
Non-Deterministic Lisp with
Dependency-Directed Backtracking

Ramin Zabiht, David McAllester and David Chapman
Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Abstract
Extending functional Lisp with McCarthy’s non-
deterministic operator AHFJ yields a language which
can concisely express search problems. Dependency-
directed backtracking is a powerful search strategy.
We describe a non-deterministic Lisp dialect called
SCHEMER and show that it can provide automatic
dependency-directed backtracking. The resulting
language provides a convenient interface to this ef-
ficient backtracking strategy.

Many problems in Artificial Intelligence involve
search. SCHEMER is a Lisp-like language with non-
determinism which provides a natural way to express
sea.rch problems. Dependency-directed backtracking is a
powerful strategy for solving search problems. We de-
scribe how to use dependency-directed backtracking to in-
terpret SCHEMER. This provides SCHEMER programs
with the benefits of dependency-directed backtracking au-
tomatically.

We begin by describing the SCHEMER language. We
next provide an overview of dependency-directed back-
tracking and list its requirements. We then show how to
meet these requirements in interpreting SCHEMER. Fi-
nally, we argue that SCHEMER with automatic depen-
dency-directed backtracking would be a useful tool for Ar-
tificial Intelligence by comparing it with current methods
for obtaining dependency-directed backtracking.

I. SCHEMER is Scheme with AMB

SCHEMER consists of functional Scheme [Rees e-t al. 19861
plus McCarthy’s ambiguous operator AMB [McCarthy 19631
and the special form (FAIL). AMB takes two arguments and
non-deterministically returns the value of one of them.
Selecting the arguments of the AMB's in an expression
determines a possible execution. Each SCHEMER ex-

t Author's current address: Computer Science Department, Stanford
University, Stanford, California, 94305.

This paper describes research done at the Artificial Intelligence Lab-
oratory at the Massachusetts Institute of Technology, supported in
part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contracts NoO014-80-C-
0505 and NOOOl4-86-K-0180, in part by National Science Foun-
dation grant MCS-8117633, and in part by khe IBM Corporation.
Ramin Zabih is suppori.ed by a fellowship from the Fannie and John
Hertz Foundation.

pression is thus associated with a set of possible values.
In the program below, the expression (ANY-NUMBER) non-
deterministically returns some whole number.

(DEFINE (ANY-NUMBER)
(AMB 0 (l+ (ANY-NUMBER))))

Similarly, (ANY-PRIME) non-deterministically returns some
prime number.

(DEFINE (ANY-PRIME)
(LET ((NUMBER (ANY-NUMBER)))

(IF (PRIME? NUMBER)
NUMBER
(FAIL))))

ANY-PRIME eliminates certain possible values by evaluating
(FAIL). The expression (FAIL) has no possible values.

A mathematically precise semantics for SCHEMER is
beyond the scope of this paper - there are several possi-
ble semantics that differ in technical detail [Clinger 1982,
Zabih et nl. 19871. Under all these semantics, however, the
expression (FAIL) can be used to eliminate possible val-
ues; finding a possible value for a SCHEMER expression
requires finding an execution that doesn’t evaluate (FAIL).

For a given expression there may be a very large num-
ber of different ways of choosing the values of AMB expres-
sions. If there are 12 independent binary choices in the
computation then there are 2* different combinations of
choices, and thus 2* different executions. In certain ex-
pressions most combinations of choices result in failure.
Finding one or more possible values for a SCHEMER ex-
pression requires searching the various possible combina-
tions of choices.

Interpreting SCHEMER thus requires search. The
semantics of the language do not specify a search strat-
egy. Correct interpreters with different strategies will pro-
duce the same possible values for an expression, and can
differ only in efficiency. It is straightforward to write 3.
SCHEMER interpreter that searches all possible esecu-
tions in a brute force manner by backtracking to the most,
recent non-exhausted choice in the event of a failure. Such
an interpreter would use simple “chronological” backtra.ck-
ing.

We describe a more sophisticated SCHEMER inter-
preter that automatically incorporates dependency anal-
ysis and dependency-directed backtracking. This inter-
preter, originally described in [Za.bih 198’71, allows pro-
grammers to gain the efficiency benefits of dependency-
directed backtracking automatically for SCHEMER code.

