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Abstract

This paper introduces a new method for learning algorithm evaluation and selection, with empirical results based on
classification. The empirical study has been conducted among 8 algorithms/classifiers with 100 different classification problems.
We evaluate the algorithms’ performance in terms of a variety of accuracy and complexity measures. Consistent with the No Free
Lunch theorem, we do not expect to identify the single algorithm that performs best on all datasets. Rather, we aim to determine
the characteristics of datasets that lend themselves to superior modelling by certain learning algorithms. Our empirical results
are used to generate rules, using the rule-based learning algorithm C5.0, to describe which types of algorithms are suited to
solving which types of classification problems. Most of the rules are generated with a high confidence rating.
# 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Classification, one of the most popular and
significant machine learning areas, is particularly
important when a data repository contains samples
that can be used as the basis for future decision
making: for example, medical diagnosis or credit
fraud detection. Machine learning researchers have
already proposed many different types of classifica-
tion algorithms, including nearest-neighbour methods,
decision tree induction, error backpropagation, rein-
forcement learning, lazy learning, rule-based learning,

and relatively new addition is statistical learning.
From amongst this vast and ever increasing array of
classification algorithms, it becomes important to ask
the question ‘which algorithm should be the first
choice for my present classification problem?’ Our
present research seeks to find an appropriate answer to
the above question by developing a new approach to
learning algorithm selection. Of course, it is important
to keep in mind Wolpert and Macready’s well-known
No Free Lunch (NFL) theorem [1]:

If algorithm A outperforms algorithm B on some cost
functions, then loosely speaking theremust exist exactly
as many other functions where B outperforms A.

NFL theorem.
Many studies propose new classification algo-

rithms, and attempt to produce empirical evidence of
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the superiority of the algorithm on a selection of
datasets. The NFL theorem suggests, however, that a
more useful strategy is to gain an understanding of the
dataset characteristics that enable different learning
algorithms to perform well, and to use this knowledge
to assist learning algorithm selection based on the
characteristics of the dataset.

Much of the comparative research on algorithms in
the machine learning community is between decision
trees and neural networks [2] and places the emphasis
on the percentage of correct classifications. The
STATLOG project [3] is one of the largest compar-
isons introduced among algorithms on a large number
of datasets with statistical analysis. An algorithm’s
performance is measured on both the percentage of
correct classifications and computational complexity.
The project finds that no algorithm is uniformly most
accurate over the dataset studied, consistent with the
basic idea of the NFL theorem. Another large
comparison recently undertaken [2] has considered
22 decision tree, 9 statistical and 2 neural network
algorithms compared on 32 datasets based on the
percentage of correct classification, training time, and
(in the case of trees) numbers of leaves. Classification
accuracy is measured by mean error rate and mean
rank of error rate. The main difference in their study is
that they considered the training time, more decision
tree models as well as statistical algorithms. They also
studied the effect of adding independent noise
attributes on the classification accuracy, and examined
the scalability of some of the more promising
algorithms as the sample size was increased. Smith
et al. [4] has introduced a methodology for choosing
an algorithm for a new problem by clustering with the
self-organising map (SOM). Other studies that are
smaller in scale include [5–8].

The accuracy or error rate measure is the primary
and the most popular way to evaluate the performance
of data mining algorithms. This type of measure
always assumes that the class distribution is unchange-
able, that is the error costs—the cost of the majority
and minority classes—have similar significance [9].
For instance, suppose we have a dataset with 1000
samples, the majority class containing 990 samples
and the minority class containing 10 samples. Now if a
classifier classifies them all as a majority class, the
accuracy will be 99%, even though the classifier
missed all minority samples due to the highly

unbalanced class distribution. Therefore, this method
is criticised as an impractical technique [9]. Another
popular way to evaluate a classifier is the cross-
validation approach. The hold-out, leave-one-out and
rotation methods are different approaches to cross-
validation. The main disadvantage of the cross-
validation method is that all the samples are not used
to construct the model when the samples are relatively
small. Moreover, the hold-out method and leave-one-
out method suffer from either large bias or variance
[10]. To overcome the limitation of error/accuracy
estimation, we propose a new classifier evaluation
method called relative weighted performance mea-
sure.

Our research compares mainly decision tree
algorithm C4.5, neural network trained with the
backpropagation (BP) algorithm, and relatively new
classifier Support Vector Machine (SVM) with some
other statistical and rule-based classifiers. We organise
our research in three main steps: first we compare the
algorithms across a number of different measures of
accuracy and computational time providing a com-
prehensive empirical evaluation of the performance of
eight classifiers on 100 classification datasets. We then
characterise the datasets using a variety of simple,
statistical and information theoretical measures.
Finally, the empirical results are combined with the
dataset characteristic measures to generate rules
describing which algorithm is best suited to which
types of problems.

This study extends the previous work of the
STATLOG project and Lim et al. in the following
ways:

! We include one of the rapidly popular classifier
based on statistical learning theory, SVM, in our
study.

! We consider 100 different datasets to measure the
classifier performance by 10-fold cross-validation
and hold-out estimation methods.

! We introduce a new methodology to compare the
classifier performance across a variety of measures
rather than the common focus on percentage of
correct classifications.

! We consider statistical significance test to compare
the classifier performance.

! Finally, we generate rules to determine which
classifier is suitable for which types of problems.
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We also evaluate the rules by support and
confidence measures.

In this study, we have examined 100 classification
problems from the UCI Repository [11] and Knowl-
edge Discovery Central [12] (see Appendix A), and
evaluated 8 popular data mining classifiers based on a
combined performance measure of average accuracy
and computation time. The average accuracy is the
combination of the true positive rate (TPR), the true
negative rate (TNR), the percentage of correct
classification (10-fold cross-validation and hold-out)
and the weighted F-measure. We consider 10-fold
cross-validations for those datasets with the number of
samples fewer than 1000. On the other hand, for those
dataset with more than 1000 samples, we consider the
hold-out method, 70% for training and the rest for
testing, as suggested by Henery [13]. The computa-
tional complexity considers both the model train time
as well as the test set evaluation time, rather than
placing emphasis on only one of these, since some of
the algorithms need more time to classify the test set
than training the model. The machine configuration
was Pentium IV, CPU 2.66 GHz and 1 GB RAM.
Some of multi-class datasets were converted into
binary class. We considered all the algorithms from
WEKA release 3.1.8 with default parameter settings.
WEKA [14] is a Java-based machine learning tool.
The algorithms performance significance test used the
well-known statistical t-test. Dataset characteristics of
each problem are measured following Smith et al.
[4,15]. We consider simple, statistical and information
theoretic measures to identify the dataset character-
istics. Some of the statistical formulation is available
in Matlab Statistics Toolbox [16]. By using the most
co-related attributes, we generate rules to identify
which algorithm is suitable for which type of problem.
Finally, we examined the rules by the support and
confidence measure.

