
A Theoretical and Empirical Study
of Search-Based Testing:

Local, Global, and Hybrid Search
Mark Harman and Phil McMinn

Abstract—Search-based optimization techniques have been applied to structural software test data generation since 1992, with a
recent upsurge in interest and activity within this area. However, despite the large number of recent studies on the applicability of

different search-based optimization approaches, there has been very little theoretical analysis of the types of testing problem for which
these techniques are well suited. There are also few empirical studies that present results for larger programs. This paper presents a

theoretical exploration of the most widely studied approach, the global search technique embodied by Genetic Algorithms. It also
presents results from a large empirical study that compares the behavior of both global and local search-based optimization on real-

world programs. The results of this study reveal that cases exist of test data generation problem that suit each algorithm, thereby
suggesting that a hybrid global-local search (a Memetic Algorithm) may be appropriate. The paper presents a Memetic Algorithm along

with further empirical results studying its performance.

Index Terms—Automated test data generation, search-based testing, search-based software engineering, Evolutionary Testing,

Genetic Algorithms, Hill Climbing, schema theory, Royal Road, testing and debugging, testing tools, artificial intelligence, problem
solving, control methods, and search, heuristic methods, algorithms, experimentation, measurement, performance, theory.

Ç

1 INTRODUCTION

THERE is strong empirical evidence [36], [20] that deficient
testing of both functional and nonfunctional properties

is one of the major sources of software and system errors.
In 2002, NIST estimated the cost of software failure to the
US economy at $6! 1010, which was 0.6 percent of GDP at
the time [49].

The same report found that more than one-third of these
costs of software failure could be eliminated by an
improved testing infrastructure.

Automation of testing is a crucial concern [8]. Through
automation, large-scale thorough testing can become
practical and scalable. However, the automated generation
of test cases presents challenges. The general problem
involves finding a (partial) solution to the path sensitization
problem. That is, the problem of finding an input to drive
the software down a chosen path. Of course, the underlying
problem of path sensitization is known to be undecidable,
so research has focused on techniques that seek to identify
near-optimal test sets in reasonable time.

One class of techniques that has received much recent
attention consists of applying search-based optimization to
the problem of software test data generation, an approach
that has come to be known as Search-Based Testing [40]

because it denotes an exemplar of the class of applications
referred to as Search-Based Software Engineering [22], [25].

Search-Based Testing is the process of automatically
generating test data according to a test adequacy criterion
(encoded as a fitness function) using search-based optimi-
zation algorithms, which are guided by a fitness function.
The role of the fitness function is to capture a test objective
that, when achieved, makes a contribution to the desired
test adequacy criterion. Using the fitness function as a
guide, the search seeks test inputs that maximize the
achievement of this test objective.

The search-based approach is very generic, because
different fitness functions can be defined to capture
different test objectives, allowing the same overall search-
based optimization strategy to be applied to very different
test data generation scenarios. The approach has been
successfully applied to structural testing [7], [9], [33], [38],
[39], [43], [51], [56], [57], [60], [61], temporal testing [58],
stress testing [12], mutation testing [30], finite-state machine
testing [15], and exception testing [55]. Of these test
adequacy criteria, the most widely studied has been
structural testing, with a particular focus on branch cover-
age. This has been motivated by the importance of branch
coverage and its variants in testing standards [13], [52] and
the cost of generating branch adequate test inputs by hand.

Evolutionary Testing is a subfield of Search-Based
Testing in which Evolutionary Algorithms are used to
guide the search. These algorithms use a global search (most
commonly, but not exclusively implemented as a Genetic
Algorithm). Evolutionary Testing has been widely studied
in the literature, where it has been applied to many test data
generation scenarios including temporal testing [58], stress
testing [12], and exception testing [55]. Since Evolutionary
Testing uses a global search approach to find structural test

226 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 2, MARCH/APRIL 2010

. M. Harman is with the CREST Centre, King’s College London, Strand,
London WC2R 2LS, UK. E-mail: mark.harman@kcl.ac.uk.

. P. McMinn is with the Department of Computer Science, University of
Sheffield, Regent Court, 211 Portobello, Sheffield S1 4DP, UK.
E-mail: p.mcminn@sheffield.ac.uk.

Manuscript received 9 Sept. 2008; revised 12 Jan. 2009; accepted 22 Apr.
2009; published online 18 Nov. 2009.
Recommended for acceptance by A. Bertolino.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-09-0293.
Digital Object Identifier no. 10.1109/TSE.2009.71.

0098-5589/10/$26.00 ! 2010 IEEE Published by the IEEE Computer Society

data, it is natural to compare the efficiency and effectiveness
of Evolutionary Testing with a widely studied local search
technique. The most widely studied local search technique
for search-based test data generation is Korel’s Alternating
Variable Method [33], [34], [18]; an approach which is a
form of Hill Climbing.

Despite the considerable level of interest in Search-Based
Testing, to date, there has been no theoretical analysis that
characterizes the types of test data generation scenario for
which different types of search (global or local) are predicted
to be effective. As a result, there is a serious lack of firm,
scientific underpinning for what has become a widely
researched approach to test data generation. Furthermore,
the empirical results for Search-Based Testing tend to
consider small, artificial “laboratory programs” rather than
real-world programs with large and complex search spaces.
This leaves the literature with an important open question

Which type of search, global (Evolutionary Testing) or local
(Korel’s Alternating Variable Method), is best for which type
of structural test data generation problem?

Global search techniques aim to overcome the problem
of local optimum in the search space and can thereby find
more globally optimal solutions. Local search may become
trapped in local optima within the solution space, but can
be far more efficient for simpler search problems. In
software engineering terms, this establishes an apparent
instance of the classic trade-off between efficiency and
effectiveness; one might expect global search to achieve
better branch coverage than local search, but at the cost of
greater computational effort. However, as the results in this
paper will show, the situation is a lot more subtle than the
assertion that “global search is more effective but less
efficient.” Perhaps surprisingly, the findings reveal strong
performance for local search.

This paper addresses the question theoretically as well as
empirically. The complex behavior of global search makes it
harder to reason about its theoretical performance. Global
search involves a collection (a “population”) of candidate
solutions that evolve over time, allowing for a wide
sampling of the search space. By contrast, local search uses
the fitness function to evaluate possible moves within the
search space from a single current solution point until a
local optimal is reached.

To address this, the paper presents a theoretical devel-
opment of Holland’s well-known schema theory [53]. The
schema theory was later developed by Mitchell et al. [47] in
a study of the so-called “Royal Road” functions, which
account for the effect of the all-important crossover
operator, unique to Genetic Algorithms. The crossover
operator attempts to build fitter (i.e., better) candidate
solutions from good solutions present in the current
population by recombining the elements that make up the
“chromosome” of each solution. Both the schema theory
and the Royal Road theory were developed purely for
chromosomes represented as bit strings, and have not been
previously adapted for the more complex chromosomes
required by Evolutionary Testing.

According to schema theory [53], Genetic Algorithms
should be effective at generating test data for problems
where the test inputs contain building blocks, i.e., sets of
potentially productive chromosomal elements (“schemata”).

Such building blocks imbue all chromosomes with a higher
fitness than they would have had if their productive schema
were replaced with some other less productive schema.
Furthermore, in order for crossover to work as an effective
evolutionary search operator, there is a necessary “Royal
Road” property, which means that productive schemata
contain subsets which are also productive. Though not all
subsets need to be productive, some must be. If not, then
crossover cannot combine two partially fit individuals to
produce fitter offspring. The paper introduces a general-
ization of both theories that caters for Evolutionary Testing,
showing how the generalized theory predicts the kinds of
“Royal Road” search problem for which Evolutionary
Testing will be well suited.

The paper then presents the results of a large-scale
empirical study that plays two roles: It validates the
predictions of the theory and it answers the questions
concerning the relative performance of global and local
search. Random Testing is also included to provide a
baseline, indicating which branches denote nontrivial
optimization problems. The results show that local search
can be very effective and efficient, but there remain Search-
Based Testing optimization problems for which global
search is the only technique that can successfully achieve
coverage. These were found to display the “Royal Road”
property predicted as ideal for Genetic Algorithms, together
with plateaux features that render local search ineffective.

The strong performance of local search, coupled with the
necessity to retain global search for optimal effectiveness,
naturally points to the consideration of hybrid techniques.
The paper presents a further empirical study designed to
address the question of whether the best overall results can
be achieved by combining Evolutionary Testing and Hill
Climbing into a hybrid Memetic Algorithm approach. The
results confirm that this hybrid approach is capable of the
best overall performance.

More specifically, the primary contributions of the
paper are:

1. The introduction of a schema theory and Royal Road
theory for Evolutionary Testing that predicts the
structural test data generation problems to which
Evolutionary Testing will be well suited.

2. An empirical validation of the predictions of the
theory that provides evidence to support the claim
that Evolutionary Testing does indeed perform well
for Royal Road functions and that this is due to the
effect of the crossover operation.

3. An empirical assessment of the performance of
Evolutionary Testing compared to Hill Climbing
and Random Testing. This empirical study has
several findings, some of which are surprising:

a. The results support the view that Random
Testing can find test data for many cases, but
leaves some hard-to-cover branches for which
more intelligent search is required.

b. Where test data generation scenarios do not
have a Royal Road property, Hill Climbing
performs far better than Evolutionary Testing.
This is surprising, given the emphasis on
Evolutionary Testing in the literature; perhaps

HARMAN AND MCMINN: A THEORETICAL AND EMPIRICAL STUDY OF SEARCH-BASED TESTING: LOCAL, GLOBAL, AND HYBRID SEARCH 227

there has been an overemphasis on Evolutionary
Testing at the expense of other more simple
search techniques.

c. Though Hill Climbing outperforms Evolution-
ary Testing in non-Royal Road scenarios, Royal
Road scenarios do exist in which Evolutionary
Testing is successful and Hill Climbing and
Random Testing fail.

4. An empirical assessment of a hybrid Memetic
Algorithm approach which incorporates Hill Climb-
ing into Evolutionary Testing. Findings from this
empirical study were as follows:

a. The Memetic Algorithm can cover branches
with Royal Road properties, but with lower
success rate than Evolutionary Testing. That is,
though branches are covered after several runs,
the likelihood of success on each individual run
is reduced, indicating that the price of main-
taining success with the Memetic approach is
greater computational cost. Fortunately, test
input generation is a task for which a practicing
software engineer may be prepared to wait for
optimal coverage.

b. The Memetic Algorithm is successful at covering
all but one of the non-Royal Road branches that
Hill Climbing and Evolutionary Testing are
capable of covering. For non-Royal Road
branches, the efficiency of the approach is
consistent with that of Hill Climbing. More
detailed analysis reveals that the single uncov-
ered branch is a special “pathological” case.

c. In terms of coverage, the hybrid approach is
capable of the best overall performance. The
results with Royal Road branches, however,
indicate that fine-tuning of the balance be-
tween intensification and diversification of the
search process is required for a more optimal
performance.

The rest of the paper is organized as follows: Section 2
provides a detailed description of the Evolutionary Testing,
Hill Climbing, and theMemetic Algorithm used in the paper
to facilitate replication. Section 3 introduces the Schema and
Royal Road Theory for Evolutionary Testing, while Section 4
presents the results of the empirical study that both
validates the theory and addresses performance questions,
with Section 5 discussing potential threats to validity.
Section 6 presents related work, while Section 7 concludes.

2 SEARCH-BASED TESTING

Search-based test data generation searches a test object’s
input domain to automatically find test data, guided by a
fitness function. This paper concentrates on structural test
data generation, which is the most widely studied of all the
applications of search-based techniques to the test data
generation problem. The paper considers branch coverage,
a widely used structural test adequacy criterion. However,
the results can be extended to apply to other forms of
structural test data generation.

