
Predicting Build Failures using Social Network Analysis
on Developer Communication

Timo Wolf1

Siemens Corporate Technology
Germany

timowolf@uvic.ca

Adrian Schröter, Daniela Damian, Thanh Nguyen
Software Engineering Global interAction Lab (SEGAL)

University of Victoria, Canada
schadr@uvic.ca, danielad@cs.uvic.ca, duythanh@uvic.ca

Abstract

A critical factor in work group coordination, communi-
cation has been studied extensively. Yet, we are missing
objective evidence of the relationship between successful
coordination outcome and communication structures. Us-
ing data from IBM’s JazzTM project, we study communica-
tion structures of development teams with high coordination
needs. We conceptualize coordination outcome by the re-
sult of their code integration build processes (successful or
failed) and study team communication structures with so-
cial network measures.

Our results indicate that developer communication plays
an important role in the quality of software integrations.
Although we found that no individual measure could indi-
cate whether a build will fail or succeed, we leveraged the
combination of communication structure measures into a
predictive model that indicates whether an integration will
fail. When used for five project teams, our predictive model
yielded recall values between 55% and 75%, and precision
values between 50% to 76%.

1 Introduction

Communication problems lead to coordination and inte-
gration failures in work teams (e.g. [17, 21, 9]). This situ-
ation is further exacerbated in large and distributed teams,
where effective communication and activity awareness of
related but remote project members are problematic, yet
key to anticipate and resolve coordination problems early
(e.g. [17, 21]).

We strive to contribute to the growing body of research
into the role of communication structures in determining co-
ordination ease [24] and success [26]. Although there has
been some research on the relationship between commu-

1at the time of this study Timo Wolf was a PostDoc at the Software
Engineering Global interAction Lab at the University of Victoria

nication and coordination in work teams, research in soft-
ware engineering is very limited. The study of the Enron
email corpus found that central communicators exhibit a
better ability to coordinate [26] and R&D teams with dense
communication structures are associated with more coor-
dination problems [24]. In open source software develop-
ment, developers that are active in email communication
have also been found to be most active in open source de-
velopment [3]. In software engineering research, however
it is unclear whether there are specific communication be-
haviors that enable effective coordination. Moreover, we
are missing a precise conceptualization and objective mea-
sure of what successful communication in relation to project
success is.

Complementary to previous research that is largely qual-
itative [22, 25] and which gathered information about occur-
rences of communication problems through project reviews
and subjective ratings of project success, we use objective
measures in studying the relationship between communica-
tion structures and coordination success. Past research has
also largely investigated communication and coordination
only in relation to entire projects. There is little systematic
software engineering research in objectively examining the
outcome of coordination (successful or failed) and assess-
ing communication characteristics that lead to coordination
failures. In this work we investigate the relationship be-
tween communication structures and coordination outcome
at a finer level of detail. We study instances of coordina-
tion during the integration of code in large and distributed
software teams, in relation to their associated communica-
tion structures. By communication structure we refer to the
topology of the communication network that was involved
in the tasks that lead to a software build. We use social
network analysis measures such as density and centrality
to obtain measurable characteristics of the communication
structure.

Our study examines the data from IBM’s distributed de-
velopment project Jazz. Jazz is a development environ-
ment that focuses on collaboration support and tightly in-

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 1

tegrates programming, communication, and project man-
agement [12]. Our two step study revealed the following:
Our results indicate that developer communication plays an
important role in the quality of software integrations. Al-
though we found that no individual measure could indicate
whether a build will fail or succeed, we leveraged the com-
bination of communication structure measures into a pre-
dictive model that indicates whether an integration will fail.

The remainder of the paper is structured as follows: we
first discuss related work (Section 2) and introduce our two
research questions (Section 3). Section 4 describes our
methodology in the study of communication structures and
integration in the Jazz project. Section 5 describes the re-
sults of our analysis. We close with their discussion and
implications for practice in Section 7 and 8.