Zabih, McAllester, and Chapman 59

From: AAAI-87 Proceedings. Copyright ©1987, AAAI (www.aaai.org). All rights reserved.

Figure 1: A search tree. Failures are labeled “f”. Figure 2: The search tree after labeling and dependency
analysis. Capital letters are labels. The dependency set
for the leftmost failure is also shown.

II. Dependency-Directed Backtracking

Dependency-directed backtracking is a. general search
stra.tegy invented by Stallman and Sussman [Stallman and
Sussman 19771. It can best be understood as a technique
for pruning search trees. Consider an arbitrary search tree
generated by some particular search. Such a tree is shown
in Figure 1. The leaves of the tree labeled with the letter
“f” represent sea.rch paths which lead to failure. Depen-
dency-directed backtracking can be used to prune such a
sea.rch tree, by detecting unsearched fragments of the tree
which cannot contain solutions.

been assigned the dependency set {C,E). This means that
the failure was “caused” by the labels C and E. More
specifically, it means that every leaf node which is beneath
both a node labeled C and a node labeled E is guaranteed
to be a failure. For example in a graph coloring problem
C may represent the statement that p is colored red and
E may represent the statement that m is colored red, and
we may know that no solution can color both p and m red.
Such a set of labels is called a nogood.

Dependency-directed backtracking requires that two
additional pieces of information be added to the tree. First,
the non-root nodes must be assigned labels. Second; each
failing leaf node must be associated with a subset of the
set of labels that appear above that leaf. For reasons to
be explained, the process of assigning sets of labels to fail-
ing leaf nodes is called dependency analysis. Carrying out
labeling and dependency analysis on the tree of Figure 1
could result in Figure 2.

Nogoods can be used to prune fragments of the search
tree. In the above tree the nogood {C,E} prunes the first
and second leaf nodes (counting from the left) as well as
leaf nodes nine and ten. These represent about a quarter
of the entire search tree. If the nogood had contained
the single label C, about half of the tree would have been
pruned by this one nogood. In general, the smaller the
number of labels in a nogood, the larger the fragment of
the search tree pruned by that nogood.

Each lab21 represents a statement that is known to
be true of all leaf nodes beneath the labeled node. For
example, suppose that the above tree represents the search
for a coloring of a graph such that adjacent vertices have
distinct colors, and suppose that n is a vertex in the graph.
In this case the la.bel A might represent the statement that
n is assigned the color red. All candidate colorings under
the search node labeled A would color n red.

More formally, let N be a nogood, i.e. a set of la-
bels. We say that N prunes 3 given node if every la-
bel in N appears above that leaf node in the search tree.
Dependency-directed backtracking maintains a set of no-
goods, and never looks at nodes that are pruned by a no-
good in this set. When the search process examines a leaf
node that turns out to be a failure, dependency analysis is
used to generate a new nogood; this is added to the set of
nogoods and the process continues.

The leftmost leaf node in the tree of Figure 2 has A particular method of node la.beling and dependency

60 Al Architectures

analysis is called sound if the nogoods associated with fail-
ure nodes only prune failure nodes; solution nodes should
never be pruned. ‘When computation is required to deter-
mine failure, dependencies must be maintained in a way
tha.t ensures soundness. If a label contributes to n f~‘7rl-
ure, but the contribution is overlooked, solutions can be
missed. For example, if dependency anaiysis on the ieft-
most failure in Figure 2 overlooked the contribution of C,

a nogood consisting of just (E) would be created, which
would discard the only solution.

The next two sections describe techniques for
automatic node labeling and dependency analysis in
SCHEMER. The automatic dependency-directed back-
tracking provided by these techniques makes it possible
for programmers to take advantage of dependency-directed
tree-pruning without the necessity of writing their own
code for Sear& nQd_P !&?&nP a.nfl d~ncnrkncv anaiy&: o ---- -‘-r-------J

II. Node %a

Finding one or more of the possible values for a given

SCHEMER expression involves searching the possible ex-
ecutions for one which does not require evaluating (FAIL).
The search has an associated binary search tree; each
branch in the search tree corresponds to selecting either
the first or second argument as the value of a particular
ANB expression.