The rest of the paper we organise as follows.
Section 2 describes briefly the eight learning algo-
rithms. Section 3 introduces our new methodology for
classifier evaluation. The experimental results and the
final observation from the comparative studies are
presented in Section 4. Section 5 explains the rule
generation methodology, including the measures used
to characterise the datasets. The generated rules for
classifier selection are presented in Section 6, together

with their confidence and support. Finally, we draw
conclusions from our research in Section 7.

2. Learning algorithms

This section provides a short description of all the
algorithms we consider in our experimental design.
All of the algorithms belong to the category of
supervised learning methods, but we can further
categorise them into neural, rule-based and statistical
learning algorithms as described in the following
sections.

2.1. Neural-based learner

In the mid-1960s, Nilsson introduced artificial
intelligence for pattern recognition based on neural
like threshold units called neural networks (NNs).
NNs became an approach after the development of
some new algorithms, such as multilayer perceptrons
(MLP), radial basis function networks, SOM and BP.
The MLP architecture consists of three layers of
neurons, namely the input, hidden and output layers,
all connected by feed forward weights. After receiving
an input pattern, the NN passes the signal through the
network to predict the output in the output layer. The
NN then compares the predicted target value with the
actual target and estimates the error to modify the
weights. The scalar error function of the weights is
minimised by repeating the learning procedure until
the network produces the correct response to each
input [17,18,37]. WEKA uses the BP algorithm to
train the model. BP minimises the error function using
a gradient descent method. The main disadvantage of
the BP algorithm is that it is slower than some other
popular machine learning techniques, and tends to
become trapped in local minima of the error function
[19].

2.2. Rule-based learner

Rule-based learning, especially decision trees (also
called classification trees or hierarchical classifiers), is
a divide-and-conquer approach or a top-down induc-
tion method that have been studied with more interest
in the machine learning community. C4.5 is the
advanced version decision tree algorithm of ID3 [17].
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ID3 means the third series of ‘interactive dichotomi-
zer’ procedures. It can classify nominal datasets only.
For real value attributes, it is first binned into interval
to form unordered nominal values. It does not consider
any standard pruning procedure. By minimising the
ID3 limitation, Quinlan [17] introduced C4.5 algo-
rithm to solve classification problems. Like NN, C4.5
works in three main steps. First, the root node at the
top node of the tree considers all samples and passes
through the samples information in the second node
called ‘branch node’. The branch node generates rules
for a group of samples based on entropy measure. In
this stage, C4.5 constructs a very big tree by
considering all attribute values and finalises the
decision rule by pruning. It uses a heuristic approach
for pruning based on statistical significance of splits.
After fixing the best rule, the branch nodes send the
final target value in the last node called the ‘leaf node’
[17,18]. OneR is a very simple, faster and one-level
decision tree algorithm. It selects one-by-one attri-
butes from a dataset and generates a different set of
rules based on error rate from the training set. Finally,
it chooses the attribute that offers rules with minimum
error and constructs the final decision tree [20]. PART
is a partial decision tree algorithm, which is the
developed version of C4.5 and RIPPER algorithms.
The main speciality of the PART algorithm is that it
does not need to perform global optimisation like C4.5
and RIPPER to produce the appropriate rules [21].
However, decision trees are sometime more proble-
matic due to the larger size of the tree which could be
oversized and might perform badly for classification
problems [22].

2.3. Statistical learner

Recently, statistical learning theory has received
more attention from the pattern recognition community
after the introduction of SVM by Vapnik and his group
in the mid-1990s. SVM is the advanced version of the
GeneralizedPortrait algorithm,whichwas developed in
Russia in the late 1960s [23]. SVMworks in the similar
way to NN and C4.5. We can assign the three working
phases for SVM, first one is input phase or
transformation phase, then learning phase and final
one is decision phase. NN and C4.5 do not perform any
significant work in the first phase. But SVM does its
most significant job, transformation of the data by using

kernel mapping into a high dimensional feature space.
The kernel function can be polynomial, Gaussian or
many others. The high dimensional space could
theoretically be infinite, where linear discrimination
is almost possible. SVM starts to learn the data in the
high dimensional feature space, in the learning phase,
by minimising the magnitude of the weight vector
constrained by the separation (optimal hyperplane
based) into an unconstrained problem with the help of
multiplier parameter, say Lagrange multiplier. In this
stage, SVM extracts the support vectors only. Based on
the support vectors information, SVM produces the
final output function in the decision phase. Unlike NN
and C4.5, SVM does not consider all samples to
construct the final decision function. Moreover, SVM
always obtains the unique solution for the decision
function unlike iterative approaches or pruning.
Another speciality of SVM is that it minimises the
structural risk rather than empirical risk considered by
most classical learning algorithms [18,19,38]. WEKA
considers sequential minimal optimization (SMO) for
SVM and polynomial kernel with degree 1 as a default
setting [14]. Naive Bayes (NB) is a simple classifier
based on the classical statistical theory ‘Bayes
theorem’. The term ‘‘naive’’ is because it calculates
the maximum posterior probability, based on the
assumption that the attributes on the training samples
are independent and there is no hidden or latent
attributes influence in the prediction procedures [24].
Kernel density (KD) is a non-parametric linear kernel-
based density estimation algorithm. This algorithm
does not need any prior assumption, such as normal
distribution of the attributes for prediction. The
discrimination capability of this algorithm is compara-
tively faster than some other classifiers [14]. IBK is an
instance-based learning approach like the K-nearest-
neighbourmethod. The basic principle of this algorithm
is that each unseen instance is always compared with
existing ones using a distance metric; most commonly
Euclidean distance and the closest existing instance is
used to assign the class for the test sample [14].
WEKA’s default setting is K = 1. Compared to other
algorithms, it needs more time to predict the test
samples’ classes.

The statistical learning algorithm, SVM, has some
advantages over the well-established algorithms NN
and decision tree. It considers the dot product of the
feature vectors to construct the optimal hyperplane
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rather than surface, clustering or interpolation as like
NN or decision tree. So, there is less probability of
losing important information during the modelling
[25].

3. Classifier evaluation methodology

3.1. Relative weighted performance measure

We consider the two most common measures,
accuracy and computational time (on training and test
sets) for classifier evaluation in our method. First, we
measure the algorithm performance individually for
the majority and minority classes by TPR and TNR.
Secondly, we measure the performance by 10-fold
cross-validation for small datasets (less than 1000
samples). We consider the hold-out method for those
datasets having more than 1000 samples. At the last
stage, we try to minimise the effect of the imbalance
between minority and majority classes’ distributions
by using the weighted F-measure method. F-measure
considers a weighted distribution for a dataset.

We can explain the TPR and TNRmeasure by using
the contingency Table 1.