2 Communication, Coordination and Inte-
gration

The relationship between communication, coordination
and project outcome has been studied for a long time in
the area of computer-supported cooperative work. More re-
cently the domain of software and distributed software de-
velopment showed increased interest as well.

Communication plays an important role in work groups
with high coordination needs and the quality of commu-
nication has been found as determinant of project suc-
cess [6, 28]. The dynamic nature of work dependen-
cies in software development makes collaboration highly
volatile [5], consequently affecting a teams ability to ef-
fectively communicate and coordinate. Additional difficul-
ties emerge in distributed teams, where team membership
and work dependencies become even more invisible [7].
Moreover, team communication patterns are significantly
affected by distance [24]. Maintaining awareness [37] be-
comes even more difficult when developers work in ge-
ographically remote environments; communication struc-
tures that include key contact people at each site are ef-
fective coordination strategies when maintaining personal
cross-site relationships is challenging [24].

With respect to the role of effective coordination in
project success, early studies indicate the issues that soft-
ware development teams face in large projects [6]. A
study by Herbsleb et al. [21] showed that Conway’s law
is also applicable for the coordination within development
teams, supporting the influence of coordination on software
projects. Kraut et al. [28] showed that software projects
are greatly influenced by the quality of coordination of de-
velopment teams. More recently a theory of coordination
has been proposed and accounts for the influence of coordi-
nation on different project metrics such as rework and de-
fects [23].

The importance of communication in successful coor-
dination is also well documented and makes the study of
communication structures important. For example, Fussell
et al. [13] found that communication amount and tactics
were linked to the ability of effectively coordinate in work
groups. In software development, others showed that com-
munication problems lead to problems during the activity
of subsystem integration [17, 8]. Coordination conceptu-
alized via communication has also been studied more gen-
erally in relation to project success: factors such as “har-
mony” [40], communication structure [33], and communi-
cation frequency [16] were related to project success.

In summary, the research so far suggests that coordina-
tion affects project outcome, but it leaves us without clear
measurable evidence about this effect. The above studies, in
software development or organizational behavior, have not
used objective measures of communication or project suc-
cess. Self-reported data was largely used in their analysis.
Further, the relationship between coordination and project
outcome was examined at a rather coarse-grain level – the
project level – and by largely using only subjective mea-
sures for coordination and project success.

We analyze coordination at a finer level of detail, at the
level of software subsystem integration and the integration
of multiple subsystems and conceptualize the coordination
success by the success of integration. In turn, we regard
the integration to be successful if the associated software
build, which includes compilation, testing and packaging,
is successful. Thus, we are able to provide an objective
measure of the coordination outcome.

The difficulty in studying failed integration in relation
to communication lies in capturing and quantifying infor-
mation about communication in teams that have a well-
defined coordination goal but dynamic patterns of interac-
tion. In our work we use the Jazz project data, which cap-
tures communication of project participants. This enables
us to study the structure of the communication networks
emerged around code integrations, both at individual teams
of the project and within the entire project.

3 Can communication predict failure?

In order to examine the communication involved in the
coordination necessary during subsystem integrations, we
draw on social network analysis methods. Social network
analysis has often been deployed to study communication
networks of work teams. Using social network analysis
has the major advantage that we can draw from its exten-
sive knowledge of analysis and implications with respect
to social, communication, and knowledge management pro-
cesses [4, 11]. Griffin and Hauser [16] investigated social
networks in manufacturing teams. They found that a higher
connectivity between engineering and marketing increases

2

the likelihood of a successful product. Similarly, Reagans
and Zuckerman [35] related higher perceived outcomes to
denser communication networks in a study of research and
development teams.

Communication structure in particular – the topology of
a communication network – has been studied in relation to
coordination (e.g. [26, 24]) and a number of common mea-
sures of communication structure include network density,
centrality and structural holes [41, 11].