The check_ISBN function in Fig. 1 is used to demon-
strate some of the concepts in this section. The function,

which is part of the open-source bibclean program, shows
a snippet of a function used to validate ISBNs. The snippet
depicts the central part of the function, which is a loop that
iterates over an array of characters, current_value. The
array represents an ISBN to be validated. Within the loop
body, the function checks if the individual array characters
are valid ISBN characters, while maintaining a checksum.
Once 10 characters have been entered, the checksum is
evaluated to see if the complete ISBN is valid.

The check_ISBN function is used as part of the
empirical study in this paper to evaluate different
approaches to search-based structural test data generation.
For branch coverage, a separate search process is under-
taken in order to find test data that executes each uncovered
branch. A fitness function scores inputs with respect to how
close they were to covering the target branch, and is to be
minimized by the search. Therefore, lower numerical fitness
values represent fitter input vectors.

The fitness function combines a measure known as the
approach level with the branch distance [57]. The approach
level is a count of how many of the branch’s control-
dependent nodes were not encountered in the path executed
by the input. An input which executes more control-
dependent nodes is “closer” to reaching the target in terms
of the control flow graph, and thus, is rewarded with a
lower approach level. Suppose, for example, the target of
the search is to find test data to execute the true branch from
control flow graph node 27 of the check_ISBN function
(“27T”). If the predicate k ¼¼ 10 is reached, all control-
dependent nodes are executed, and the approach level is 0.
If k < 10, however, node 27 is not encountered, and the
approach level is 1. If none of the case statements are true, or
the loop is not even entered, the approach level takes on
higher integer values.

The branch distance is computed using the values of
variables at the predicate appearing in the conditional where
control flow went “wrong”—i.e., where the path diverged
from the target branch. It reflects how close the predicate
came to switching outcome, causing control to pass down
the desired alternative branch. For example, if the false
branch was taken from node 27 of the check_ISBN

function, the branch distance is computed using the formula
jk# 10j. The closer the value of k is to 10, the “closer” the
conditional is deemed to being true. If the conditional is
encountered several times in the body of the loop, the
smallest branch distance is used.

A full list of branch distance formulas for different
predicate types can be found in McMinn’s survey [40]. The
complete fitness value is traditionally computed by normal-
izing the branch distance and adding it to the approach
level [57] according to the following equation:

fitness ¼ approach levelþ normalizeðbranch distanceÞ:

The branch distance is normalized using the formula:

normalizeðbranch distanceÞ ¼ 1# 1:001#branch distance:

The above normalization formula does not require the
maximum or minimum value of the branch distance to be
known, which would require complex analysis. In princi-
ple, any normalization formula can be used so long as it is

228 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 2, MARCH/APRIL 2010

not so coarse as to be useless in distinguishing input vectors
which produce lower branch distances from those which
result in higher values. For the algorithms featured in this
paper, candidate solutions are compared and ranked
according to their relative fitness values; thus, the absolute
values produced are of less importance.

The next two sections describe in detail the implementa-
tion of Evolutionary Testing, Hill Climbing, and the hybrid
Memetic Algorithm approach used in this paper so as to
facilitate accurate replication.

2.1 Genetic Algorithms and Evolutionary Testing
Genetic Algorithms belong to the family of Evolutionary
Algorithms, which work to evolve superior candidate
solutions using mechanisms inspired by the processes of
Darwinian evolution. The search simultaneously evolves
several individuals in a population, creating a global search.
This section begins with a description of a basic Genetic

Algorithm and then explains how the Genetic Algorithm
used by Evolutionary Testing differs.

2.1.1 Genetic Algorithms

Fig. 2 outlines themain steps of aGeneticAlgorithm. The first
stage is the initialization of a population of n candidate
solutions, known as “individuals,” at random. The chromo-
somes representing each individual are encoded as bit strings
for manipulation by the algorithm. After initialization, the
GeneticAlgorithmenters a loop, comprisingofdistinct stages
of evaluation, selection, crossover, mutation, and reinsertion.

The evaluation phase is simply where each individual is
assessed for fitness using the fitness function. Selection is the
process of choosing “parent” candidate solutions which will
be “bred” in the crossover phase to produce offspring
solutions, and then, subject to a stage of mutation. Crossover
loosely models the exchange of genetic information that
takes place during reproduction in the natural world. There

HARMAN AND MCMINN: A THEORETICAL AND EMPIRICAL STUDY OF SEARCH-BASED TESTING: LOCAL, GLOBAL, AND HYBRID SEARCH 229

Fig. 1. Code snippet of the check_ISBN function. The snippet shows the main loop of the function which iterates over a series of characters. Valid
digits are collated and used to accumulate a checksum. When a certain number of valid characters are entered, the checksum is used to validate the
complete ISBN. The comments in italics are added to identify certain branches of interest to the empirical study in Section 4.

are many choices of crossover operator. Simple one-point
crossover involves selecting a crossover point where two
parent chromosomes are to be spliced in order to form the
composite chromosomes of two children. The example of
Fig. 3 shows the crossover of 2 bit strings at position 3 using
one-point crossover. Mutation involves random modifica-
tion of offspring to introduce diversity into the search.
Traditionally, this involves flipping bits in each individual’s
chromosome at a probability of pm, where pm is typically
1=len, where len is the length of the chromosomal bit string.

As with all evolutionary computation, the hope is that
crossover will combine the best features of both parents to
create super-fit children from fit parents, and that mutation
will also help discover fitter individuals. Where this fails to
take place, bias involved in the selection phase ensures that
less-fit individuals have less chance of being selected to
reproduce in the next iteration of the algorithm and thus
“die out.” One type of selection process is fitness-propor-
tionate selection, where individuals are selected at a prob-
ability that is proportionate to their fitness value compared
to other individuals in the population. However, over-
selection of the best candidate solutions may result in
premature convergence if the populations become domi-
nated by a few superfit individuals. Thus, ranking selection
methods are often preferred. Individuals are ranked in
fitness order, and are then chosen randomly at a probability
proportionate to their rank.

Reinsertion involves forming a new generation of
individuals from the current population and the generated
offspring. One approach is to replace all of the current
population with offspring; another is an elitist strategy,
where the best individuals are retained, taking the place
of some of the weakest newly generated offspring, which
are discarded.

Finally, the new individuals of the population are
evaluated for fitness. At each evaluation stage, a test is
performed to see if the goal of the search has been met, i.e.,
the global optimum has been found, or if the search has
failed, and should be terminated. Termination conditions
tend to test if a certain number of trials (fitness evaluations)
have been performed, or a certain number of loops of the
algorithm (“generations”) have been performed.

2.1.2 Evolutionary Testing

It is the application of Genetic Algorithms to Search-Based
Testing that has become known as Evolutionary Testing. The
rest of this section presents the details of the algorithm
implemented for Evolutionary Testing used in this paper.
The approach is based on a careful replication of the
DaimlerChrysler system for Evolutionary Testing, which
has been widely studied in the literature [6], [7], [57]. The
DaimlerChrysler system has been developed and improved
over a period of over a decade and therefore it can be argued
to be the “state of the art” in Evolutionary Testing. The aim of
using this Evolutionary Testing approach is to ensure that the
results for Evolutionary Testing do, indeed, represent the
state of the art. This lends additional weight to any findings
that reveal superior performance by the comparatively
straightforward Hill Climbing approach, to which Evolu-
tionary Testing is compared.Aswill be seen (in Section 4), the
empirical study does indeed yield such results.

For Evolutionary Testing, the chromosome making up
each individual is a direct representation of the input vector
to the program concerned. The “genes” of the chromosome
represent the input values with which the program will be
executed because test data generation requires chromo-
somes that must respect typing information embodied in
any valid input type [57]. As will be seen in the next section,
the richer chromosome types required by Evolutionary
Testing entail a generalization of Holland’s schema theory
of Genetic Algorithms in order to render it applicable to
Evolutionary Testing.

Evolutionary Testing uses a population of 300 indivi-
duals and, in contrast to the basic Genetic Algorithm
described earlier, is further subdivided into six subpopula-
tions, initially of 50 individuals each. As will be explained
in detail later, the subpopulations compete for a share of
individuals as the search progresses. Individuals can also
migrate from one subpopulation to another at various
predefined points.

The selection strategy first applies a linear ranking [59] of
individuals, in order to promote diversity and prevent
superfit individuals dominating the selection process. Each
individual is assigned a special rank value, which depends
on the individual’s position in the overall population when
sorted by fitness. The linear ranking mechanism assigns
rank values such that the best individual receives a value Z,
the median individual receives a value of 1.0, and the worst
individual receives a value of 2# Z, where Z is a parameter
in the range ½1:0; 2:0(. The value of Z used is 1.7. Stochastic
universal sampling [5] is then used on the basis of the
ranked values, with the probability of an individual being
selected for reproduction proportionate to its fitness.

Once a pool of individuals has been selected, parents are
taken two at a time, starting at the beginning of the list.
Discrete recombination [48] is used as the crossover operator.
Discrete recombination is similar to uniform crossover; every
position in the chromosome is a potential crossover point.

230 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 2, MARCH/APRIL 2010

Fig. 2. Overview of the main steps of a Genetic Algorithm.

Fig. 3. One-point crossover of two bit strings at position 3.

However, unlike uniform crossover, a gene can be copied
into one or both children with an even probability.

The traditional mutation operator described in the last
section, which flips bits in a bit string, cannot be usefully
applied to real values. Evolutionary Testing employs the
mutation operation of the Breeder Genetic Algorithm [48].
This operator mutates genes through the addition and
subtraction of values of varying magnitude, and is designed
to work with the six subpopulations. Each subpopulation
can invoke a different magnitude of mutation; subpopula-
tion #1 can make large mutations, while subpopulation #6
can only make relatively small mutations. As subpopula-
tions compete for a share of the number of individuals that
they can evolve, the search can allocate resources according
to where the most progress is being made. For example, the
input vectors randomly generated at the beginning of the
search could be far away from the required test data. Large
mutation steps result in the largest increases in fitness, and
the subpopulations responsible are rewarded with indivi-
duals transferred from “weaker,” less successful subpopula-
tions. As the search progresses, the general area of the input
domain containing the test data may have been located, with
input vectors found that are closer to executing the required
branch. At this point, fine-tuning is required. The large
mutation step subpopulations fail to make further ground,
eventually losing resources to the small mutation size
subpopulations, which grow in strength.

As with a basic Genetic Algorithm, an input variable xi is
mutated at a probability of pm ¼ 1=len, where len this time
represents the size of the input vector rather than a bit
string. Each subpopulation p (1) p) 6) has a different
mutation step size, stepp ¼ 10#p, which is used in combina-
tion with the variable’s domain size domaini to define the
mutation range, rangei:

rangei ¼ domaini * stepp:

The new value zi is computed using the following formula:

zi ¼ xi + rangei * !:

Addition or subtraction is decided with an even probability.
The value of ! is defined to be

P15
x¼0 "x * 2#x, where each "x

is 1 with a probability of 1/16 else 0. On average, therefore,
one "x will have a value of 1. If the mutated value falls
outside the bounds of the variable, its value is reset to its
lower or upper limit.

The next generation is then constructed using an elitist
reinsertion strategy. The best 10 percent of the current
generation is retained, with the remaining places filled with
the best 90 percent of the new offspring.

After the reinsertion phase, Evolutionary Testing trans-
fers individuals from one subpopulation to another accord-
ing to its competition and migration strategies. Competition
ensures that more resources (i.e., individuals) are devoted
to subpopulations that are performing well. Migration
attempts to avoid subpopulations becoming “stale” and
stagnating due to a lack of diversity among individuals.
Individuals are injected from different subpopulations that
may contain new genetic material. Every 20 generations,
subpopulations exchange a random 10 percent of their
individuals with one another.