Recall that a label on a node in a search tree represents
a statement that is true of all candidate solutions under
that nnde Tn SCTTFMFT? w-arch tree?s the la.hds renrewnt J---r2 -_---. -__ LJ--l’-.---‘-“L-- ---- I---L .t--- -----L --r---L--l
statements of the form “AM3-37 chooses its first argument”
where AHB-37 refers to a particular AMEl expression. For
this to work properly, we need to identify particular AHB
expressions within a given SCHEMER expression; each A M B
expression must be given a unique name.

Figure 3 shows an expression in which each APIA has
been given a unique name. The corresponding search tree
is also shown. Tlle non-root nodes have been iabeied with
ctatpmentc nhnllt nnrtirlllnr AMU’s rhnncincr their left. nr Y.,IyUV~I.VI.“Y W...I lY y-‘“‘“‘.s’ a..- 1 .3’“““.“b .,1*--a 1-a.. --

right arguments, and dependency analysis has been per-
formed on the leftmost failure. The label m-37-~, for
example, represents the statement that the AMFI expres-
cinn 8~1-27 rhnnax ita fipct fl&‘,\ nrallment while the label “IVLI c..- “C “IlV”““” IV” I.L”U \“a.“, .a’~““‘“““, . . llll” Vll” lUVVl

APfB-37-R represents the statement that Am-37 chooses its
second (right) argument. In this tree the failure of the
leftmost node is caused by the fact that AHEl-39 chose its
first argument. The nogood consisting of the single label
AHB-39-L prunes the first, third and fifth leaf nodes.

The choices in a SCHEMER expression must be
named before searching for possible values. If the nam-
:,, :, -1--A -1....:,- &I-- ^^^-_ L - m^^^^^ &I--,. :- A--,-- -c 111g IS UUllt: uurIIll; Cllt: searc11 yruLe:as, bIleI-e 1s uan(;er Ul
giving the same A~BB expression different names in different
regions of the search tree. This problem can be avoided
by naming all the choices in the expression before starting
the search process.

For
TTnffi,rt,,natel.r th;c ;c nrrt PP PDC., PO ;t ,;crht CP~P- “nIL”IuuInuY.dIJ Vlll.2 1.2 ,,“V CA.2 bu.JJ w 1” llll&ll” U\rLll,.

example consider the expression (ANY-WMBER) defined

(LET ‘;! ;A+!EJ-31 3 (Am-38 4 5))) ,. “..\
(1 (Al’lB-3Y e, 111)

(IF (= Y 6) (FAIL) (+ X Y>)>

f 1: f 12

Figure 3: A SCHEMER expression with named choices
and its labeled search tree.

previously.
(DEFINE (AMY-NUHE!ER)

(AMFI 0 (I+ (ANY-NWTBER))))

I-SC, nhnxm AWU nvr\rr\no;r\., n.,nmrr+ ai-ml.. l..,, :,.l,,t:fi,.A III-C a”““6 nrru ~*y’cxml”” cIa*lll”I, 31111yly UC IUC;‘IClIICU as,

say, AkIB-52, because it is being used to make several dif-
ferent choices in different recursive calls to the procedure
AMY-WUMBER.

Tt :, ..--Zl.1, I.-...-..-.. c,. <c..,...:_.rln LL- ---..--:-.- --ll-
lb 13 pu331u1c, 1IUWtTVtx) LU UllW 111u lone 1-ecu1-s1ve Calls

in the above expression and then to name each choice in-
dependently. The resulting expression is called a named
choice expression. The following infinite named choice es-
--_-,-I-- :- LL- ---. .,L press1011 IS LII~ rebulc of iinroiiing ihe above definition.

(A.W-52 0
Cl+ (APB-53 0

(l+ (AMEI-54 0
(1+ . . .>)>>))

In the above expression each distinct choice has been givc‘ll
a distinct ~7 sme. Infinite expressions such as this one can he
represented by lazy S-expressions. Lazy S-expressions are
?n~lc\~pr\,,a tr\ ct~~~m~ rAh,lar\n ?nrl C,,nnrv(~~ lc1Qc;l. iazv cblbQI”~“U.3 U” OUILccI,,D LIL “LI.3”II a.11u kJuuJJl,lcLll I J”“,)

S-expressions delay the computation of their parts until
those parts must be computed. When a portion of a lazy
S-expression is computed, the result is saved.

