in Enterprises, 1997.
[44] D.S. Weld, Recent advances in AI planning, AI Magazine (1999) 55–68.

Therani Madhusudan is an Assistant Professor at the MIS Department, University of Arizona. He holds Ph.D.
(1998) and M.S. degrees (1994) from Carnegie-Mellon University and a B.Tech. (1990) from the Indian
Institute of Technology, Madras, India. Prior to joining the University of Arizona, he was a lead systems
architect for Engineering Knowledge Management at Honeywell International, South Bend, IN. His research
focuses on the development of knowledge-based tools to support the design and management of complex
hardware and software systems. He has published over 20 refereed research articles in academic conferences
and journals in the areas of Workflow Management, Product Lifecycle Management and Engineering design
automation.

114 T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115

http://www-106.ibm.com/developerworks/webservices/library/ws-uml2bpel/
http://www.promatis.com

J. Leon Zhao is Associate Professor and Honeywell Fellow of MIS, University of Arizona. He holds Ph.D.
degree fromUniversity of California, Berkeley,M.S. degree fromUniversity of California, Davis, and Bachelor
degree from Beijing Institute of Agricultural Mechanization. He has previously taught in Hong Kong Uni-
versity of Science and Technology and College of William and Mary. He has published over 80 referred
research articles in academic conferences and journals including Management Science, Information Systems
Research, Communications of the ACM, and Journal of Management Information Systems. He is associate
editor for Electronic Commerce Research and Applications, International Journal of Web Services Research,
and International Journal of Business Process Integration and Management. He also serves on the editorial
board of Journal of Database Management. He is a co-chair of the Second Workshop on e-Business, 2003.

Byron Marshall is a doctoral student in AI Lab of the Management Information Systems department at the
University of Arizona. He received his undergraduate degree in Business Administration-Computer Appli-
cations and Systems from California State University, Fresno 1988 and an MBA degree with emphasis in
Accounting from California State University, Fresno 1995 with distinction. His research interests involve the
automatic processing of node-link semantic graph representations of knowledge to support learning and
knowledge acquisition processes.

T. Madhusudan et al. / Data & Knowledge Engineering 50 (2004) 87–115 115

	A case-based reasoning framework for workflow model management
	Introduction
	Literature review
	Overview of CODAW
	Case representation
	Repository management
	A scenario of workflow modeling with CODAW

	Computational support for design in CODAW
	Case retrieval using similarity flooding for workflow algorithm
	Case composition with SHOP-based planning

	Discussion and concluding remarks
	Acknowledgements
	Structural elements of prototypical and instance-level cases
	Prototypical case representation of a NPD workflow schema
	Instance-level case representation
	References