The competition algorithm is careful to ensure that the
transfer of resources between subpopulations is not subject

to rapid fluctuation. A progress value is computed for each
subpopulation at the end of each generation. The average
fitness is then found for each subpopulation, using linearly
ranked fitness values for each individual. The subpopula-
tions are then themselves linearly ranked (again, using
Z ¼ 1:7). The progress value progressg of a subpopulation at
generation g is computed using the formula:

0:9 * progressg#1 þ 0:1 * rank:

Every four generations, a slice of individuals is com-
puted for each subpopulation in proportion to its progress
value. Subpopulations with a decreased share lose indivi-
duals to subpopulations with an increased allocation.
However, subpopulations are not allowed to lose their last
five individuals, ensuring that individual subpopulations
cannot disappear completely.

2.2 Hill Climbing

Hill Climbing is a comparatively simple local search
algorithm that works to improve a single-candidate solu-
tion, starting from a randomly selected starting point. From
the current position, the neighboring search space is
evaluated. If a fitter candidate solution is found, the search
moves to that point. If no better solution is found in the
neighborhood, the algorithm terminates. The method has
been called “Hill Climbing” because the process is likened
to the climbing of hills on the surface of the fitness function
(referred to as the “fitness landscape”). Since the fitness is to
be minimized in this case, the equivalent term “gradient
descent” is potentially less confusing.

For example, the coverage of the true branch from the
“case ‘0’” statement of the check_ISBN function is
represented in the fitness landscape visualization of Fig. 4
with the valley touching zero on the x-axis of the fitness
function at 48; the ASCII value for the character “0.”

As with Evolutionary Testing, there are many choices
in the formulation of a Hill Climbing algorithm. The
approach used in this paper is the “Alternating Variable
Method,” which was used by Korel in early papers in the

HARMAN AND MCMINN: A THEORETICAL AND EMPIRICAL STUDY OF SEARCH-BASED TESTING: LOCAL, GLOBAL, AND HYBRID SEARCH 231

Fig. 4. Fitness landscape for the coverage of the true branch from the
case “0” statement of check_ISBN for one array value. The required
value is found at the base of the valley, i.e., 48, the ASCII value of “0.”
The peaks are caused by the space and hyphen characters which cause
the function to drop out of the switch block before the branch distance
can be evaluated for this particular case.

search-based test data generation literature [33], [34], [18],
hereinafter referred to simply as “Hill Climbing.” The
method takes each input variable in turn and adjusts its
value in isolation from the rest of the vector. If altering the
variable does not result in better fitness, the next input
variable is selected, and so on, until no modification of
input values results in an improved fitness.

The alternating variable method proposed by Korel
expects each individual input variable to be of an ordinal
type. In this paper, themethod is extended to handle floating-
point types by requiring that the tester set the accuracy of
each floating-point variable. Character types, such as those
used in the check_ISBN function, are treated as integer
values. Themethod is explained in terms of thecheck_ISBN
function, whose input is an array of characters.

Initially, an input vector is generated at random. The first
input value is selected, and its neighborhood probed.
Suppose the target of the search is the execution of the third
case of the switch statement of the check_ISBN function,
i.e., where a “0” character is required, and the input vector is
< “b,” “5,” “x,” . . . > . The first value of thecurrent_value
array is probed through “exploratory” moves. Neighboring
ordinal values are “a” and “c.” Recall how the fitness
calculationworks; thebranchdistance is the smallest distance
encountered in the loop. The second element of the array, “5,”
is the closest to “0.” Therefore,modifying the first value of the
array has no effect on fitness. However, exploratory moves
around the second element, “5,” do have an effect—the value
“4” reduces the branch distance by 1 as it is one character
closer to the target “0.”

Once a better fitness has been found, further “pattern”
moves are made in the direction of improvement. In this
paper, the value of the ith move mi made in the direction of
improvement, dir 2 f#1; 1g, is computed using mi ¼
2i * 10#accv * dir, where accv is the accuracy set for each
floating-point variable in decimal places, and is zero for
integer and character types.

Successive patternmove values forcurrent_value[1],
moving through the respective integer (ASCII) values, are,
therefore, 52 (“4”—the initial move), 50 (“2”), 46 (“.”). At the
consideration of “.”, accelerated pattern moves lead the
search to miss the base of the valley. This is recognized
through a nonimprovement of fitness. Therefore, the search
stops and reestablishes a new direction through further
exploratory moves, proceeding with new pattern moves
from this point. Eventually, the character value “0” (ASCII
value 48) is found for current_value [1].

A well-known problem with local search methods like
Hill Climbing is their tendency to become trapped in a
local minima. For example, consider again coverage of the
true branch from node 27 of the check_ISBN function.
The relationship between the values of the input cur-

rent_ value and values of the variable k used in the
nodes s predicate is not as simple and direct as that for the
case statements previously considered. For the most part,
exploratory moves for values of current_value have no
effect on k, and result in the same fitness value. The fitness
landscape for this branch is depicted in Fig. 5. It shows one
large plateaux. The test data are found where the surface of
the fitness landscape touches zero on the z-axis, i.e., the
four pits. However, the predominantly flat surface does not
lead the search to their location. On encountering such

fitness-invariant plateaux, Hill Climbing terminates with-
out finding the required test data. In order to address this
problem, Hill Climbing is restarted at a new randomly
chosen start point many times, until a budget of fitness
evaluations has been exhausted.

2.3 Hybrid Memetic Algorithm Approach
Memetic Algorithms are Evolutionary Algorithms which
employ a stage of local search to improve each individual at
the end of each generation.

The Memetic Algorithm used in this paper combines the
Evolutionary Testing and Hill Climbing methods described
in the previous section. However, some important modifica-
tions are made in order to balance the new hybrid
algorithm’s abilities to 1) intensify the search, i.e., to
concentrate on an explicit subregion of the search space,
and 2) diversify the search, i.e., explore new and unseen areas.

First, the Hill Climbing phase terminates for each
individual upon reaching a local optima and does not
restart. Second, a smaller population size of 20 is employed,
without the use of subpopulations. In the hybrid algorithm,
Hill Climbing is used to intensify the search on particular
areas of the search space, effectively fulfilling the role of the
subpopulations with different mutation step sizes used
with Evolutionary Testing. Since diversification does not
happen until the end of each generation, in the form of
crossover and large mutation steps, a reduced population
size is also necessary to prevent the search spending the
majority of its time merely intensifying around the space of
its current set of individuals.

Finally, the Breeder Genetic Algorithm mutation opera-
tor is replaced with uniform mutation, which encourages
greater diversification, balancing the high intensification of
the Hill Climbing phase. Uniform mutation simply involves
overwriting an input variable value with a new value from
its domain, chosen uniformly at random. The same
probability of mutation is used, i.e., pm ¼ 1=len.

3 THEORETICAL FOUNDATIONS

This section presents an overview of the schema and Royal
Road theories and introduces a generalization of both that
caters for Evolutionary Testing.

232 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 2, MARCH/APRIL 2010

Fig. 5. Fitness landscape for the coverage of the true branch from
node 27 of check_ISBN.

3.1 The Schema Theory of Genetic Algorithms

In a binary Genetic Algorithm, a schema is a sequence
consisting of three possible values, drawn from the set
f0; 1; ,g. The asterisk , is a wildcard, indicating that either a
zero or a one could occur at this position. Thus, for a
chromosome of length 4, a schema 10 , 1 denotes the two
chromosomes 1011 and 1001, while the schema ,,,,
denotes all possible chromosomes. A schema can be
thought of as a template chromosome that stands for a
whole set of individual chromosomes, each of which share
some common fixed values. An instantiation of a schema is
any chromosome that matches the template, when , values
are replaced by the corresponding fixed values of the
instantiation. If a chromosome x is an instantiation of a
schema h, this is denoted as x 2 h.

The number of fixed positions in a schema is called the
order of the schema. The schema 1,,1 has order two, while
10,1 has order three. For a schema h, the order will be
denoted by oðhÞ. Suppose that the length of a chromosome
is denoted by #. A schema h denotes 2##oðhÞ chromosome
instantiations, all of which have their own individual
fitness values.

It is useful to think of the chromosomes denoted by a
schema h as defining the fitness for the schema itself. That
is, the schema has a fitness that is defined to be the average
fitness of the instantiations it denotes. More formally, the
fitness of a schema h is defined as follows:

fðhÞ ¼ 1

j h j
X

x2h
fðxÞ:

In a particular generation of a Genetic Algorithm g, the
population will be a set of chromosomes, denoted by P ðgÞ.
The Genetic Algorithm will not be able to determine the
true fitness of a schema h because it will not necessarily
contain all possible instantiations. However, the schema
processing at each generation g will be able to approximate
the fitness of h, based on the instantiations of h present in
the population P ðgÞ. For this reason, it is useful to define a
measure of approximate fitness fðh; KÞ for a set of
chromosomes K:

fðh; KÞ ¼ 1

jfx j x 2 h ^ x 2 Kgj
X

x2h^x2K
fðxÞ:

For a generation g, fðh; P ðgÞÞ is the approximate value of
the fitness of h based upon the current members of the
population at generation g.

The distance between the outermost fixed positions in a
schema is known as the defining length.

This is measured as one less than the length from the
leftmost outermost fixed position to the rightmost outermost
fixed position. Thus, the schema 1 , ,0 has defining length 3,
the schema ,101 has defining length 2, and the schema ,11,
has defining length 1. The defining length of a schema hwill
be denoted by !ðhÞ. As the Genetic Algorithm executes, it
evaluates the fitness of the chromosomes in each generation.

Every time a chromosome is evaluated, the evaluation
contributes to the estimation of the fitness of 2# schemata, so
the Genetic Algorithm processes a large number of
schemata, far larger than the number of individual
chromosomes that it evaluates.

The principle that underlies the schema theory is that
those schemata with a better than average fitness will
receive proportionally more fitness evaluations as the
computation of the Genetic Algorithm progresses. This
observation can be made more formal by considering the
number of instances of a schema that pertain at each
generation of the Genetic Algorithm.

Without the presence of mutation and crossover, but
merely with selection, the number of occurrences of a
schema h at generation gþ 1 can be bounded below in
terms of the number of occurrences of h at generation g. Let
the number of occurrences of h at generation g be denoted
by Nðh; gÞ. The schema theory (without mutation and
crossover) for a population of size M is:

Nðh; gþ 1Þ - Nðh; gÞ fðh; P ðgÞÞ
1
M

P
x2P ðgÞ fðxÞ

:

That is, the term

Nðh; gÞ fðh; P ðgÞÞ
1
M

P
x2P ðgÞ fðxÞ

places a lower bound on the expected number of occur-
rences of schema h in generation gþ 1. It is the product of
the number of occurrences at generation g and the ratio of
the schemata approximate fitness at generation g and the
average fitness of the entire population at generation g.

The idea that underlies the bound is that the term

fðh; P ðgÞÞ
1
M

P
x2P ðgÞ fðxÞ

denotes a value that is proportional to the probability that the
schema h will be selected. For instance, if tournament
selection is used, then the chance that an instance of h will
prevail in a tournamentwith an arbitrary choice of opponent,
o, is clearly proportional to the ratio of the fitness ofh relative
to the fitness of the entire population becausehprevails if and
only if it has a higher fitness than o.

The fitter h is, relative to the overall population, the
better its chances to prevail in a tournament. The number of
occurrences of a schema h that survive from one generation
to the next is, therefore, proportional to the number of
occurrences of h in the current population, multiplied by
the probability that these schemata will prevail, and
therefore, pass on to the next generation. This is treated as
a lower bound since chance may also produce more of a
schema through the effect of genetic operators. However, of
course, operators governed by elements of chance, such as
mutation and crossover, also have a chance to disrupt a
schema, as will be seen below.

Perhaps, the “schema theory” would be more accurately
termed the “schema hypothesis” since this equation is not
proven in the literature. Rather, the equation captures the
belief that above average fitness schemata will tend to
receive exponentially more fitness evaluations than below
average schemata as the algorithm progresses.