I-, c...,-l cl., -,,,:11, ..,l..-- ,A- @~U37R6K’D -_-----
IV 111lU bllC yuasl”lc V&lUG3 Ul a lJ~,nr>lViJsln tx

Y
res-

sion, the expression is first converted to a named choice
expression by giving all AMEI expressions names. In practice

Znbih, McAllester, and Chapman 61

the result is a lazy S-expression whose parts are computed A set of assumptions about the choices in a named

on demand and then saved. Conceptually, however, the choice expression E will assign E a value. The value
entire named choice expression is created, and all choices is computed by replacing all the named choices by their

are named, before the search process begins. The search first or second arguments, depending upon the assump-

process then evaluates the resulting named choice expres- tion about that choice. The resulting expression contains

sion. Nodes in the search tree are given labels of the form no choices at all, and either fails or has a unique possible

AMP52-L which means that AMB expression 52 chooses its value. b

first (left) argument. As the search for possible values of a named choice

Producing a named choice expression from a regu-
lar SCHEMER expression turns out to be difficult. @-
substitution followed by textual naming of AMB’S is suffi-
cient for the examples we have mentioned, but does not
preserve the semantics of SCHEMER. This is because sub-
stitution can result in multiple choices where there should
be only one. Consider the procedure below.

(DEFINE (BETA)

expression proceeds, assumptions are made about the var-
ious choices in the expression. When a value for an ex-
pression (or subexpression) is found dependency analysis
is performed to determine the assumptions about choices
which lead to this particular value.

((LAMBDA (X) (+ X X>) (AMB 1 2)))

The possible values of (BETA) should be 2 and 4. Perform-
ing /3-substitution produces an expression with possible
values 2, 3 and 4.

Recall that the job of dependency analysis is to
provide a set of labels that constitute a nogood. In
SCHEMER, the labels are assumptions such as AMB-57-L.
A justification for a value of a named choice expression is a
set of such assumptions which ensures that the expression
has that value. A justification for the value of failure will
therefore be a valid nogood.

It turns out that it is possible to unwind a SCHEMER
expression completely so that the resulting named choice
expression has the same possible values as the original ex-
pression. The basic trick is to interleave /Y-substitution
and textual choice-naming. However, there are several sub-
tleties involved, and the solution is too complex to describe
in the space available. Interested readers are referred to
[Zabih et al. 1987], which contains a complete description
of the problem and its solution. Unwinding SCHEMER ex-
pressions without violating the semantics of the language
was the major technical contribution of [Zabih 19871. For
our present purposes it is only important that a solution
exists.

The justification for a value of a named choice expres-
sion can be defined recursively in terms of the justifications
for its subexpressions.

If the expression is a constant or failure, the justifica-
tion for its value is empty.

If the expression is a choice (AKB-n El E, 1, then the
justification for its value is the assumption AMB-n-L or
AMB-n-R, added to the justification for the value of El
or E,- , respectively.

IV. Dependency Analysis

Since SCHEMER expressions can be converted to named
choice expressions, the problem of finding possible values
for SCHEMER expressions is reduced to the problem of
finding possible values for named choice expressions. It
is possible to give a simple recursive definition for named
choice expressions.

If the predicate of a conditional expression fails, then
the entire conditional fails, and the justification for
this failure is equal to the justification for the failure
of the predicate. If the predicate does not fail then the
justification for the value of the conditional is the the
union of the justification for the value of the predicate
and the justification for the value of whichever branch
is taken.

A named choice expression is one of the following,
where &‘s denote named choice expressions.

l A constant

If any argument to a primitive application fails then
the application itself fails, and the justification for this
failure equals the justification for the failure of the ar-
gument. If no argument fails, the justification for the
value of the application is the union of the justifica-
tions for the arguments.

l Failure

l A named AMB expression of the form (AHB-n El E,)

l A conditional (IF Epred EcmJeq Eatter)

l A primitive application (P El Es), where P is a
Scheme primitive such as +

Justifications are calculated incrementally as the search
progresses. When the search produces a leaf node, which
is a value for the named choice expression, a justification
for that value is also produced. If the value is ~~;!llre: then
the justification will be recorded as a nogood.

A given named choice such as AMB-52 may appear in sev-
eral different places in a given named choice expression.
We require that when this happens the arguments to the
AMB-52 are the same in all cases. Named choice expressions
need not be finite; they are produced top down in a lazy
manner.