Density, as a measure of the extent to which all members
in a team are connected to one another, reflects the ability
to distribute knowledge [36]. Density has been studied, for
example, in relation to coordination ease [24], coordination
capability [26] and enhanced group identification [35].

Centrality measures indicate importance or prominence
of actors in a social network. The most commonly used
centrality measures include degree and betweenness cen-
trality having different social implication. Centrality mea-
sures have been used to characterize and compare differ-
ent communication networks constructed from email cor-
respondence of W3C (WWW consortium) collaborating
working groups developing new technical standards and ar-
chitectures for the web [14]. Similarly, Hossain et al. [26]
explored the correlation between centrality in email-based
communication networks and coordination, and found be-
tweenness to be the best measure for coordination. Be-
tweenness is a measure of the extent to which a team mem-
ber is positioned on the shortest path in between other two
members. People in between are considered to be “actors in
the middle” and to have more “interpersonal influence” in
the network(e.g. [14, 42, 26]).

The structural holes measures are concerned with the de-
gree to which there are missing links in between nodes and
with the notion of redundancy in networks [4]. At the node
level, structural holes are gaps between nodes in a social
network. At the network level, people on either side of the
hole have access to different flows of information [18], in-
dicating that there is a diversity of information flow in the
network. Structural holes have been used to measure social
capital in relation to the performance of academic collabo-
rators (e.g. [15]).

Thus, having defined an objective measure of coordina-
tion outcome – the successful or failed integration build re-
sult (Section 2) – we investigate the role played by commu-
nication structure in software integration. Our first research
question is:

RQ1: Can individual measures of communication structure
predict integration failure?

Next, to further our investigation into the role played by
communication in predicting integration failure, we go one
step further and investigate whether the different communi-

cation structure measures can be combined into a prediction
model that indicates whether an integration will fail.

Past research on failure prediction was not able to find
a single code or code churn metric predicting failures [32,
1, 10], though the combination of those measurements be-
came a strong predictor (e.g. [30]). This leads us to believe
that even if we do not find a single communication struc-
ture measure that predicts integration outcome, it is useful
to combine the communication network measures – as a re-
flection of the communication structure of a team – into a
predictive model and study its predictive power.

Most prediction models in software engineering to date
mainly leverage source code related data and focus on
predicting failing software components or failure inducing
changes (e.g. [2, 38, 42, 27]). Only few studies, such as
Hassan and Zhang [19], stepped away from predicting com-
ponent failures and used statistical classifiers to predict inte-
gration outcome. Recently, we can observe a trend towards
leveraging developer networks, created upon code related
dependencies, to predict component failures [34, 29]. In
our work, we focus on the team coordination as given by
their communication instead of source code, and similar to
Hassan and Zhang predict integration outcome. Hence we
state our second research question as follows:

RQ2: Can the combination of communication structure
measures predict integration failure?

4 Methodology

To address our research questions we analyze data from a
large software development project, IBM’s Jazz [12]. With
collaboration support as one of its main goals, Jazz pro-
vides integrated support for work planning and tracking,
communication and collaboration, and continuous integra-
tion builds. For our research, Jazz provides the traceabil-
ity between communication artifacts and development arti-
facts, important in the study of coordination processes. In
what follows we first describe in detail the coordination and
integration process in Jazz as the context for our investiga-
tion. We then explain how we conceptualized communi-
cation and integration outcome in Jazz, as well as the data
collection instruments.