Both mutation and crossover disrupt schemata in a
population. The mutation operation can replace a bit of a
productive (high fitness) schema with a bit that mutates the

HARMAN AND MCMINN: A THEORETICAL AND EMPIRICAL STUDY OF SEARCH-BASED TESTING: LOCAL, GLOBAL, AND HYBRID SEARCH 233

overall schema to a less fit schema. The crossover operator
may replace a whole section of the schema with a less fit
string of bits. To take account of mutation and crossover,
the schema theory is extended to take account of the
mutation probability (pm, the probability that an individual
bit is mutated) and the crossover probability (pc):

Nðh; gþ 1Þ - Nðh; gÞ fðh; P ðgÞÞ
1
M

P
x2P ðgÞ fðxÞ

1# pc
!ðhÞ
1

pm oðhÞ
! "

:

It is this equation that is known as the schema “theorem”
of Genetic Algorithms, due to Holland [29]. It makes the
implicit assumption that crossover is a single-point cross-
over operation and mutation is achieved by flipping a
single, randomly chosen, bit of the chromosome. Holland’s
schema theory is a “worst-case” formulation because it
places a lower bound on the number of schemata present at
each generation of the evolution of the Genetic Algorithm. It
also indicates that crossover can disrupt the schemata. This
may seem counter-intuitive because it is from the crossover
operator that Genetic Algorithms are intended to derive
much of their capability [47]. This issue is addressed by the
Royal Road theory of Genetic Algorithms, which clarifies
the important role of crossover.

3.2 Schema Theory for Test Data Generation by
Genetic Algorithms

Evolutionary Testing typically does not use binary Genetic
Algorithms, so the schema theory is not directly applicable. A
new form of schema theory for Evolutionary Testing there-
fore has to be constructed. Fortunately, the input vectors used
in Evolutionary Testing can be captured by a generalization
of Holland’s schema theory. These Evolutionary Testing
schemata arise from the constraints on the input that a
branch-covering solutionmust satisfy. The constraints can be
defined naturally in terms of the computation of fitness for
the approach level and branch distance computation. For
example, suppose a program has three inputs, x, y, and z and
that, in order to execute the branch under testB, the program
must first follow a branch B1, for which the condition x > y
must hold, and must then follow a branch B2, for which the
condition y ¼ z must hold.

In this example, a chromosome is a triple; three genes,
one each for the input values of x, y, and z. A schema is a
constraint, denoting all instantiations of input vectors that
satisfy the constraint. For example, two possible schemata
are fðx; y; zÞ j x > yg and fðx; y; zÞ j x ¼ yg. Of these two
schemata, the first has higher fitness than the second for
branch B, because all instantiations of the first have a higher
fitness than all instantiations of the second due to their
superior fitness for the “approach level.” Observe that this
formulation of schemata is simply a generalization of the
traditional schemata because traditional schema can always
be denoted by a corresponding constraint schema. For
example, Holland’s traditional schema 1,01 can be denoted
by fða; b; c; dÞ j a ¼ 1 ^ c ¼ 0 ^ d ¼ 1g.

For Evolutionary Testing, a schema is thus denoted by a
constraint c, whose fitness is the average fitness of all
instantiations that satisfy the constraint. To distinguish

traditional schemata from those defined by a constraint, the
latter shall be referred to as constraint schemata. The fitness
of a constraint schema c is

fðcÞ ¼ 1

jfy j cðyÞgj
X

x2fyjcðyÞg
fðxÞ;

and the approximate fitness of a constraint schema fðc; KÞ
for a set of chromosomes K is

fðc; KÞ ¼ 1

jfx j cðxÞ ^ x 2 Kgj
X

cðxÞ^x2K
fðxÞ:

The basic form of the schema theory (without mutation
and crossover) for Evolutionary Testing with respect to a
constraint schema c of a population of size M can now be
defined in the same way as that for traditional schemata.
That is,

Nðc; gþ 1Þ - Nðc; gÞ fðc; P ðgÞÞ
1
M

P
x2P ðgÞ fðxÞ

:

The full form of the schema theory, taking account of
crossover and mutation, can also be formulated by defining
the order of a constraint schema oðcÞ to be the number of
input variables that participate in the definition of the
constraint. For example, the order of fðx; y; zÞ j x > yg is 2,
while the order of fðx; y; zÞ j x ¼ y ¼ zg is 3 and the order of
fðx; y; zÞ j x > 17g is 1.

Evolutionary Testing uses discrete recombination in
which each gene of each parent has an equal chance of
being copied to the offspring. An upper bound on the
probability of discrete recombination disrupting a con-
straint schema is thus the product of the probability of
crossover occurring (pc) and the ratio of genes in the
constraint schema to total genes.

In Evolutionary Testing, mutation is typically applied to a
single gene through the addition of randomly chosen values.

An upper bound on the probability that this form of
mutation will disrupt a constraint schema is simply the
product of the probability of a gene mutation and the order
of the constraint schema. With these two observations, it is
possible to formally define the schema theory for constraint
schemata as follows:

Nðc; gþ 1Þ - Nðc; gÞ fðc; P ðgÞÞ
1
M

P
x2P ðgÞ fðxÞ

1# pc
oðcÞ

#
pm oðhÞ

! "
:

However, as with the traditional schema theory, this
schema theory of Evolutionary Testing also indicates that
mutation and crossover disrupt constraint schemata, and
therefore, it is necessary to consider the Royal Road theory,
which explains the form of search problems for which the
crossover will be most likely to succeed.

3.3 The Genetic Algorithm Royal Road
Mitchell et al. [47] introduced the theoretical study of Royal
Road landscapes in order to formally capture the intuition
underlying the “folk theorem” that a Genetic Algorithm
will outperform a local search such as Hill Climbing
because of the way in which a Genetic Algorithm uses the
crossover operation to combine building blocks. Building
blocks are fit schemata that can be combined together to
make even fitter schemata.

234 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 2, MARCH/APRIL 2010

It is widely believed that the combination of building
blocks through crossover (recombination of geneticmaterial)
is the primary underlying mechanism through which
evolutionary progress is achieved. This applies both in the
world of evolution by natural selection and through the
Genetic Algorithm’s mimicry of this natural process. The
Royal Road theory of Genetic Algorithm aims to explain how
this process works. In so doing, it captures a set of fitness
functions (the so-called Royal Road functions) for which a
Genetic Algorithm is well suited and for which it is
theoretically predicted to equal or outperform other search
techniques, such as local search.

The Royal Road theory addresses the perplexing aspect
of the schema theory; the way in which it indicates that
crossover could be viewed as a harmful operation that
disrupts fit schema.

Mitchell et al. defined an example fitness function in
terms of a set of schemata fs1; . . . ; s15g as follows:

F ðxÞ ¼
X

s2S
cs$sðxÞ;

where F ðxÞ is the fitness of a bit string x, cs is the order of
the schema s, and $sðxÞ is one if x is an instantiation of s,
and zero otherwise. The schemata fs1; . . . ; s15g are defined
in Fig. 6. Notice how the Royal Road example is constructed
so that lower fitness schemata can be combined to yield
higher fitness schemata. Such a landscape is “tailor-made”
to suit a Genetic Algorithm; crossover allows the Genetic
Algorithm to follow a tree of schemata that lead directly to
the global optimum. This tree of ever fitter schemata forms
the “Royal Road.”

3.4 Royal Road for Evolutionary Test Data
Generation

For a schema concerned with constraints, the order of the
schema is the number of variables that are mentioned in the
constraint. In order for lower order schemata to be

combined with higher order schemata, as with the binary
Genetic Algorithm model, the higher order schemata must
contain the union of the genes of the lower order schemata.
Also, to avoid destroying the properties of a lower order
schema, there must be no intersection of genes in the lower
order schemata; otherwise, the genes of one would over-
write those of the other when combined. This is also the
case with the Royal Road theory of Mitchell et al.

However, since the genes in the chromosomes for
Evolutionary Testing are input variables and the schemata
denote constraints on these variables, there is an additional
property that can be seen to hold for Evolutionary Testing
Royal Road functions. The higher order and fitter schema
will respect both the constraints respected by the lower
order schemata (since it will contain the same values for
genes of each of the lower order schemata). Therefore, the
constraint of the higher order schemata must respect a
conjunction of the constraints of the lower order schemata.
That is, if two constraint schemata c1 and c2 are combined to
produce a fitter schema C then C) c1 ^ c2.

This observation indicates that there must exist a tree of
logical implications along any Royal Road of constraint
schemata for Evolutionary Testing. Since the constraint
schema theory is merely a generalization of the standard
Holland schema theory, it can also be shown that (trivially)
such a tree of constraints also holds for the Royal Road of
Mitchell et al. For example, the constraint that denotes the
Mitchell schema s1 is 8i:1) i) 8:s1ðiÞ ¼ 1, while the con-
straint denoted by Mitchell’s s2 is 8i:9) i) 16:s1ðiÞ ¼ 1.
Clearly, the conjunction of these two constraints yields the
constraint for Mitchell’s s9, namely, 8i:1) i) 16:s1ðiÞ ¼ 1.

This can be extended to any implication, creating a
relationship between subschemata and logical implication.
For instance, fðx; y; zÞ j x ¼ 5 ^ y ¼ 4 ^ z ¼ 3g is a subschema
of fðx; y; zÞ j x > y > zg. That is, all instances of fðx; y; zÞ j
x ¼ 5 ^ y ¼ 4 ^ z ¼ 3g are also instances of fðx; y; zÞ j x > y >
zg (but not vice versa). In general, if P and Q are predicates

HARMAN AND MCMINN: A THEORETICAL AND EMPIRICAL STUDY OF SEARCH-BASED TESTING: LOCAL, GLOBAL, AND HYBRID SEARCH 235

Fig. 6. Royal Road Function of Mitchell et al. [47]. As i increases, all instances of the schema Si have a higher fitness, until ultimately, the global
optimum for this optimization problem is S15, which has maximum possible fitness. The genetic crossover operation is, therefore, highly likely to
combine chromosomes containing two partially fit schemata to create a chromosome with higher fitness. In this instance, crossover tends to combine
lower fitness schemata to create higher fitness schemata, rather than disrupting the lower fitness schemata; the crossover operator has a “Royal
Road” to guide it from lower to higher fitness. This Royal Road property of the schemata of a set of instances was used as an archetype of the Royal
Road by Mitchell et al.

over an alphabet X and P implies Q then fXjPg is a
subschema of fXjQg.

These constraint schemata have subschemata in the same
way that traditional schemata also have subschemata. For
instance, the traditional schema 1 , , , 111 is a subschema of
1 , , , , , ,; all instances of 1 , , , 111 are also instances of
1 , , , , , ,.

The implication is that, for an Evolutionary Testing
approach to exhibit a Royal Road property, the more fit
schemata must be expressed as conjunctions of lower order
schemata (possibly involving disjoint sets of input vari-
ables). Where this property holds, the Evolutionary Testing
Royal Road theory predicts that Evolutionary Testing will
perform well and it will do so because of the presence of the
crossover operation and the way in which fitter schemata
are given exponentially more trials than less fit schema.

Consider Fig. 7, which shows this principle as general
property (Fig. 7a) and also gives a concrete example
(Fig. 7b). The code in Fig. 8 contains a target branch for
which the optimization problem has the Royal Road
illustrated by Fig. 7b.

The problem is the simple one of determining whether
all of the bits of a bit set of 8 bits are set. This is achieved
with a count. Clearly, if two or more bits are set, this implies
that one or more bits are set and if four or more bits are set,
then this implies that two or more are set. This problem is a
transliteration of the Royal Road function of Mitchell et al.
into code for optimization in Evolutionary Testing.

Observe that crossover has a fairly good chance of
making a fitter schemata from less fit schemata. That is,
solutions with a single-bit set are fitter than those with no
bits set, and therefore, they are more likely to be selected.