The TPR is the ratio between the numbers of
majority (positive) class samples which are correctly
classified by the algorithm and the total numbers of
majority class samples:

TPR ¼ d

n# k
$ 100%

The TNR is the ratio between the numbers of minority
(negative) class samples which are correctly classified
by the algorithm and the total numbers of minority
class samples:

TNR ¼ a

k
$ 100%

Nowwe can formulate the hold-out and cross-validation
estimation following [26]. Let us consider the unla-
belled sample space is X, with corresponding labels Y.
The space of labelled samples isx = X $ YandD = {x1,
x2, . . ., xn} is a dataset, which consists of n labelled
samples, where xi ¼ fvi 2X; yi 2 Yg. The inducer (D,
n) will denote the label assigned to an unlabelled sample
n by the classifier built by the inducer on datasetD, i.e.,
(D, n) = ((D))(n). The hold-out and cross-validation
estimation consider the dataset is independent and
identically distributed and equal misclassification costs
using a 0/1 loss function.

The hold-out method [26] is also called the test
sample estimation method. The most common
construction procedure is 70% samples used for the
training set and the remaining as the test set. Let us
consider a hold-out set Dh be a subset of D of size h,
and let Dt be DnDh. Now the hold-out estimation is
defined as follows:

Accho ¼
1

h

X

hvi;yii 2Dh

dðIðDt; viÞ; yiÞ;

where d(i, j) = 1, if i = j and 0 otherwise.
The cross-validation method [26] estimates the

average percentage of correct classification for all
folds. For example, in the 10-fold cross-validation
method, we first split a dataset by 10-fold. Each fold
contains 90% of the samples to construct a model and
the remaining 10% is used to evaluate the model
performance. Finally, we estimate the accuracy is the
overall number of correct classification averaged
across all 10-fold. Let us consider,Di is the test set that
includes sample xi ¼ hvi; yii and the cross-validation
accuracy estimation is defined as:

Acccv ¼
1

n

X

hvi;yii 2D

dðIðDnDðiÞ; viÞ; yiÞ;

where n is the number of folds.
We call the combined performance of the hold-out

and cross-validation accuracy estimation for all given
problems of a given classifier ‘percentage of correct
classification’ in our relative weighted performance
measure methodology.

Van Rijsbergen introduced a new measure for
classifier evaluation [27,28]. The F-measure is the
simplified form of E-measure and can be explained by
following the same notation in Table 1:
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Table 1

Contingency table for a binary class problem

Model says
class 1 (#ve)

Model says
class 2 (+ve)

Supervisor says
class 1 (#ve)

a b a + b = k

Supervisor says

class 2 (+ve)

c d c + d = n # k

a + c

= r

b + d

= n # r

a + b + c + d

= n



Bajic introduced average score measure with the
combination of TPR and TNR to choose a prediction
software [34]. The E-measure [28] can be formulated
by using recall and precision as follows:

Eb ¼ 1# 1

að1=PÞ þ ð1# aÞð1=RÞ)1# ðb2 þ 1ÞPR
b2Pþ R

;

where a ¼ 1

b2 þ 1
;

where b is the balance parameter for R and P. For
example, b = 0.5 means R is half important as P. We
explore the b values ranging between 0 and infinity to
control the imbalance of the classes’ distribution.

By replacing R with TP in the above equation, we
can derive the weighted F-measure as follows:

Fb ¼ ðb2 þ 1ÞPTP

b2ðPþ TPÞ
:

Now we calculate the ranking performance for a given
algorithm based on TPR, TNR, percentage of correct
classification and F-measure. The best performing
algorithm on each of these measures is assigned the
rank of 1 and the worst is 0. Thus, the rank of the jth
algorithm on the ith dataset is calculated as:

Rij ¼ 1#
eij #max ðeiÞ

min ðeiÞ #max ðeiÞ
;

whereeij, for example,mightbe thepercentageofcorrect
classification for the jth algorithmondataset i, and ei is a
vector of accuracy for dataset i. By using this equation, a
detailed comparison of algorithm performance can be
provided (see, for example, Appendix B, where the
measure used is percentage of correct classification).

The computational complexity considers the model
training time as well as the test set evaluation time. We
do not singularly place importance on either training or
test time, because some of the algorithms (for example,
IBK), needmore time to classify the test set than training
the model. The total number of best and worst ranks of
all classifiers based on TPR, TNR, percentage of correct

classification, weighted F-measure and computational
complexity is presented in Appendix C.

Next, we evaluate the performance of all the
classifiers (using the total number of best and worst
performances)among the100problems,andcall this the
formulated classifier performance (Ri). The total
number of the best and worst ranking for TPR, TNR,
percentage of correct classification, weighted F-
measure and computational complexity for all the
classifiersareevaluatedbyusingthe followingequation:

Ri ¼
1

r

si # f i
n

! "
þ 1

r
;

where r = 2 is the weight shifting parameter, si is the
total number of success (best) cases for the ith classifier,
fi is the total number of failure (worst) cases for the same
classifier, and n is the total number of datasets.

Finally, we measure the relative weighted perfor-
mance for all the classifiers with two different weights
for ranking average accuracy (ranking average
performance of TPR, TNR, percentage of correct
classification and weighted F-measure) and computa-
tional complexity using the following equation:

Z ¼ aai þ bti;

where a and b are the weight parameters for ranking
average accuracy against computational complexity.
The average accuracy and complexity are denoted by
ai and ti. We consider the range for a and b between 0
and 2. By changing the value of b, we observe the
effect of the relative importance of accuracy and
computational complexity to our perception of classi-
fier performance.

4. Experimental results

4.1. Performance analysis

The formulated classifier performance (Ri) for
TPR, TNR, percentage of correct classification,
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recall ðRÞ ¼ number of true positives

number of false negativesþ number of true positives
¼ d

cþ d
;

precision ðPÞ ¼ number of true positives

number of false positivesþ number of true positives
¼ d

bþ d
:



weighted F-measure and computational performance
are summarised in Tables 2 and 3.

We observe using the TPR and TNR measures that
NN was the best performing algorithm and the second
best was KD (as shown in Table 2 by bold face). For
the percentage of the correct classification measure,
SVM was the first choice in our experiment closely
followed by NN and C4.5. C4.5/PART was the first
choice for the weighted F-measure and the second
was NN. On average accuracy measures, NN

performed best. The OneR classifier performed worst
based on various accuracy measures. However, OneR
was the number one choice if we give importance only
on execution time rather than classification accuracy;
the second choice was NB (as shown in Table 3). The
combined performance was an average combination
of average accuracy and computational time for all the
algorithms is presented in Fig. 1. OneR performed
best, IBK, C4.5, PART, KD and SVM performed very
close to each other based on the combined perfor-
mance measure. So, we can choose any one as a
second best algorithm among them. However, NN
performed worst in our experiment based on combined
performance measure as shown in Fig. 1.