The search process maintains a list of nogoods, ini-
tially empty. Whenever the search discovers a failure, de-
pendency analysis produces a nogood, i.e. a set of assump-
tions that ensures that the named choice expression fails.
This new nogood is added to the list. The search process
discards portions of the search tree that are pruned by any
of the nogoods.

62 Al Architectures

Automatic dependency-directed backtracking in the
SCHEMER interpreter, as described above, is a special
case of the general dependency-directed backt,racking pro-
cedure mentioned earlier. This interpreter makes it pos-
sible to gain the efficiency of dependency-directed back-
tracking automatically while writing search programs in
SCHEMER. A more detailed description of the above pro-
cess can be found in [Zabih et al. 19871.

v. Comparison with

a fair amount of work on non-chronological backtrack-
ing strategies within the Prolog community [Bruynooghe
and Pereira 19841. While it is likely that much of our
framework for providing dependency-directed backtrack-
ing could be applied to Prolog, we have not yet done
so. Complicating matters are several differences between
SCHEMER and the “functional” subset of Prolog (i.e.
pure horn clause logic). For example, SCHEMER has clo-
sures while Prolog, which uses unification to implement
parameter passing, potentially has data flowing both into
and out of each parameter.

SCHEMER is interesting because it provides automatic
backtracking, without specifying a backtracking strategy,
in a language that is almost Scheme. It can thus give the
user dependency-directed backtracking in a highly t’rans-
parent manner. Previously available methods for obtaining
dependency-directed backtracking include the direct use of
a ??uth Maintenance System (or TMS) [Doyle 19791, de-
Kleer’s consumer architecture [deKleer 19863 and the lan-
guage AMORD [deKleer et al. 1978). These methods, how-
ever, require the user to explicitly use dependency-directed
backtracking or to write in an unconventional language.
They also necessitate special programming techniques, be-
cause of the way they use the underlying TMS.

The closest language to SCHEMER is Dependency-
Directed Lisp (DDL), a Lisp-based language invented by
Chapman to implement TWEAK [Chapman 19851. This is
not surprising, since SCI-IEMER is based on DDL. There
are two differences between DDL and SCHEMER that are
worth describing.

In particular, these methods force the user to provide
node labeling and dependency analysis. Deciding which
facts in the search problem should be assigned TMS nodes
corresponds to node labeling. Providing the TMS with
logical implications, so that it can determine the labels
responsible for failures, corresponds to dependency anal-
ysis. If these implications are not carefully designed it is
possible to overlook the contributions of some labels; this
can result in unsound nogoods which prune solutions, as
mentioned earlier.

First, DDL used a weaker dependency-directed back-
tracking strategy than SCHEMER does. DDL would nevei
use a nogood more than once. This was because DDL la-
bels never appeared more than once in the search tree. As
a result DDL considers parts of the tree containing only
failures, which SCHEMER would prune. This in turn was
due to the difficulty of devising a choice-naming scheme
that produces repeated labels without destroying the se-
mantics of the language.

Using a TMS directly does not provide a separate lan-
guage layer at all. It is easy for the problem solver to
neglect to inform the TMS of the labels responsible for
some decision, leading to unsound nogoods. This is also
inconvenient; the user must intersperse code to solve the
search problem with calls to the TMS to ensure dependen-
cy-directed backtracking. SCHEMER, on the other hand,
enforces a clean separation between the code that defines
the search problem, which the user writes in SCHEMER,
and the code that implements the search strategy, which
the interpreter provides transparently.

In addition, DDL had side-effects. Side-effects com-
plicate dependency analysis by introducing too many de-
pendencies. In SCBEMER, justifications can be computed
incrementally. When the variable x is bound to the value
of (FOO) , all the choices that affect the value of X can be col-
lected incrementally in the process of evaluating the body
of FOO, and no other choice can affect the value of X. In the
code below, the AHB shown is never part of the justification
for the value of X.

(LET ((X (FOO)))
(LET ((Y (AMB (F) (Gl)))

(BAR x Y>))

In the presence of side-effects it is hard to prove that the
value of x does not depend on whether Y *is (~1 or (G).
This is because (G), for example, could side-effect data
shared with X. This makes it difficult to design a method
for dependency analysis which is sound in the presence of
side-effects. Our (not very determined) attempts to design
such a method for dependency analysis have produced such

- AMORD provides a language layer, as does the con-
sumer architecture (to a lesser extent). The language is
rule-based, though, and thus lacks a single locus of con-
trol. Such an approach is well-suited to problems that
can be easily expressed with rules and a global database of
assertions. On the other hand, it is difficult to use on prob-
lems that are not easily converted into rule-based form. A
major advantage of SCHEMER is that it allows the user
to express search problems without forcing him to think in
terms of a. rule-set and a global data&se.

large nogoods that pruning never occurs.