Furthermore, combining two chromosomes, each with a
single-bit set, has a good chance of producing offspring
with two or more bits set. Offspring with two or more bits
set is fitter than their parents with only 1 bit set. Combining
chromosomes with two bits set is more likely to produce
offspring with more than 2 bits set than, for example,
combining those with fewer than 2 bits set, and so on.

The archetype of this Royal Road property for testing is a
predicate, the outcome of which is determined by a set of
values S. Such a predicate will have a Royal Road fitness
function if it tests for the presence of properties exhibited by
nonintersecting subsets of S. This situation arises, for
example, in string processing, where substrings are tested
for the presence of certain properties of interest and in
numeric array processing, where the program aims to
establish whether subsets of the array are related in certain
ways. It remains an open question as to how often this
situation arises in practice. An extremely wide-ranging
study (or perhaps set of studies) would be required to
answer this question. However, the authors were able to
find only a handful of example branches in those studied
here which exhibited this Royal Road property.

4 EMPIRICAL STUDY

An empirical study was performed using nine different
programs, two of which were provided by DaimlerChrylser,
while the other seven are open source. From these programs,
38 functions were studied, containing 760 branches (Table 1).

The minimum and maximum values of the input
variables, along with their precision in the case of floating
point variables, were specified for each function for the
search process.

From this information, the input domain size (i.e., the
search space size) can be computed. Input domain sizes
range from 105 to 10524. Each separate branch denotes a
separate search problem for which the size of the search
space is one of the more important factors in determining
the difficulty of the problem. Furthermore, the code
analyzed was by no means trivial, containing many
examples of complex, unstructured control flow, un-
bounded loops, and computed storage locations in the
form of pointers and array access.

Input domain sizes differ in some cases from those
appearing for the same test objects used in [27] because of
differences in minimum and maximum variable value

236 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 2, MARCH/APRIL 2010

Fig. 7. How implication on constraint schema creates Royal Roads in Evolutionary Testing. (a) General case: The predicates have the implication
relations indicated by the arrows, for instance, Qi) Pi ^ Pi#1; 1) i) 4. (b) Specific case: The problem is to determine how many of the 8 bits of a
byte are set. Once again, the arrows indicate the direction of logical implication.

Fig. 8. Code snippet for the number of set bits test problem, used to
illustrate Royal Roads in Fig. 7a.

information supplied to the search process. This had no
effect on the conclusions of the study.

bibclean-2.08 is an open-source program used to
syntax check and pretty-print BibTeX bibliography files. The
two functions tested are validity checks for ISBN (as already
seen in Fig. 1) and ISSN codes used to identify publications.
The programs f2 and defroster are industrial case
studies provided by DaimlerChrysler. An S-Class Mercedes
car has more than 80 such embedded controllers, which,
taken together, represent approximately 0.5 GB of object

code. The two systems used in this study are production
code for engine and rear window defroster control systems.
The code is machine generated from a design model of the
desired behavior. eurocheck-0.1.0 is an open-source
program. It contains a single function used to validate serial
numbers on European bank notes. gimp-2.2.4 is the
open-source GNU image manipulation program. Several
library functions were tested, including routines for con-
version of different color representations (for example, RGB
to HSV) and the manipulation of drawable objects. space is
a program from the European Space Agency and is available
from the Software-artifact Infrastructure Repository [1], [16].
Nine functions were tested. spice is an open-source
general-purpose analogue circuit simulator. Two functions
were tested, which were clipping routines for the graphical
front-end. tiff-3.8.2 is a library for manipulating
images in the Tag Image File Format (TIFF). Functions
tested include image placing routines and functions for
building “overview” compressed sample images. totinfo
is a program created by Siemens, which like space is also
drawn from the Software-artifact Infrastructure Repository.

Where the type signature of the function was straightfor-
ward, the numerical vectors generated by the search could
be used directly as input vectors. In other cases, the input
values had to be mapped into structure types. Linked lists
and arrays, where used, were fixed in length. This is not a
limitation of search-based test data generation in general, as
approaches have been developed to generate variable-
length dynamic data structures [35].

The addscan function of space is responsible for
allocating memory, but not deallocating it, leading to
potential memory leaks in the testing process. Therefore,
the malloc function had to be overridden to keep track of
the pointers allocated so that the test execution process
could release the memory afterward. These modifications
affect neither the size of the search space nor the
distribution of fitness values, so they have no impact upon
the research questions.

The empirical study was conducted in two parts. The
first part focuses on global and local search only, i.e.,
Evolutionary Testing and Hill Climbing, using Random
Testing to identify the nontrivial branches that only these
searches can generate test data for. Having studied global
and local search, and having found nontrivial search
problems, the second part of the study conducts experi-
ments using the hybrid Memetic Algorithm approach,
comparing the results with those of Evolutionary Testing
and Hill Climbing.

4.1 Empirical Study Part 1: Global and Local Search

Test data generation experiments for branch coverage were
performed using Evolutionary Testing, Hill Climbing, and
Random Testing. The Evolutionary Testing and Hill
Climbing algorithms were described in the previous
section. The Random Testing algorithm simply constructs
valid random inputs until the required test data are found,
or the stopping criterion is met.

For each algorithm, the test data search for each branch
was terminated after the evaluation of 100,000 inputs if the
required test data had not been found. This was repeated
60 times using a fixed list of different seeds for random
number generation. Two metrics were then computed from

HARMAN AND MCMINN: A THEORETICAL AND EMPIRICAL STUDY OF SEARCH-BASED TESTING: LOCAL, GLOBAL, AND HYBRID SEARCH 237

TABLE 1
Test Object Details

the results. The “success rate” (SR) for each branch and
search method is the percentage of the 60 runs that the
branch was successfully covered. The “average number of
evaluations” (AE) is the average number of test object
executions (i.e., fitness evaluations) that were performed in
order to find the test data for each successful run.

Fig. 9 summarizes the branches covered by the different
search techniques. For each search, a branch is counted as
“covered” if test data were found on at least one of the
60 trials. Of the 760 branches, 634 branches (83 percent) were
covered by all search techniques, including RandomTesting.
Of these 634 branches, every branch was covered more than
once, i.e., not merely by “pure luck,” with 575 covered with a
100 percent success rate, i.e., on every trial. This high degree
of coverage for simple-minded Random Testing tends to
support the view that it can be effective for easy-to-cover
branches, leaving relatively few hard-to-cover branches for
which more intelligent search may be required.

Thirty-seven branches were covered by either Evolu-
tionary Testing and Hill Climbing. Evolutionary Testing
exclusively covered nine branches, while Hill Climbing
exclusively covered eight. Perhaps surprisingly, Random
Testing covered four branches that the other methods were
unable to. These branches were covered with a low success
rate (18 percent or lower). Closer examination of the fitness
landscapes revealed local optima in which metaheuristic
approaches became stuck. Because random search is not
guided by a fitness function, this did not present a problem,
and on a small number of occasions was able to find the
required test data by chance. The final 85 branches were
infeasible or simply not covered by any of the search
techniques. In many instances, the fitness function surface is
flat, affording the search no guidance to the required test
data. Also, because the target-covering test inputs occupy a
tiny portion of the input domain, Random Testing also fails.
Such “difficult” fitness landscapes which are flat or contain
local optima are studied further elsewhere in the literature
[24], [43], [44], [42]. Clearly, there is no point in attempting
to use an “intelligent” (and therefore, more computationally
expensive) metaheuristic search when Random Testing will
do. Thus, in answering the research questions, only
branches not covered by Random Testing are considered.

The first part of the empirical study addresses three
research questions, described below:

Research Question 1: Validation of Evolutionary Test-
ing theory. For a predicate, the fitness function of which
denotes a Royal Road function, the theory predicts that the
Genetic Algorithm should perform well. Does it perform
well and how does it compare to a Hill Climbing algorithm?

Research Question 2: Validation of crossover hypoth-
esis. According to the theory, the reason for Evolutionary
Testing’s good performance on Royal Road functions should
be due to the effect of the crossover operator. Therefore,
there is a second “validation of theory” question: How does
Evolutionary Testing perform on Royal Road functions
when the effects of the crossover operator are removed?

Research Question 3: Performance for non-Royal Road
branches. For predicates that do not have a Royal Road
fitness function, Evolutionary Testing may perform no
better, and possibly worse than Hill Climbing. The theory is
concerned with effectiveness not efficiency, and therefore, it
cannot make predictions about how Evolutionary Testing
will perform relative to Hill Climbing, nor how badly its
performance would be affected by the absence of Royal
Roads. However, this remains an important question and
one that can be addressed empirically.

4.2 Answers to Research Questions

4.2.1 Research Question 1: Validation of Evolutionary
Testing Theory

The identification of Royal Road functions was a test,
necessarily performed by hand for each predicate because
the decision as to whether a particular predicate denotes a
Royal Road is the one determined by a deep understanding
of the semantics of the predicate in question.

The Royal Road property was found in branches of the
bibclean test object. The check_ISBN (Fig. 1) and
check_ISSN functions both read a string of 30 characters.
The function sequentially searches through the characters in
order to find those valid for an ISBN or ISSN number. When
such a character is found, a counter variable is incremented.
When this counter is equal to 10 (check_ISBN) or 8
(check_ISSN), validation can take place. The constraint
schemata for this program form a Royal Road, where, for
example, the constraint “contains at least three valid
characters” subsumes the constraints: “contains at least two
valid characters” and “contains at least one valid character.”

There are 256 different character values, of which 12 are
valid, giving a 12/256 chance that a character will be valid.
Therefore, a string of 30 characters is likely to contain at
least one valid character. A template string with some valid
characters denotes a schema; the more valid characters, the
fitter the schema. According to the schema theory, these
schemata will receive ever more evaluations as the
algorithm progresses and, according to the Royal Road
theory, their recombination through crossover is likely to
yield superfit offspring. Thus, the theory developed in
Section 3 predicts that Evolutionary Testing will perform
well for this example. This situation is too large to depict
effectively in a diagram like those used to illustrate Royal
Roads in Fig. 7. However, it is possible to depict the same
problem simply using a slightly smaller scale, thereby

238 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 2, MARCH/APRIL 2010

Fig. 9. Venn diagram showing the numbers of branches covered by each
different search method.

illustrating the way in which the check_ISBN contains a
predicate that denotes a Royal Road for Evolutionary
Testing. Consider the scaled down version of the optimiza-
tion problem denoted by branch 23F of the check_ISBN

function depicted in Fig. 10.
The problem is to determine whether a string contains at

least eight digits. If the input string satisfies this property,
then branch 23F will be followed. If a string contains at least
two digits, then it certainly contains at least one digit. If it
contains at least four, then it certainly contains at least two,
and so on. This explains the direction of the implication
arrows in Fig. 10. Observe that combining two strings that
contain at least one digit is more likely to produce a string
that contains at least two digits than combining string that
contains no digits (or one that contains none and one that
contains a single digit).

Therefore, since single-digit containing strings are fitter
than no-digit containing strings and these are more likely to
combine to make two-digit containing strings, which are, in
turn, more likely to combine to make strings with even
more digits, the optimization problem has the Royal Road
property. This property strongly favors the crossover
operation of the Genetic Algorithm approach.

The empirical results (presented in Table 2) support this

prediction. Evolutionary Testing almost always succeeds in

finding test data, while Hill Climbing always fails. By

contrast, Hill Climbing gets stuck along plateaux appearing

in the fitness landscape for branches depending on code

validation. If an invalid character c is generated, exploratory

moves are unlikely to result in an improvement in fitness,

unless c happens to be adjacent to a block of valid characters.

4.2.2 Research Question 2: Validation of Crossover
Hypothesis

The recombination operator was disabled, and the Evolu-

tionary Testing experiment rerun for the bibclean test

object. Test data generation failed in almost every instance

(Table 3). In order to rule out the possibility that

recombination was not just adding further “mutation,”

and that true crossover was not really having an effect, a

third experiment was carried out. This time, parents were

recombined with a randomly generated individual, rather

than with another parent drawn from the current popula-

tion. This is a form of the so-called “Headless Chicken Test”

[31], classically used to identify whether crossover is actively

contributing in finding a solution to a search problem.