The relative weighted performance (Z) calculated
by considering b as independent but a fixed is shown
in Fig. 2. We kept constant the average accuracy
weight a = 1 but we changed the weight for
computation time b from 0.2 to 2. When ti is less
important than ai, most of the classifiers performed
similarly, but OneR was the worst. After equally
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Table 2
Formulated ranking averaged across test set classification problems based on a variety of measures (where a rank of 1 means best performing

algorithm, and 0 means worst performing algorithm)

Classifier

IBK C4.5 PART KD NB OneR SVM NN

TPR 0.595 0.595 0.595 0.61 0.495 0.365 0.565 0.645
TNR 0.54 0.6 0.6 0.6 0.44 0.385 0.595 0.605
Percentage of correct classification 0.505 0.615 0.55 0.565 0.385 0.325 0.62 0.615
F-measure 0.565 0.625 0.625 0.575 0.48 0.365 0.56 0.62

Average accuracy 0.551 0.609 0.593 0.588 0.45 0.36 0.585 0.621

Table 3

Computational performance

Classifier Execution time

IBK 0.535

C4.5 0.535
PART 0.52

KD 0.51

NB 0.705
OneR 0.995
SVM 0.5

NN 0.015

Fig. 1. Combined performance for the classifiers.



weighting a and b, OneR became the first choice in
our study, and NN performed worst. All the others
classifier performances were close to each other.
Therefore, we can conclude that the performance of
the classifiers depends significantly upon our percep-
tion of the relative importance of accuracy versus
computation time.

4.2. Significance test

The statistical significance t-test results are
summarised in Table 4. The test input was the average
performance of the combined performance measures
for each algorithm.

The output ofH = 0 in the above table indicates that
we may not reject the null hypothesis and that there is
no statistically significant difference between the
algorithms when we consider their performance
averaged across the datasets, equally weighting
accuracy and time considerations. The higher value
of the significance level showed that there has no
significant differences among SVM, IBK, C4.5,
PART, KD, NB, OneR, and NN. The lower and upper
CI values for all algorithms showed a closely balanced
skewed position. The 95% confidence intervals of all
classifiers support acceptance of the null hypothesis.
So, based on the average combined performance
measure, we may argue statistically that there was no
significant performance difference among the classi-
fiers.

But, in some of specific cases there is a remarkable
performance difference among the algorithms. For
example, the classification percentage of accuracy for
‘new-thyroid’ dataset by C4.5, SVM and NN was
93.59, 79.95 and 96.01. When we compare the
performance of the algorithms based only on the
average across the datasets, we tend to find that all the
algorithms perform similarly on average, with some
appearing to be superior depending on the chosen
performance measurement and certain datasets, but
with no consistently superior algorithm emerging
(consistent with the NFL theorem). It is sensible
therefore to use the empirical results we have
generated to try to understand the conditions under
which certain algorithms perform well.

S. Ali, K.A. Smith / Applied Soft Computing 6 (2006) 119–138126

Fig. 2. Relative performance for the classifiers, when a (=1) is fixed.

Table 4

Results for the t-test

Algorithms Hypothesis

(H)

Significance

(d)
Confidence interval

(CI)

SVM

vs. IBK

0 0.8039 #0.8417 to 1.0845

SVM
vs. C4.5

0 0.7513 #1.0675 to 0.7715

SVM

vs. PART

0 0.5776 #1.1688 to 0.6533

SVM

vs. KD

0 0.6313 #1.1356 to 0.6905

SVM

vs. NB

0 0.8067 #1.0137 to 0.7896

SVM

vs. OneR

0 0.9566 #0.8729 to 0.9224

SVM

vs. NN

0 0.8960 #0.9522 to 0.8337



5. Classifier selection methodology

5.1. Rule-based classifier selection

The trial-and-error approach is a very common
procedure to select the best classifier. It is a difficult
task to find the best classifier by following this
procedure. If we are interested in applying these
algorithms to a particular problem, then we have to
consider which algorithm is more suitable for which
problem. The suitability test can be done from rules
with the help of dataset characteristics combined with
knowledge about how the different algorithms per-
form on these datasets. Datasets can be characterised
by using certain features such as number of attributes,
their types, amount of unknown values, statistical
measures or other information measures.

5.2. Datasets characteristics measurement

Each dataset can be described by a number of
simple, statistical and information theoretical mea-
sures [4,15]. We average some statistical measures
over all the variables and take these as a global
measure of the dataset characteristics.

5.2.1. Simple measures
Some simple measures for dataset characteristics

are shown in Table 5. These are the dimensions of each
problem, the number of minority and majority samples
and the nature of the variables.

5.2.2. Statistical measures
Descriptive statistics can be used to summarise the

relevant characteristics of any large dataset. The
following section lists some measures provided by the

Matlab Statistics Toolbox [16] and other sources [29–
32] (Table 6).

5.2.3. Information theoretical measures
The quality of the relationships in the data can also

be assessed using information theoretical measures.
We represent these measures formulation and expla-
nation from [4,15]. A list of information theoretical
measures are summarised in Table 7.

6. Rules for classifier selection

Now that the characteristics of each dataset can be
quantitatively measured, we can combine this infor-
mation with the empirical evaluation of classifier

S. Ali, K.A. Smith / Applied Soft Computing 6 (2006) 119–138 127

Table 5

Simple measures for characterisation of each dataset

Measure Notation

Number of attributes a
Number of samples e

Percentage of minority class cmin

Percentage of majority class cmax

Percentage of binary variables bvar
Percentage of discrete variables dvar
Percentage of continuous variables cvar
Percentage of missing values mper

Table 6
Statistical measures for characterisation of each dataset

Measure Notation

Geometric mean GM

Harmonic mean HM

Trim mean TM
Mad M

Variance V

Standard deviation std

Prctile Pr
Interquartile range IQR

Maximum and minimum eigenvalue Emax and Emin

Canonical correlation CC

Index of dispersion ID
Center of gravity CG

Kurtosis k

Skewness s
Correlation coefficient r

Z-score Z_score

Normal cumulative distribution test pncdf
Chi-square test pcst

Table 7

Information theoretical measures for characterisation of each dataset

Measure Notation

Mean entropy of variables H(X)
Entropy of classes H(C)

Mean mutual entropy

of class and variables
H̄ðC;XÞ

Equivalent number
of variables

ENV

Noise–signal ratio NSR

All these data characteristics formulation is available in

Appendix D.



performance presented in Section 4. Based on the 100
classification problems, we can then train a rule-based
classifier (C5.0) to learn the relationship between
dataset characteristics and algorithm performance.

After identifying the datasets characteristics matrix
with class values, we use 90% of the samples to
construct the rule-based model for classifier selection.
The class labels in the matrix are assigned based on the
algorithm performance rank. The labels are assigned
to the classifiers IBK to NN from 1 to 8 (same order as
shown in Fig. 1). For example, if NN has performed
with the highest accuracy for the dataset A, then the
class membership for problem A is 8. We provide the
emphasis to assign the best algorithm label based on
the combined average performance. The supervised
learning algorithm C5.0 is used to generate the rules. It
has two parameters, first one is c called pruning
confidence factor and the second one m is called
minimum cases. The pruning factor has affect on error
estimation and hence the severity of pruning the
decision tree. The smaller value of c affects more
pruning of the generated tree and higher value affects
less pruning. The minimum cases m offers the degree
to which the initial tree can fit the data. Every branch
point in the tree, the value of m should be at least two.
Higher value of m can offer a form of more pre-
pruning decision tree [33]. For detail formulations, see
[17]. After suitable tuning, the best rules are selected
for the classifier. Finally, we use 10-fold cross-
validation to verify the best rule. The significance of
the best rule for classifier selection is measured, like
for association rules, by support and confidence based
on 10-fold cross-validation performance which
describes the quality of a rule. The support and
confidence can be summarised as follows:

We generated the rules for all classifiers based on the
classification performance of 100 datasets. We find the
suitable pruning confidence level (c) between 60 and
90 and the number of minimum cases (m) is 2 to 8. The
rules and evaluation performance based on 10-fold
cross-validation are presented in Tables 8–15.