VI. chnelusions
We have shown that SCHEMER, a non-deterministic lan-
guage based on Lisp, can elegantly express search prob-
lems, and that it can provide automatic dependency-
directed backtracking. The resulting interpreter allows
users to gain the benefits of this backtracking stra eF;.y t
while writing in a remarkably conventional language. Ge
suspect that many search programs could benefit from de-

Prolog [Warren et al. 19771 is defined to provide depth- pendency-directed backtracking if it were only more acces-
first chronological backtracking. However, there has been sible. It is our hope that SCHEMER will make depenclen-

Zabih, McAllester, and Chapman 63

a more popular search strategy in References

[Abelson and Sussman 19851 Harold Abelson, Gerald Jay
Sussman, and Julie Sussman. Structure and Inter-
pretation of Computer Programs. MIT Press, Cam-
bridge, Massachusetts, 1985.

[Bruynooghe and Pereira 19841 Maurice Bruynooghe and
Luis Pereira. “Deduction Revision by Intelli-
gent Backtracking”. In Implementations of Prolog,
J . Campbell (editor). Ellis Horwood, Chichester,
1984.

[Chapman 19851 David Chapman. “Planning for Con-
junctive Goals”. MIT AI Technical Report 802,
November 1985. Revised version to appear in Arti-
ficial Intelligence.

[Clinger 19821 William Clinger. “Nondeterministic Call
by Need is Neither Lazy Nor by Name.” Proceedings
of the ACM Conference on LISP and Functional Pro-
gramming, 226-234,1982.

[deKleer 19861 Johan deKleer. “Problem Solving with the
ATMS”. Artificial Intelligence 2$(1986), 197-224.

[deKleer et al. 19781 Johan deKleer, Jon Doyle, Charles
Rich, Guy Steele, and Gerald Jay Sussman.
“AMORD, a Deductive Procedure System”. MIT AI
Memo 435, January 1978.

[Doyle 19791 Jon Doyle. “ A Truth Maintenance System”.
Artificial Intelligence 12(1979), 231-272.

[McCarthy 19631 John McCarthy. “A basis for a math-
ematical theory of computation”. In Computer
Programming and Formal Systems, P. Braffort and
D. Hirschberg (editors). North-Holland, Amsterdam,
1963.

[Rees et al. 19863 Jonathan Rees et. al. “Revised3 Report
on the Algorithmic Language Scheme”. SIGPLAN
Notices 21(12), December 1986.

[Stallman and Sussman 19771 Richard Stallman and Ger-
ald Jay Sussman. “Forward Reasoning and De-
pendency Directed Backtracking in a System for
Computer-Aided Circuit Analysis”. Artificial Intel-
ligence 9(1977), 135-196.

[Warren et al. 19771 D. Warren, L. Pereira and F. Pereira.
“Prolog - the language and its implementation com-
pared with Lisp”. ACM Symposium on Artificial In-
telligence and Programming Languages, 1977.

[Zabih 19871 Ramin Zabih. Dependency-Directed Back-
tracking in Non-Deterministic Scheme. M.S. thesis,
MIT Department of Electrical Engineering and Com-
puter Science, January 1987. Revised version avail-
able as MIT AI Technical Report 956, July 1987.

[Zabih et al. 19871 Ramin Zabih, David McAllester anal
David Chapman. “Dependency-Directed Backtrack-
ing in Non-Deterministic Scheme”. To appear in Ar-
tificial Intelligence. (Preliminary draft available from
the authors).

cy-directed backtracking
the AI community.

Acknowledgments

Alan Bawden, Mark Shirley and Gerald Sussman helped us
considerably with SCHEMER. Phil Agre, Jonathan Rees,
Jeff Siskind, Daniel Weise, Dan Weld and Brian Will iams
also contributed useful insights. John Lamping and Joe
Weening read and commented on drafts of this pa.per.

64 Al Architectures