HARMAN AND MCMINN: A THEORETICAL AND EMPIRICAL STUDY OF SEARCH-BASED TESTING: LOCAL, GLOBAL, AND HYBRID SEARCH 239

Fig. 10. How implication on constraint schema creates Royal Road. (a) Abstract general case from Fig. 7a. (b) The problem depicted is a scaled
down version of the problem from branch 23F of the check_ISBN function of the bibclean test object, the code of which is contained in Fig. 1.

TABLE 2
Evolutionary Testing and Hill Climbing for Branches

with Royal Road Properties

SR is the success rate. AE is the average number of fitness evaluations
for successful trials (i.e., where test data were found to execute the
branch). SD is the standard deviation of the fitness evaluations for
successful trials.

TABLE 3
Comparing Evolutionary Testing with and without Crossover

for Branches with Royal Road Properties

SR is the success rate. AE is the average number of fitness evaluations
for successful trials (i.e., where test data were found to execute the
branch). SD is the standard deviation of the fitness evaluations for
successful trials.

The outcome was as follows: For four branches, test data
could not be generated using the randomly generated
second parent, as shown in Table 4.

For check_ISSN branch 29F, test datawere generated for
only a few occurrences and, for branches of the check_ISBN
function, only during one trial. Test data were generated for
the remaining branches with reasonable consistency, but
with almost 10 times as many fitness evaluations. Statistical
significance was tested using a one-tailed Wilcoxon rank
sum test in favor of the set of average fitness evaluations
using normal parents, with the confidence level set at 0.99. In
all cases where the comparable sample sizes were of
sufficient size, the test revealed that the results were
statistically significant. The p-values appear in Table 4.

It can be concluded, therefore, that crossover is having
an effect, and is not merely a source of further mutation-like
effects on the search.

4.2.3 Research Question 3: Performance for Non-Royal
Road Branches

Fig. 11 and Table 5 record data with respect to the
29 branches covered by Evolutionary Testing or Hill
Climbing and which do not exhibit Royal Road properties.
The finding is that Hill Climbing significantly outperforms
Evolutionary Testing in many of these cases. This is a
surprising finding given the high degree of attention paid
to Evolutionary Testing, compared to the simpler Hill
Climbing approach.

Fig. 11 shows non-Royal Road branches which were not
covered 100 percent of the time by both techniques. Out of
these 17 branches, Hill Climbing achieves the highest
success rate score on 15 occasions, although seven are only
covered on a few trials, with a success rate below 15 percent.
Evolutionary Testing scores a higher success rate for branch
20T of the function PlaceImage, but the success rates for
both techniques are low (20 percent or lower).

There is only one branch for which Evolutionary Testing
is successful and for which Hill Climbing fails on each trial.
This is branch 12T of the function gimp_hwb_to_rgb,
which has a fitness landscape containing a series of
plateaux, and is thus hard for Hill Climbing to navigate.
One specific value is required for one input variable, which
happens to be the top value of its range. It is only covered
by Evolutionary Testing due to an artifact in the way the
mutation operator works. If a large value is added to the

240 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 2, MARCH/APRIL 2010

TABLE 4
Evolutionary Testing Using Crossover with Normal Parents

versus Crossover Using a Randomly Generated Second Parent
That Is Not a Member of the Current Population

SR is the success rate. AE is the average number of fitness evaluations
for successful trials (i.e., where test data were found to execute the
branch). SD is the standard deviation of the fitness evaluations for
successful trials. The Observed Significance Level is the p-value
produced by a Wilcoxon rank sum test with confidence level set at
0.99. The test is one-sided to discover whether using normal parents
requires significantly fewer fitness evaluations to find test data.

Fig. 11. Non-Royal Road branches not covered with a 100 percent success rate by both Evolutionary Testing and Hill Climbing.

variable such that it goes out of range, the value is reset to
its maximal value. Thus, the branch is covered.

The greater expense of the Evolutionary Testing ap-
proach is also clearly revealed by the remaining cases (for
which both Evolutionary Testing and Hill Climbing achieve
coverage of the target branch with a 100 percent success
rate). These branches are recorded in Table 5. For these
12 branches, Hill Climbing is more efficient by an order of a
magnitude. Statistical tests were again performed using a
one-tailed Wilcoxon rank sum test with a confidence level
of 0.99, this time in favor of the sample of average fitness
evaluations using Hill Climbing. The results for Hill
Climbing were significant in each case. The p-values are
recorded in the table.

4.3 Empirical Study Part 2: Hybrid Search
In the second part of the empirical study, the Memetic
Algorithm described in Section 2.3 was run 60 times for
each branch for each of the test objects used in part one.
Three further research questions are addressed, as de-
scribed below.

Research Question 4: Subsumption of Evolutionary
Testing and Hill Climbing by the Hybrid Memetic
Algorithm Approach. The Memetic Algorithm combines
Evolutionary Testing and Hill Climbing. Therefore, can it
cover all the branches that Evolutionary Testing and Hill
Climbing can? In terms of coverage, therefore, one would
expect the Memetic Algorithm to be the best overall
performer. Is this the case?

Research Question 5: Performance for Royal Road
branches. The Memetic Algorithm, being derived from
the Evolutionary Algorithm, incorporates a population
(albeit a smaller one) and the use of the same crossover
operator as Evolutionary Testing. Is the performance of the
Memetic Algorithm similar with Royal Road branches as for
Evolutionary Testing?

Research Question 6: Performance for non-Royal Road
branches. The Memetic Algorithm incorporates a phase of
Hill Climbing. Therefore, it should improve on Evolution-
ary Testing, offering similar levels of efficiency on these
branches as with Hill Climbing. Does it?

4.4 Answers to Research Questions

4.4.1 Research Question 4: Subsumption of
Evolutionary Testing and Hill Climbing by the
Hybrid Memetic Algorithm Approach

Fig. 12 shows the breakdown of these branches covered by
the Memetic Algorithm, Evolutionary Testing, and Hill
Climbing, but not covered by Random Testing. The Venn
diagram shows that the Memetic Algorithm failed to cover
any new branches, i.e., the branches depicted are the same
37 branches covered by either Evolutionary Testing or Hill
Climbing discussed in the last section. The diagram shows
that the Memetic Algorithm covers all except one of these
37 branches. This is branch 12T of the function gimp_hwb_

to_rgb. This branch was discussed in the previous section
and is covered only due to an artifact in the way the breeder
algorithm mutation operator works, as used by Evolu-
tionary Testing. Since the Memetic Algorithm uses uniform
mutation instead, this branch was not covered.

The conclusion that can be drawn from the diagram is,
however, that in terms of coverage, the hybrid Memetic
Algorithm does offer the best overall performance.

4.4.2 Research Question 5: Performance for Royal
Road Branches

Table 6 compares the Memetic Algorithm against Evolu-
tionary Testing for the Royal Road branches. The table shows
that the Memetic Algorithm has a much poorer success rate
with Royal Road branches when compared to Evolutionary
Testing. The Memetic Algorithm uses a much smaller
population size of 20 compared to a size of 300 for
Evolutionary Testing. Therefore, population sizes of 50 and
300 were used with the Memetic Algorithm to see if this was
the contributory factor to a poorer performance. However,
the table shows that as the population size increases, the
success rate of the Memetic Algorithm gets worse.

The reason for the poorer performance of the Memetic
Algorithm is due to the fact that much of the 100,000 fitness
evaluation budget is wasted in the Hill Climbing phase. The
algorithm performs one hill climb per individual, perform-
ing fitness evaluations until a plateaux is reached. However,
since the Royal Road branches are largely made up of

HARMAN AND MCMINN: A THEORETICAL AND EMPIRICAL STUDY OF SEARCH-BASED TESTING: LOCAL, GLOBAL, AND HYBRID SEARCH 241

Fig. 12. Branches covered by Evolutionary Testing, Hill Climbing, or the
Memetic Algorithm. The Memetic Algorithm was successful for all
branches covered by Evolutionary Testing and Hill Climbing except for
one pathological case. Branches not appearing in the Venn diagram
were either covered by Random Testing or not covered at all.

TABLE 5
Branches Not Exhibiting Royal Road Properties Covered

with a 100 Percent Success Rate
by Evolutionary Testing and Hill Climbing

AE is the average number of fitness evaluations for successful trials
(i.e., where test data were found to execute the branch). SD is the
standard deviation of the fitness evaluations for successful trials. The
Observed Significance Level is the p-value produced by a Wilcoxon rank
sum test with confidence level set at 0.99. The test is one-sided to
discover whether the use of Hill Climbing requires significantly fewer
fitness evaluations to find test data.

fitness invariant plateaux, Hill Climbing does not help, and
the effort is wasted. Increasing the population size will
make matters worse because more fitness evaluations will
be used on performing more hill climbs. The evidence for
this reason comes from the table. A higher number of
average fitness evaluations are required by the Memetic
Algorithm to cover each branch when it is successful. This
number increases as the population size increases. The
difference with Evolutionary Testing is an order of
magnitude. A one-sided Wilcoxon rank sum statistical test
confirms that Evolutionary Testing is significantly more
efficient at covering these branches in all cases. The p-values
are listed in the table.

4.4.3 Research Question 6: Performance for Non-Royal
Road Branches

Fig. 13 and Table 7 record the performance of the Memetic
Algorithm against Evolutionary Testing and Hill Climbing
for non-Royal Road branches. In each case, the Memetic
Algorithm is compared against the data for the previous
best performer for the branch in question. Fig. 13 records
branches which were not covered with a 100 percent
success rate by both the Memetic Algorithm and the
previous best performer. The figure shows that apart from
branch 12T of the function gimp_hwb_to_rgb, the
Memetic Algorithm has the same or a modestly improved
success rate over the previous best performer.

Table 7 records branches which were covered with a
100 percent success rate by the Memetic Algorithm and the
previous best performer, which was always Hill Climbing
for the branches in question. The table shows that the
Memetic Algorithm has a similar level of efficiency for these

branches. This was confirmed by a Wilcoxon rank sum test,
which was performed to see if there was any significant
difference in the sets of fitness evaluations needed to find
test data for each branch in each trial. The test recorded a
significant difference in only 5 of the 18 cases, i.e., where the
observed significance level was less than 0.01. For these five
cases, the Memetic Algorithm has a worse average on each
occasion. However, the difference is relatively low, and
only 12 evaluations on one occasion. The reason that the test
is significant is as follows: The branches in question are very
easy to cover by Hill Climbing (and the Hill Climbing phase
of the Memetic Algorithm) because the fitness landscape is
extremely smooth, and thus, only a small number of fitness
evaluations are required. However, the Memetic Algorithm
must always set up the initial population first, which will,
on average, require more fitness evaluations than Hill
Climbing. This effect, however, is only noticeable for easy-
to-cover branches, as branches with more complex land-
scapes will require restarts for Hill Climbing or the
consideration of different individuals for the Memetic
Algorithm, and thus, the extra effort initially required of
the Memetic Algorithm becomes insignificant.

5 THREATS TO VALIDITY

This section looks at the possible threats to the validity of
the empirical study performed in this paper. The first issue
to address is that of the internal validity of the experiments,
i.e., whether there has been a bias in the experimental
design that could affect the causal relationship under study.
The hypotheses studied in this paper concerned relation-
ships between search-based test data generation techniques

242 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 2, MARCH/APRIL 2010

TABLE 6
Performance of the Memetic Algorithm Compared to Evolutionary Testing for Branches with Royal Road Properties

SR is the success rate. AE is the average number of fitness evaluations for successful trials (i.e., where test data were found to execute the branch).
SD is the standard deviation of the fitness evaluations for successful trials. The Observed Significance Level is the p-value produced by a Wilcoxon
rank sum test with confidence level set at 0.99. The test is one-sided to discover whether the use of Evolutionary Testing requires significantly fewer
fitness evaluations to find test data.