6.1. Rules for IBK

The rules for IBK are generated with c = 85 and
m = 4 as follows:

IF (V<= 59.8893 AND r<= 0.51025 AND s
> 0.92751 AND ID <= #0.88889 AND NSR <=
22.1654) OR (Pcst > 0.75051 AND ID >
#0.066412) THEN we should choose IBK
classifier.

6.2. Rules for C4.5

The rules for C4.5 are generated with c = 80 and
m = 2 as follows:

IF (IQR <= 10.2273 AND Pr > 12.521) OR
(M <= 0.72494) THEN we should choose
C4.5 classifier.

6.3. Rules for PART

The rules for PART are generated with c = 65 and
m = 2 as follows:
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Table 8
IBK classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied IBK technique best

Yes No

Yes 1.5 0.5

No 0 2

Support: 75%; confidence: 75%.

Table 9
C4.5 classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied C4.5 technique best

Yes No

Yes 2.5 0.5

No 0 3

Support: 83.33%; confidence: 83.33%.

support ¼ number of dataset that match dataset conditions and best algorithm prediction

total number of datasets
;

confidence ¼ number of dataset that match best algorithm prediction

number of dataset that match dataset conditions
:



IF (GM> 0.1257 AND Z_score<= 35.7787
AND r <= 0.28951 AND s <= 0.92751)THEN
we should choose PART classifier.

6.4. Rules for KD

The rules for KD are generated with c = 75 and
m = 4 as follows:

IF (NSR <= #73.9496) OR (CC <= 0.229
AND r > 0.1805) OR (NSR > 1362.221) THEN
we should choose KD classifier.

6.5. Rules for NB

The rules for NB are generated with c = 85 and
m = 4 as follows:

IF CG> 0.2292 THEN we should choose NB
classifier.

6.6. Rules for OneR

The rules for OneR are generated with c = 70 and
m = 2 as follows:

IF (e <= 1728 AND k > 19.8879) THEN we
should choose OneR classifier.

6.7. Rules for SVM

The rules for SVM are generated with c = 70 and
m = 2 as follows:

IF Pr <= 364.6066 THEN we should
choose SVM classifier.

6.8. Rules for NN

The rules for NN are generated with c = 80 and
m = 2 as follows:

IF std <= 9970.047 THEN we should
choose NN classifier.

We found the confidence levels of all the generated
rules were more than 75%. The results have been tested
using 10-fold cross-validation. The rules for SVM
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Table 10
PART classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied PART technique best

Yes No

Yes 1.6 0.4

No 0 2

Support: 80%; confidence: 80%.

Table 11
KD classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied KD technique best

Yes No

Yes 1.5 0.5

No 0 2

Support: 75%; confidence: 75%.

Table 12

NB classifier selection rule evaluation averaged across 10-fold
cross-validation test sets

Condition satisfied NB technique best

Yes No

Yes 1.8 0.2

No 0 2

Support: 90%; confidence: 90%.

Table 13
OneR classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied OneR technique best

Yes No

Yes 1.7 0.3

No 0 2

Support: 85%; confidence: 85%.

Table 15
NN classifier selection rule evaluation averaged across 10-fold

cross-validation test sets

Condition satisfied NN technique best

Yes No

Yes 2.7 0.3

No 0 3

Support: 90%; confidence: 90%.

Table 14

SVM classifier selection rule evaluation averaged across 10-fold
cross-validation test sets

Condition satisfied SVM technique best

Yes No

Yes 2.8 0.2

No 0 3

Support: 93.33%; confidence: 93.33%.



selection showedhigher confidence performance.These
rules might be useful to determine which technique is
most appropriate for a new classification task.

7. Conclusions

The relative weighted performance measures
showed that there was no single classifier to solve
all 100 classification problems with best performance
over the experiments. The majority of classifiers
showed similar efficiency based on the empirical
results. Researchers have tended to focus on measur-
ing algorithm performance based on the percentage of
correct classification measure. The classifiers C4.5,
NN and SVM were all very competitive as the best
choices in our present study based on this measure.
But the statistical t-test showed there were no
significance differences among the classifiers when
considering a range of accuracy measures and
computational complexity. The most recent classifier,
SVM, received the highest number of best rankings for
all accuracy measures except TPR. But it did not show
any best rank for computational time for any dataset.
We may argue that, as suggested by the NFL theorem,
there is no unique classifier that is likely to perform
best for all problems. Therefore, we may be guided to

choose the most suitable algorithm for a particular
problem by the proposed rule-based method.

In this research, we have proposed a rule-based
classifier selection approach, based on the prior
knowledge on problem characteristics and the
empirical results generated on 100 datasets with 8
classifier algorithms. The main aim of this research is
to assist in the selection of an appropriate classifica-
tion algorithm without the need for trial-and-error
testing of the vast array of available algorithms. The
decision tree induction algorithm C5.0 performed well
to generate the rules for algorithm selection. The
confidence levels of all the rules were over 83% for
C4.5, NN and SVM, which had sample sizes greater
than 25 datasets. The other rules’ confidence levels
were still more than 75% despite their limited sample
size. We suggest considering more classification
problems to extract better rules for IBM, PART,
KD, NB and OneR classifiers. Our aim has been to
determine the rules governing when certain algorithm
(using the default parameter settings in WEKA only)
should be recommended. Naturally, this research
could be extended to consider fine-tuning of each
algorithm and optimal feature selection to improve the
performance of individual algorithm. This is beyond
the scope of the present study however.
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Appendix A. Basic properties of the 100 datasets

Dataset name Majority

instances

Minority

instances

Number of

attributes

abalone 2854 1323 8

adult + stretch 12 8 4
adult-stretch 12 8 4

agaricus-lepiota 4208 3916 22

ann1 3679 93 21

ann2 3355 73 21
att 454 446 9

Australian 383 307 14

bcw 458 241 9
bcw_noise 444 239 18

bio 121 68 5

bld 200 145 6

bld_noise 200 145 15
bos 598 312 13

bos_noise 339 167 25

breast-cancer-

wisconsin

458 241 9

bupa 200 145 6

c 2500 2500 15
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car 1594 134 6

cmc 1140 333 9

cmc_noise 1140 333 15
crx 273 217 15

darp 1000 500 41

dbha 1400 700 41

dcpga 3002 1000 41
dcmpa 4202 1400 41

dero 1000 27 41

depov 1400 27 41

demoh 1000 563 41
dfgh 3002 500 41

dguv 4202 700 41

dmkot 500 27 41

dna 1051 949 60
DNA-n 2419 767 60

eaot 700 27 41

ebrop 563 500 41
ecot 700 563 41

edrop 3002 27 41

efrgo 4202 27 41

erovs 4202 563 41
emro 563 27 41

enprq 563 27 41

echocardiogram 88 43 7

flare 1171 218 10
german 700 300 24

hayes-roth 81 51 5

hco 209 122 19
h-d 164 139 13

hea 150 120 13

hea_noise 150 120 20

heartdiseas_Hungarian 279 15 13
hep 111 29 19

hepatitis 85 70 19

horse-23 232 136 22

horse-colic 244 124 27
hv84 267 168 16

hyp 2711 136 15

hypothyroid 3012 151 25
kr-vs-kp 1669 1527 36

letter-a 6404 263 16

monk1 278 278 6

monk2 395 206 6
monk3 288 266 6

mushroom 4208 3916 22

musk2 5581 1017 166

nettalk_stress 2910 2528 7
new-thyroid 150 65 5

page-blocks 5056 417 10

pendigits-8 3162 336 16

pid 355 177 7
pima 500 268 8

Appendix A. (Continued)

Dataset name Majority

instances

Minority

instances

Number of

attributes
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post-operative 66 24 8

primary-tumor 224 115 17

promoter 53 53 57
sick 2870 293 25

sick-euthyroid 2870 293 25

smo 1290 565 8

smo_noise 1290 565 15
sonar 111 97 60

splice-EI 2415 762 60

t_series 35 27 2

tae 101 50 5
tae_noise 102 49 10

thy 4116 321 21

thy_noise 3488 284 35

tic-tac-toe 626 332 9
titanic 1490 711 3

tmris 51 49 3

ttt 626 332 9
vehicle 346 312 18

votes 267 168 16

wav 2400 1200 21

waveform 2000 1000 40
waveform_noise 3304 1696 21

wav_noise 3345 1655 40

wdbc 357 212 30

wine 107 71 13
wpbc 152 47 33

xaa 54 40 18

xab 51 43 18

Appendix A. (Continued)

Dataset name Majority

instances

Minority

instances

Number of

attributes

Appendix B. Ranked algorithm performance (based on percentage of correct classifications) for the eight
algorithms on each dataset

Dataset name IBK C4.5 PART KD NB OneR SVM NN

abalone 0.5113 0.9315 0.8968 0.6961 0.0000 0.5553 0.8349 1.0000

adult + stretch 0.8133 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000
adult-stretch 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000

agaricus-lepiota 1.0000 1.0000 1.0000 1.0000 0.0000 0.6457 1.0000 1.0000

ann1 0.1680 1.0000 0.9920 0.3280 0.2400 0.0000 0.0960 0.4000

ann2 0.3070 1.0000 0.8509 0.4474 0.2018 0.0000 0.1667 0.3333
att 0.2818 0.6077 0.3278 0.4788 0.7772 0.0000 0.9982 1.0000

Australian 0.3235 0.8442 0.8335 0.3377 0.0000 1.0000 0.9941 0.6423

bcw 0.6826 0.5349 0.5928 0.7066 0.8483 0.0000 1.0000 0.7066

bcw_noise 0.8609 0.5665 0.6176 0.5399 0.9100 0.0000 1.0000 0.9366
bio 0.3239 0.6007 0.5439 0.4366 1.0000 0.0000 0.8172 0.8039

bld 0.7911 0.7727 0.6698 0.6717 0.0000 0.3873 0.4813 1.0000

bld_noise 0.0252 1.0000 0.8957 0.0351 0.1987 0.0000 0.5549 0.9083

bos 1.0000 0.7440 0.6244 0.9882 0.0000 0.3181 0.1004 0.6614
bos_noise 0.0000 0.8513 0.6356 0.0964 0.1078 0.8709 0.9412 1.0000

breast-cancer-wisconsin 0.7928 0.5513 0.4708 0.7062 0.8551 0.0000 1.0000 0.8008
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bupa 0.6133 0.7910 0.7294 0.6894 0.0000 0.1217 0.2010 1.0000

c 0.8994 0.7384 0.9780 0.9141 0.7684 0.0000 0.7734 1.0000
car 0.3868 0.7113 0.8530 0.3894 0.4318 0.0000 0.7616 1.0000

cmc 0.0086 0.8333 0.6593 0.0000 0.2346 0.9815 1.0000 0.6963

cmc_noise 0.0000 1.0000 0.6032 0.0839 0.3116 0.9867 1.0000 0.9814
crx 0.6151 0.9446 0.8166 0.6514 0.0000 1.0000 1.0000 0.7697

darp 1.0000 0.8711 0.9072 0.8969 0.0000 0.4485 0.5412 0.8711

dbha 1.0000 0.8719 0.9677 0.9924 0.0000 0.8491 0.9118 0.9070

dcpga 0.9775 0.8707 0.9297 1.0000 0.0000 0.9143 0.9361 0.9691
dcmpa 1.0000 0.2667 0.5667 1.0000 0.4667 0.0000 1.0000 1.0000

dero 0.9444 0.6852 0.6111 0.9815 0.0000 0.6852 0.8889 1.0000

depov 1.0000 0.9574 1.0000 1.0000 0.0000 0.8511 1.0000 0.9574

demoh 1.0000 0.4583 0.4583 0.9250 0.4917 0.0000 0.4583 0.8417
dfgh 0.9200 0.8400 0.8400 0.9200 0.4400 0.0000 1.0000 1.0000

dguv 0.9934 0.9883 0.9914 1.0000 0.0000 0.9654 0.9771 0.9873

dmkot 1.0000 0.8555 0.9609 1.0000 0.4023 0.0000 0.9688 0.9883
dna 0.9853 0.9529 0.9912 1.0000 0.9294 0.0000 0.9912 0.9912