HARMAN AND MCMINN: A THEORETICAL AND EMPIRICAL STUDY OF SEARCH-BASED TESTING: LOCAL, GLOBAL, AND HYBRID SEARCH 243

Fig. 13. Non-Royal Road branches not covered with a 100 percent success rate by all methods.

TABLE 7
Memetic Algorithm Compared with the Best Performer Out of Evolutionary Testing and Hill Climbing for Non-Royal Road Branches

Branches only appear if the success rate was 100 percent for the Memetic Algorithm and the best performer. AE is the average number of fitness
evaluations and SD is the standard deviation. The Observed Significance Level is the p-value produced by a Wilcoxon rank sum test with confidence
level set at 0.99. The test is two-tailed to discover if there is significant difference in the number of fitness evaluations required by Memetic Algorithm
and the best performer to find test data for the particular branch in question.

and branches with Royal Road and non-Royal Road fitness
functions. No automated decision procedure exists for
finding Royal Roads. If there were, then automated test
data generation would not be as hard as it is. Thus, the
identification of Royal Road properties was necessarily
performed by hand for each predicate, taking into account
the semantics of the program and predicate in question.

Another potential source of bias comes from the inherent
stochastic behavior of the metaheuristic search algorithms
under study. The most reliable (and widely used) technique
for overcoming this source of variability is to perform tests
using a sufficiently large sample of result data. In order to
ensure a large sample size, experiments were repeated
60 times. Furthermore, in order to establish the superiority
of one search algorithm over another, statistical tests were
applied. To perform these tests, a set of results, i.e., the
number of fitness evaluations required to cover a branch, is
obtained from a set of runs. To show that one technique is
superior to another, theWilcoxon rank sum test is performed
to see if there is a statistically significant difference in the
means of each set of results. A nonparametric test was chosen
in order to avoid making assumptions or having to perform
additional analysis showing that the conditions for a
parametric test have been met (i.e., normality of the sample
means). Such additional analysis could introduce further
possible sources of error into the study.

A further source of bias includes the selection of the
programs used in the empirical study, which could
potentially affect its external validity, i.e., the extent to which
it is possible to generalize from the results obtained. The
rich and diverse nature of programs makes it impossible to
sample a sufficiently large set of programs such that all the
characteristics of all possible programs could be captured.
However, where possible, a variety of programming styles
and sources have been used. The study draws upon code
from real-world programs, both from industrial production
code and from open source. It should also be noted that the
empirical study drew on 760 branches, making it one of the
largest search-based structural test data generation study to
date, and providing a relatively large pool of results from
which to make observations.

The results of the empirical study show that Evolu-
tionary Testing is consistently the best performer on
branches with Royal Road properties when compared to
all of the other search techniques. The results provide
evidence indicating that simpler techniques outperform
Evolutionary Testing on non-Royal Road branches, while
also supporting the claim that, in terms of coverage, the
Memetic Algorithm is capable of the best overall perfor-
mance. Nevertheless, caution is required before making any
claims as to whether these results would be observed on
other programs, possibly from different sources and in
different programming languages. As with all such experi-
mental software engineering, further experiments are
required in order to replicate the results here.

6 RELATED WORK

Miller and Spooner [45] were the first authors to dynami-
cally generate test data, defining an objective function to be
optimized using numerical maximization techniques. Korel

[33] was the first to use the strategy described as Hill
Climbing in this paper. Xanthakis et al. [60] were the first to
apply evolutionary computation to test data generation for
the execution of paths. This work has been extended by
various authors [39], [51], [55], [57] for branch coverage.
Wang and Jeng [56] were the first to propose the use of
Memetic Algorithms for Search-Based Testing. In 2004,
there was a sufficiently large body of work in Search-Based
Testing to warrant a detailed survey of the field [40].
However, despite this large volume of work, this is the first
paper to provide a theoretical explanation of why and
where evolutionary approaches work.

Many empirical studies in the literature compare Evolu-
tionary Testing with Random Testing alone [39], [51], [57],
finding that Evolutionary Testing achieves the highest
levels of coverage, and more efficiently. Although this
finding is important to validate the use of metaheuristic
search for test data generation, it is something of a “sanity
check”; in any optimization problem worthy of study, the
chosen technique should be able to convincingly outper-
form random search.

Other studies which do compare Evolutionary Testing
with other metaheuristic search methods tend to report
results on small numbers of programs, each with limited
complexity. For instance, Wang and Jeng [56] compare
Evolutionary Testing with Hill Climbing and Memetic
Algorithms for branch coverage on six examples. Memetic
Algorithms are found to outperformHill Climbing, which, in
turn, outperforms Evolutionary Testing. However, only a
small number of branches are investigated, and none of these
contain Royal Road properties. Mansour and Salame [38]
compare Evolutionary Testing,Hill Climbing, and Simulated
Annealing for test data generation for path coverage, finding
that Hill Climbing discovers test data faster than Evolu-
tionary Testing and Simulated Annealing, but that Evolu-
tionary Testing and Simulated Annealing can cover more
paths. They also report that Simulated Annealing performs
better than Evolutionary Testing. However, Hill Climbing is
only applied to programswith integer inputs and the study is
performed on eight functions of fewer than 86 lines of code.
Finally, Xiao et al. [61] compare Evolutionary Testing with
Simulated Annealing for condition-decision coverage, find-
ing that Evolutionary Testing is consistently the best
performer. However, once again, the study is small scale,
featuring test objects of limited complexity.

Previously Harman and McMinn compared Evolution-
ary Testing, Hill Climbing, and Random Testing on a subset
of the test objects used in this paper [27]. The present paper
widens this empirical study by considering further subjects
and comparing Memetic Algorithms also. A further paper
by Harman et al. [23] compared Evolutionary Testing, Hill
Climbing, and Random Testing, but here, the focus was the
impact of input domain reduction by removing input
variables from the search which had no impact on the
current branch of interest.

Search-Based Testing is an example of the application of
search-based optimization algorithms to the identification
of optimal or near-optimal solutions to problems in soft-
ware engineering. Search-based optimization has proved to
be a valuable tool for supporting software engineering

244 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 2, MARCH/APRIL 2010

activities right across the software engineering life cycle,
including requirements engineering [4], [19], [21], project
planning and cost estimation [2], [3], [17] maintenance [10],
[37], [46], refactoring [28], [50], [54], service-oriented soft-
ware engineering [14], and quality assessment [11], [32].

The present paper is the first to combine theoretical
analysis grounded in theory (generalized from the literature
of evolutionary computation [53]) with a large-scale empiri-
cal study that both validates the predictions of the theory
and provides an empirical assessment of the performance
implications for choice of search-based test data generation
technique. This paper contains the largest empirical study
conducted to date comparing the performance of Search-
Based Testing when applied to real-world code, comparing
the performance local and global search and of the hybrid
“memetic” algorithm.

7 CONCLUSIONS AND FUTURE WORK

This paper provides the large body of existing work on
Search-Based Testing with a theoretical underpinning,
constructed as a generalization of the theories of schemata
and Royal Roads from the literature of evolutionary
computation. The theory is used to predict the situations
in which Evolutionary Testing will perform well and to
explain why. These predictions are validated by empirical
observation. The empirical study then goes on to explore
the impact of the choice of search technique providing some
important and perhaps counter-intuitive findings. The
findings of the study are surprising because they indicate
that sophisticated search techniques such as Evolutionary
Testing can often be outperformed by far simpler search
techniques. However, as the theory indicates, the findings
also show that there do exist test data generation scenarios
for which the evolutionary approach is ideally suited.
Currently, there is no theory for the local search approach
employed, and this remains an item for future work. Where
local search outperformed evolutionary search in the
empirical study, it appeared to be because the fitness
landscapes concerned appeared to contain only a few
mimima, a type of landscape in which local search can
perform very efficiently.

A further empirical study in the paper shows that in order
to maximize coverage, Evolutionary Testing should be
hybridized with the Hill Climbing approach. The findings
of this empirical study suggest, however, that if the presence
or absence of a Royal Road property can be ascertained, pure
global or local search is more efficient. However, automatic
identification of Royal Road properties is a hard problem,
and was performed by hand in this paper. Automatic
identification of Royal Road properties for structural test
data generation is, therefore, an issue for future work. An
alternative approachwould be to extend the hybrid search so
that it dynamically adapts to progress made by either the
global or local search component, by allocating more
resources to the operators concerned and improving its
efficiency and potentially its effectiveness also.

All previous work on search-based branch coverage has
focused on covering as many branches as possible. While
this is one possible formulation of the coverage optimiza-
tion problem, it fails to take account of the oracle cost. That
is, the cost of determining whether a program under test

produces the correct output for a test input. More work is
required in order to consider multiobjective formulations of
the coverage optimization problem [26] that can take
account of oracle cost, seeking to both maximize coverage
and minimize oracle cost.

An alternative approach to minimizing oracle cost is to
generate pseudo-oracles using program transformations
(also known in this context as testability transformations),
as proposed by McMinn [41]. Search-based testing is then
used in conjunction with the pseudo-oracle to find faults
relating to certain properties of the program under test, e.g.,
numerical precision. Here, more work is required to
develop pseudo-oracle transformations for a wide range
of programs and properties.

ACKNOWLEDGMENTS

The authors would like to thank Joachim Wegener and
DaimlerChrylser for providing the two industrial examples
used in the empirical study, and Simon Poulding (Uni-
versity of York) for statistical advice. Mark Harman is
supported by EPSRC grants EP/F059442 (SLIM: SLIcing-
state-based Models), EP/F010443 (A-CluB: Automated
Cluster Breaking), and EP/D050863 (SEBASE: Software
Engineering By Automated SEarch). Phil McMinn is
supported in part by EPSRC grants EP/G009600/1 (Auto-
mated Discovery of Emergent Misbehavior) and EP/
F065825/1 (REGI: Reverse Engineering State Machine
Hierarchies by Grammar Inference).

REFERENCES

[1] The Software-Artifact Infrastructure Repository, http://sir.unl.
edu/portal/index.html, 2009.

[2] J. Aguilar-Ruiz, I. Ramos, J.C. Riquelme, and M. Toro, “An
Evolutionary Approach to Estimating Software Development
Projects,” Information and Software Technology, vol. 43, no. 14,
pp. 875-882, 2001.

[3] G. Antoniol, M.D. Penta, and M. Harman, “Search-Based
Techniques Applied to Optimization of Project Planning for a
Massive Maintenance Project,” Proc. IEEE Int’l Conf. Software
Maintenance, pp. 240-249, 2005.

[4] A.J. Bagnall, V.J. Rayward-Smith, and I.M. Whittley, “The Next
Release Problem,” Information and Software Technology, vol. 43,
no. 14, pp. 883-890, 2001.

[5] J.E. Baker, “Reducing Bias and Inefficiency in the Selection
Algorithm,” Proc. Second Int’l Conf. Genetic Algorithms and Their
Application, 1987.

[6] A. Baresel and H. Sthamer, “Evolutionary Testing of Flag
Conditions,” Proc. Genetic and Evolutionary Computation Conf.,
pp. 2442-2454, 2003.

[7] A. Baresel, H. Sthamer, and M. Schmidt, “Fitness Function Design
to Improve Evolutionary Structural Testing,” Proc. Genetic and
Evolutionary Computation Conf., pp. 1329-1336, 2002.

[8] A. Bertolino, “Software Testing Research: Achievements, Chal-
lenges, Dreams,” Proc. Int’l Conf. Future of Software Eng. 2007,
pp. 85-103, 2007.

[9] L. Bottaci, “Instrumenting Programs with Flag Variables for Test
Data Search by Genetic Algorithm,” Proc. Genetic and Evolutionary
Computation Conf., pp. 1337-1342, 2002.

[10] S. Bouktif, G. Antoniol, E. Merlo, and M. Neteler, “A Novel
Approach to Optimize Clone Refactoring Activity,” Proc. Genetic
and Evolutionary Computation Conf., pp. 1885-1892, 2006.

[11] S. Bouktif, H. Sahraoui, and G. Antoniol, “Simulated Annealing
for Improving Software Quality Prediction,” Proc. Genetic and
Evolutionary Computation Conf., pp. 1893-1900, 2006.

[12] L.C. Briand, Y. Labiche, and M. Shousha, “Stress Testing Real-
Time Systems with Genetic Algorithms,” Proc. Genetic and
Evolutionary Computation Conf., pp. 1021-1028, 2005.

HARMAN AND MCMINN: A THEORETICAL AND EMPIRICAL STUDY OF SEARCH-BASED TESTING: LOCAL, GLOBAL, AND HYBRID SEARCH 245

[13] British Standards Inst., “BS 7925-1 Vocabulary of Terms in
Software Testing,” 1998.

[14] G. Canfora, M.D. Penta, R. Esposito, and M.L. Villani, “An
Approach for QoS-Aware Service Composition Based on Genetic
Algorithms,” Proc. Genetic and Evolutionary Computation Conf.,
pp. 1069-1075, 2005.

[15] K. Derderian, R. Hierons, M. Harman, and Q. Guo, “Automated
Unique Input Output Sequence Generation for Conformance
Testing of FSMs,” The Computer J., vol. 39, pp. 331-344, 2006.

[16] H. Do, S. Elbaum, and G. Rothermel, “Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure
and Its Potential Impact,” Empirical Software Eng., vol. 10, no. 4,
pp. 405-435, 2005.

[17] J.J. Dolado, “A Validation of the Component-Based Method for
Software Size Estimation,” IEEE Trans. Software Eng., vol. 26,
no. 10, pp. 1006-1021, Oct. 2000.

[18] R. Ferguson and B. Korel, “The Chaining Approach for Software
Test Data Generation,” ACM Trans. Software Eng. and Methodology,
vol. 5, no. 1, pp. 63-86, 1996.

[19] A. Finkelstein, M. Harman, A. Mansouri, J. Ren, and Y. Zhang,
“Fairness Analysis in Requirements Assignments,” Proc. IEEE Int’l
Requirements Eng. Conf., 2008.

[20] R.L. Glass, Facts and Fallacies of Software Engineering. Addison
Wesley, 2002.

[21] D. Greer and G. Ruhe, “Software Release Planning: An Evolu-
tionary and Iterative Approach,” Information and Software Technol-
ogy, vol. 46, no. 4, pp. 243-253, 2004.

[22] M. Harman, “The Current State and Future of Search Based
Software Engineering,” Proc. Int’l Conf. Future of Software Eng.
2007, pp. 342-357, 2007.

[23] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J. Wegener,
“The Impact of Input Domain Reduction on Search-Based Test
Data Generation,” Proc. ACM SIGSOFT Symp. Foundations of
Software Eng., pp. 155-164, 2007.

[24] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel,
and M. Roper, “Testability Transformation,” IEEE Trans. Software
Eng., vol. 30, no. 1, pp. 3-16, Jan. 2004.

[25] M. Harman and B. Jones, “Search-Based Software Engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833-839,
2001.

[26] M. Harman, K. Lakhotia, and P. McMinn, “A Multi-Objective
Approach to Search-Based Test Data Generation,” Proc. Genetic
and Evolutionary Computation Conf., pp. 1098-1105, 2007.

[27] M. Harman and P. McMinn, “A Theoretical & Empirical Analysis
of Evolutionary Testing and Hill Climbing for Structural Test
Data Generation,” Proc. Int’l Symp. Software Testing and Analysis,
pp. 73-83, 2007.

[28] M. Harman and L. Tratt, “Pareto Optimal Search-Based Refactor-
ing at the Design Level,” Proc. Genetic and Evolutionary Computa-
tion Conf., pp. 1106-1113, 2007.

[29] J.H. Holland, Adaptation in Natural and Artificial Systems. Univ. of
Michigan Press, 1975.

[30] Y. Jia and M. Harman, “Constructing Subtle Faults Using Higher
Order Mutation Testing,” Proc. Eighth Int’l Working Conf. Source
Code Analysis and Manipulation, 2008.

[31] T. Jones, “Evolutionary Algorithms, Fitness Landscapes and
Search,” PhD thesis, Univ. of New Mexico, 1995.

[32] T.M. Khoshgoftaar, L. Yi, and N. Seliya, “A Multi-Objective
Module-Order Model for Software Quality Enhancement,” IEEE
Trans. Evolutionary Computation, vol. 8, no. 6, pp. 593-608, Dec.
2004.

[33] B. Korel, “Automated Software Test Data Generation,” IEEE
Trans. Software Eng., vol. 16, no. 8, pp. 870-879, Aug. 1990.

[34] B. Korel, “Dynamic Method for Software Test Data Generation,”
Software Testing, Verification and Reliability, vol. 2, no. 4, pp. 203-
213, 1992.

[35] K. Lakhotia, M. Harman, and P. McMinn, “Handling Dynamic
Data Structures in Search-Based Testing,” Proc. Genetic and
Evolutionary Computation Conf., pp. 1759-1766, 2008.

[36] D. Leffingwell and D. Widrig, Managing Software Requirements: A
Use Case Approach. Addison Wesley, 2003.

[37] K. Mahdavi, M. Harman, and R. Hierons, “A Multiple Hill
Climbing Approach to Software Module Clustering,” Proc. IEEE
Int’l Conf. Software Maintenance, pp. 315-324, 2003.

[38] N. Mansour and M. Salame, “Data Generation for Path Testing,”
Software Quality J., vol. 12, no. 2, pp. 121-134, 2004.

[39] G. McGraw, C. Michael, and M. Schatz, “Generating Software
Test Data by Evolution,” IEEE Trans. Software Eng., vol. 27, no. 12,
pp. 1085-1110, Dec. 2001.

[40] P. McMinn, “Search-Based Software Test Data Generation: A
Survey,” Software Testing, Verification and Reliability, vol. 14, no. 2,
pp. 105-156, 2004.

[41] P. McMinn, “Search-Based Failure Discovery Using Testability
Transformations to Generate Pseudo Oracles,” Proc. Genetic and
Evolutionary Computation Conf., pp. 1689-1696, 2009.

[42] P. McMinn, D. Binkley, and M. Harman, “Empirical Evaluation of
a Nesting Testability Transformation for Evolutionary Testing,”
ACM Trans. Software Eng. Methodology, vol. 18, no. 3, 2009.

[43] P. McMinn, M. Harman, D. Binkley, and P. Tonella, “The Species
Per Path Approach to Search-Based Test Data Generation,” Proc.
Int’l Symp. Software Testing and Analysis, pp. 13-24, 2006.

[44] P. McMinn and M. Holcombe, “Evolutionary Testing Using an
Extended Chaining Approach,” Evolutionary Computation, vol. 14,
pp. 41-64, 2006.

[45] W. Miller and D. Spooner, “Automatic Generation of Floating-
Point Test Data,” IEEE Trans. Software Eng., vol. 2, no. 3,
pp. 223-226, Sept. 1976.

[46] B.S. Mitchell and S. Mancoridis, “On the Automatic Modulariza-
tion of Software Systems Using the Bunch Tool,” IEEE Trans.
Software Eng., vol. 32, no. 3, pp. 193-208, Mar. 2006.

[47] M. Mitchell, S. Forrest, and J.H. Holland, “The Royal Road for
Genetic Algorithms: Fitness Landscapes and GA Performance,”
Proc. First European Conf. Artificial Life, pp. 245-254, 1992.

[48] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive Models
for the Breeder Genetic Algorithm: I. Continuous Parameter
Optimization,” Evolutionary Computation, vol. 1, no. 1, pp. 25-49,
1993.

[49] National Institute of Standards and Technology, “The Economic
Impacts of Inadequate Infrastructure for Software Testing,”
Planning Report 02-3 May 2002.

[50] M. O’Keeffe and M. O’Cinneide, “Search-Based Software Main-
tenance,” Proc. Conf. Software Maintenance and ReEng., pp. 249-260,
2006.

[51] R. Pargas, M. Harrold, and R. Peck, “Test-Data Generation Using
Genetic Algorithms,” Software Testing, Verification and Reliability,
vol. 9, no. 4, pp. 263-282, 1999.

[52] Radio Technical Commission for Aeronautics, “RTCA DO178-B
Software Considerations in Airborne Systems and Equipment
Certification,” 1992.

[53] C.R. Reeves and J.E. Rowe, Genetic Algorithms—Principles and
Perspectives: A Guide to GA Theory. Springer, 2002.

[54] O. Seng, J. Stammel, and D. Burkhart, “Search-Based Determina-
tion of Refactorings for Improving the Class Structure of Object-
Oriented Systems,” Proc. Genetic and Evolutionary Computation
Conf., pp. 1909-1916, 2006.

[55] N. Tracey, J. Clark, K. Mander, and J. McDermid, “Automated
Test Data Generation for Exception Conditions,” Software—
Practice and Experience, vol. 30, no. 1, pp. 61-79, 2000.

[56] H.-C. Wang and B. Jeng, “Structural Testing Using Memetic
Algorithm,” Proc. Second Taiwan Conf. Software Eng., 2006.

[57] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary Test
Environment for Automatic Structural Testing,” Information and
Software Technology, vol. 43, no. 14, pp. 841-854, 2001.

[58] J. Wegener, H. Sthamer, B.F. Jones, and D.E. Eyres, “Testing Real-
Time Systems Using Genetic Algorithms,” Software Quality J.,
vol. 6, no. 2, pp. 127-135, 1997.

[59] D. Whitley, “The GENITOR Algorithm and Selection Pressure:
Why Rank-Based Allocation of Reproductive Trials Is Best,”
Proc. Int’l Conf. Genetic Algorithms, J.D. Schaffer, ed., pp. 116-
121, 1989.

[60] S. Xanthakis, C. Ellis, C. Skourlas, A.L. Gall, S. Katsikas, and K.
Karapoulios, “Application of Genetic Algorithms to Software
Testing (Application Des Algorithms Génétiques Au Test Des
Logiciels),” Proc. Fifth Int’l Conf. Software Eng. and Its Applications,
pp. 625-636, 1992.

[61] M. Xiao, M. El-Attar, M. Reformat, and J. Miller, “Empirical
Evaluation of Optimization Algorithms When Used in Goal-
Oriented Automated Test Data Generation Techniques,” Empirical
Software Eng., vol. 12, no. 2, pp. 183-239, 2007.

246 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 2, MARCH/APRIL 2010

Mark Harman is a professor of software
engineering in the Department of Computer
Science at King’s College London. He is widely
known for work on source code analysis and
testing, and was instrumental in the founding
of the field of Search-Based Software Engi-
neering, a field that currently has active
researchers in 24 countries and for which he
has given 14 keynote invited talks. He is the
author of more than 140 refereed publications,

on the editorial board of seven international journals, and has served
on 90 program committees. He is the director of the CREST Centre
at King’s College London, and is the principal investigator for a
current research grant portfolio of £3.3 m.

Phil McMinn received the PhD degree from the
University of Sheffield, United Kingdom, in
January 2005, which was funded by Daimler-
Chrysler Research and Technology. He has
been a lecturer in the Department of Computer
Science at the University of Sheffield since
October 2006. He has published several papers
in the field of search-based testing. His research
interests cover software testing, in general,
program transformation, and agent-based sys-

tems and modeling. He is currently funded by the UK Engineering and
Physical Science Research Council (EPSRC) to work on testing agent-
based systems and the automatic reverse engineering of state machine
descriptions from software.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HARMAN AND MCMINN: A THEORETICAL AND EMPIRICAL STUDY OF SEARCH-BASED TESTING: LOCAL, GLOBAL, AND HYBRID SEARCH 247