DNA-n 0.7083 0.6528 0.6528 1.0000 0.0000 0.8889 0.8194 0.6528

eaot 1.0000 0.0000 0.0395 1.0000 0.6184 0.2895 0.8026 1.0000

ebrop 0.9193 0.8327 0.8701 1.0000 0.0000 0.6654 0.9134 0.9567
ecot 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000

edrop 0.9867 0.8267 0.8867 1.0000 0.0000 0.7933 0.9467 0.9600

efrgo 0.8000 0.6500 0.5000 1.0000 0.4000 0.0000 0.6000 0.7500

erovs 0.7561 0.6341 1.0000 0.9756 0.0000 0.2927 0.9756 0.9756
emro 0.0000 1.0000 0.9411 0.3611 0.6320 0.5142 0.4223 0.5107

enprq 0.0464 0.9642 0.9272 0.0000 0.7748 0.1010 0.8187 1.0000

echocardiogram 0.0000 0.5494 0.3637 0.4718 1.0000 0.3067 0.9882 0.5793

flare 0.0000 1.0000 0.6540 0.3030 0.1641 0.9874 0.9444 0.3939
german 0.0000 0.5649 0.2830 0.3872 0.8606 0.2936 1.0000 0.4021

hayes-roth 0.6338 0.9474 1.0000 0.5478 0.2619 0.0000 0.1620 0.7146

hco 0.5855 1.0000 0.6703 0.3001 0.2611 0.6958 0.6676 0.0000
h-d 0.3816 0.6068 0.6032 0.4012 1.0000 0.0000 0.9833 0.6821

hea 0.3264 0.5309 0.4699 0.3063 1.0000 0.0000 0.9679 0.3857

hea_noise 0.3628 0.3209 0.4652 0.4488 1.0000 0.0000 0.8504 0.5707

heartdiseas_Hungarian 0.0000 0.7866 0.8534 0.4976 1.0000 0.8701 0.9380 0.8497
hep 0.3333 0.0000 0.3743 0.2935 0.7725 0.4721 1.0000 0.3333

hepatitis 0.3091 0.0000 0.4942 0.1504 0.8298 0.3008 1.0000 0.1950

horse-23 0.4052 1.0000 0.8529 0.0000 0.0049 0.6356 0.4984 0.1127

horse-colic 0.0000 0.5297 0.5427 0.6611 0.5065 1.0000 0.5909 0.6060
hv84 0.4184 0.8793 1.0000 0.4099 0.0000 0.9456 0.9541 0.8673

hyp 0.0000 1.0000 0.8197 0.1502 0.3991 0.2403 0.0858 0.3605

hypothyroid 0.0000 1.0000 0.8866 0.0773 0.2835 0.2165 0.0412 0.2474
kr-vs-kp 0.8577 1.0000 0.9911 0.8928 0.6405 0.0000 0.8868 0.9962

letter-a 1.0000 0.8323 0.8230 0.9814 0.5932 0.0000 0.7609 0.9193

monk1 0.6450 0.8871 0.8455 0.7750 0.0000 0.1886 0.0004 1.0000

monk2 0.8183 0.8915 1.0000 0.8277 0.0000 0.0060 0.0060 0.5438
monk3 0.1060 1.0000 0.9963 0.1551 0.6218 0.0000 0.0100 0.9098

mushroom 0.9989 1.0000 0.9968 1.0000 0.0000 0.8236 0.5736 0.7760

musk2 0.7177 0.7735 0.8122 0.5660 0.0000 0.3272 0.6633 1.0000

nettalk_stress 1.0000 0.4501 0.5894 0.9927 0.5052 0.0000 0.8857 0.6840
new-thyroid 1.0000 0.8187 0.7851 0.8782 0.7803 0.7233 0.0000 0.9640

page-blocks 0.7851 1.0000 0.9731 0.7672 0.2597 0.0000 0.3224 0.7940

pendigits-8 1.0000 0.9433 0.9515 0.9943 0.0000 0.4842 0.8493 0.9931

Appendix B. (Continued)

Dataset name IBK C4.5 PART KD NB OneR SVM NN
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pid 0.0000 0.7326 0.6221 0.1950 0.8635 0.5803 1.0000 0.6927

pima 0.0000 0.4853 0.4791 0.1283 0.7929 0.1917 1.0000 0.6940

post-operative 0.1077 1.0000 0.2745 0.0000 0.7352 0.8826 0.8826 0.0388
primary-tumor 0.3990 0.5859 0.8258 0.4545 0.5202 0.0202 1.0000 0.0000

promoter 0.5175 0.3818 0.6721 0.5921 0.9600 0.0000 1.0000 0.9760

sick 0.5705 1.0000 0.9899 0.6594 0.0000 0.5940 0.1913 0.7131

sick-euthyroid 0.8488 1.0000 0.9835 0.8631 0.0000 0.9045 0.7904 0.9110
smo 0.0000 0.8804 0.8016 0.0452 0.9956 0.9159 1.0000 0.9159

smo_noise 0.0492 0.3956 0.7147 0.0000 0.9815 0.7147 1.0000 0.6035

sonar 1.0000 0.4447 0.4861 0.9730 0.2186 0.0000 0.6367 0.8502

splice-EI 0.2756 1.0000 0.9570 0.4085 0.9673 0.0000 0.9308 0.9924
t_series 0.0000 1.0000 1.0000 0.6118 0.5897 0.3711 0.2001 0.4879

tae 1.0000 0.3064 0.1779 0.6264 0.0000 0.1243 0.3183 0.2834

tae_noise 0.3677 0.2973 0.0000 0.3230 1.0000 0.5756 0.6443 0.1065

thy 0.2193 1.0000 0.9697 0.2549 0.2478 0.4973 0.0000 0.5027
thy_noise 0.0000 1.0000 0.9960 0.1918 0.6902 0.8471 0.5198 0.4200

tic-tac-toe 0.6565 0.7880 0.8993 1.0000 0.1301 0.0000 0.0187 0.3123

titanic 0.9559 0.8529 1.0000 0.9559 0.0000 0.0294 0.0294 0.8015
tmris 0.0000 0.4211 0.4211 0.9474 0.3684 0.8947 1.0000 0.8421

ttt 0.9993 0.5444 0.8448 1.0000 0.0000 0.0052 0.9825 0.9491

vehicle 0.7329 0.7115 0.7239 0.7324 0.0000 0.1010 0.4508 1.0000

votes 0.3142 1.0000 0.9633 0.3110 0.0000 0.8676 0.9777 0.6667
wav 0.6567 0.6059 0.7660 0.6128 0.6798 0.0000 0.8853 1.0000

waveform 0.6870 0.6417 0.7843 0.5591 0.7130 0.0000 0.9983 1.0000

waveform_noise 0.4676 0.5464 0.7215 0.2014 0.6646 0.0000 1.0000 0.9807

wav_noise 0.4046 0.5714 0.6796 0.3064 0.6697 0.0000 0.9298 1.0000
wdbc 0.7861 0.6428 0.6319 0.8078 0.5114 0.0000 1.0000 0.9066

wine 0.8076 0.6540 0.7185 0.8076 0.8521 0.0000 1.0000 0.9479

wpbc 0.4204 0.6341 0.8085 0.4355 0.0000 0.1663 0.9607 1.0000
xaa 0.4783 0.5011 0.5995 0.4901 0.2139 0.0000 0.3370 1.0000

xab 0.7361 0.4697 0.6019 0.7516 0.3889 0.0000 0.3143 1.0000

Appendix B. (Continued)

Dataset name IBK C4.5 PART KD NB OneR SVM NN

Appendix C. Count of best and worst performances by each algorithm across the set of 100 problems,
using different types of measures

1. Percentage of correct classification measure.

Classifier

IBK C4.5 PART KD NB OneR SVM NN

Worse 16 3 1 5 32 39 2 2

Best 17 26 11 18 9 4 26 25

2. TPR measure.

Classifier

IBK C4.5 PART KD NB OneR SVM NN

Worse 8 6 1 3 28 40 17 3
Best 27 25 20 25 27 13 30 32



Appendix D. Formulation for data characteristics
measurement

D.1. Statistical measures

D.1.1. Geometric mean (GM)
The geometric mean of a sequence fXigni¼1 is:

GM ¼
Yn

i¼1

Xi

" #1=n
:

D.1.2. Harmonic mean (HM)
The harmonic mean HM(X1, . . ., Xn) of n points Xi

is:

HM ¼ nPn
i¼1 1=Xi

:

D.1.3. Trim mean (TM)
The trim mean measures the arithmetic mean of a

sample X excluding the specified trim fraction from
the same variable. The trim fraction is user dependent
parameter. We consider 20 for this parameter value
over the experiment. The trimmed mean is a robust
estimate of the center location of a sample. For
outliers’ dataset, the trimmed mean is a more
appropriate estimation of the center of the dataset.

D.1.4. Mad (M)
The mad estimates the mean absolute deviation of a

dataset [35].

D.1.5. Variance (V)
The variance is use to characterize the dispersion

among the measures in a given population. It
calculates the mean of the scores, and then measures
the amount that each score deviates from the mean and
then squares that deviation for a given population.
Numerically, the variance equals the average of the
squared deviations from the mean [36].

D.1.6. Standard deviation (std)
The std measures the spread of a set of data as a

proportion of its mean:

std ¼ 1

n# 1

Xn

i¼1

ðxi # x̄Þ2
 !1=2

;

where x̄ ¼ 1

n

X
xi; n is the sequence of lengths:

D.1.7. Prctile
Prctile calculates a value for a variable that is

greater than a certain percentage in the same variable.
We consider the percentage value is 90 over the all
datasets.

S. Ali, K.A. Smith / Applied Soft Computing 6 (2006) 119–138 135

3. TNR measure.

Classifier

IBK C4.5 PART KD NB OneR SVM NN

Worse 12 6 2 5 38 38 14 7

Best 20 26 22 25 26 15 33 28

4. Weighted F-measure.

Classifier

IBK C4.5 PART KD NB OneR SVM NN

Worse 16 3 1 8 24 38 18 3

Best 29 28 26 23 20 11 30 27

5. Computational complexity measure.

Classifier

IBK C4.5 PART KD NB OneR SVM NN

Best 7 7 4 6 41 99 0 0

Worse 0 0 0 4 0 0 0 97

Appendix C. (Continued)



Some other simple statistical measures including
mean and median are also considered to characterise
the datasets, for details see [16].

D.1.8. Interquartile range (IQR)
The IQR is used as a robust measure of scale and

measures the distance between the 25th and the 75th
percentile [29]. The hypothesis is, if the variables are
approximately normal, then IQR/s ( 1.3,wheres is the
standard deviation of the population. Another name of
25th percentile is semi-interquartile range (siqr).

D.1.9. Maximum and minimum eigenvalues
The maximum and minimum eigenvalues are the

maximum and minimum variances of a dataset. We
use the sample covariance matrix to calculate the
eigenvalues:

R ¼ 1

n

Xn

pi¼1

XðpiÞ
0XðpiÞ:

D.1.10. Canonical correlation (CC)
Correlation coefficients can be interpreted by the

square root of the eigenvalues of a matrix. Because the
correlations pertain to the canonical variates, so they
are called canonical correlations for details [30].

D.1.11. Index of dispersion (ID)
The larger value of ID indicates the datasets are

widely scattered, otherwise it is closely clustered [31]:

ID ¼ kðN2 #
P

f 2Þ
N2ðc# 1Þ

;

where N is the number of scores, c is the number of
categories of the variables and

P
f 2 is the sum of the

squared frequencies over the categories.

D.1.12. Center of gravity (CG)
CG measures the Euclidean norm between minor-

ity and majority classes. The minimum value indicates
the closeness between groups and the maximum
indicates the dispersion between groups:

CG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðai;j # bi;jÞ

q
;

where a and b belong to the center points of these two
groups.

D.1.13. Skewness and kurtosis
The skewness (s) and kurtosis (k) [16] of a

distribution are defined as:

s ¼ EðX # mÞ3

s3
; k ¼ EðX # mÞ4

s4
;

where m is the mean and s is the standard deviation
of X.

D.1.14. Correlation coefficient
The sample correlation coefficient between X and Y

is denoted by rxy or simply by r [32] as follows:

r ¼
sxy
sxsy

¼ 1

n# 1

Xn

i¼1

Xi # X̄

sx

! "
Yi # Ȳ

sy

! "
:

D.1.15. Z-score
The value of Z-score is greater than 3 indicates that

the data distribution has outliers [32].

Z-score ¼ X # X̄

s
:

D.1.16. Normal cumulative distribution test
It computes the normal cumulative distribution

function [16] of a normal distribution is:

pncdf ¼ FðXjm; sÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p
Z X

#1
e#ðt#mÞ=2s2

dt:

D.1.17. Chi-square test
The cumulative probability density function [16] of

chi-square test is:

pcst ¼ FðXjnÞ ¼
Z x

0

tðn#2Þ=2e#t=2

2n=2G ðn=2Þ
dt;

where n is the degree of freedom and G()) is the gamma
function.

D.2. Information theoretical measures

D.2.1. Mean entropy of variables
Entropy is a measure of randomness in a variable.

The entropy H(X) of a discrete random variable X is
calculated in terms of qi (the probability that X takes
on the ith value). We average the entropy over all the
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variable and take this as a global measure of the
entropy of the variables:

HðXÞ ¼ #
X

qi log qi; H̄ðXÞ ¼ p#1
X

HðXiÞ:

D.2.2. Entropy of classes
This is similar to the entropy of variables, except

that the randomness in class assignment is measured,
where pi is the prior probability of class Ai:

HðCÞ ¼ #
X

i

pi logpi:

D.2.3. Mean mutual entropy of class and variables
For a measure of common information or entropy

shared between the two variables, if pij denotes the
joint probability of observing class Ai and the jth value
of variable X, if the marginal probability of class Ai is
pi, and if the marginal probability of variable X taking
on its jth value of q j, then the mutual information and
its mean over all variables as defined as:

MðC;XÞ ¼
X

ij

pij log
pij
piqi

! "
and

M̄ðC;XÞ ¼ p#1
X

i

MðC;XiÞ:

D.2.4. Equivalent number of variables (ENV)
This is the ratio between the class entropy and the

average mutual information:

ENV ¼ HðCÞ
M̄ðC;XÞ

:

D.2.5. Noise–signal ratio (NSR)

NSR ¼ H̄ðXÞ # M̄ðC;XÞ
M̄ðC;XÞ

:

A large NS ratio implies that a dataset contains much
irrelevant information (noise) and could be condensed
without affecting the performance of the model.
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