4.1 Coordination and integration in Jazz

The Jazz team is a large distributed team and uses the
Jazz platform for development. The Jazz development in-
volves distributed collaboration over 16 different sites lo-
cated in the United States, Canada, and Europe. Seven sites
are active in Jazz development and testing. There are 151
active contributors working in 47 teams at these locations,
where contributors belong to multiple teams. Each team

3

Team B
Stream

Build 1

Team A
Stream

Project
Build 1Project

Integration
Stream

publish changes get changes

Build 1

commits changes

Team A Contributor 1 Contributor 2 Contributor 3

Team B Contributor 4 Contributor 5 Contributor 6

Change
Sets

Figure 1. Teams contribute to their own
source streams, which are then merged into
one project stream.

is responsible for developing a subsystem or component of
Jazz. The team size ranges from 1 to 20 and has an average
of 5.7 members. The number of developers per geographi-
cal site ranges from 7 to 24 and is 14.8 in average.

The project uses the Eclipse Way development pro-
cess [12]. It defines six-week iteration cycles, which are
separated into planning, development and stabilization ac-
tivities. A project management committee formulates the
goals and features for each release at the beginning of the
each iteration, and Work Items represent assignable and
traceable tasks for each team.

As illustrated in Figure 1, the coordination process
within each iteration requires the integration of subsystems
developed by individual Jazz teams in a major milestone
build of the product (referred to as beta build). Each team
owns a source code Stream for collaboration and concur-
rent implementation of the subsystem. A Stream is the Jazz
equivalent to a branch of a source configuration manage-
ment system such as Subversion.

A continuous integration process takes place at team-
level or project-level. In frequent intervals, each integration
build (referred to a build henceforth) compiles, packages,
and tests the source code of a stream. At the team-level,
contributors commit code changes that are encapsulated in
Change Sets from their own workspace to the Team Stream.
The team integrations build the subsystem developed by the
team. Once a team has a stable version within the Team
Stream, the team publishes the change sets into the Jazz
Project Integration Stream (see Figure 1). At the project
level, the automated Jazz integration builds the subsystems
of all teams. The Jazz project-level integration takes place

nightly, weekly, and at the end of each iteration – beta build.

4.2 Coordination outcome measure

In our study we conceptualize the coordination outcome
by the Build Result, which is regarded as a coordination
success indicator in Jazz and can be ERROR, WARNING or
OK. We analyze build results to examine the integration out-
comes in relation to the communication necessary for the
coordination of the build.

Conceptually, the WARNING and OK build results are
treated similar by the Jazz team, as they require no fur-
ther attention or reaction from the developers. In contrast,
ERROR build results indicate serious problems such as com-
pile errors or test failures and require further coordination,
communication and development effort. We thus treated all
WARNINGs as OKs to clearly separate between failed and
successful builds in our conceptualization of coordination
outcome.

4.3 Communication in Jazz

Commenting on work items is the main task-related com-
munication and collaboration channel used by Jazz. Work
Items represent single assignable and traceable tasks. A set
of work items defines the tasks for each team in each iter-
ation. Different types of work items represent defects, en-
hancements, and general tasks. The work items are assigned
to and owned by contributors. The coordination necessary
around the implementation of a work item is facilitated by
contributors commenting or observing the communication
around work items.

4.4 Communication measures

To investigate the communication of contributors in-
volved in an integration build, we study the characteris-
tics of the communication network for each build. In or-
der to construct this network, we examine the content of
the Change Sets associated with the build. Whenever an in-
tegration is executed, the change sets contain information
on all changes made after the previous build, and the work
items associated with the changes. By identifying the con-
tributors who commented on these work items, we concep-
tualize communication among contributors coordinating for
the build by their commenting behavior.

We use the example in Figure 2 to explain the con-
struction of communication networks. For a Build N , the
change sets made in the time range t0 to t1 are used to con-
struct the Build N Network, which represents the com-
munication that leads to Build N . To construct the com-
munication network for a build we consider that:

4

time
Stream

Build N Network
Build N
Failed

t0 t1

c1

c2

c3

c4

w1 w2

Previous
Build

c1 c2 c3 c4

c

w

commented on

subscribed tocontributor

change set

associated with

work item delivered change set

directed connection

Figure 2. Communication networks construc-
tion example for a failed Build N.

1. the nodes represent the contributors involved in the
build or its communication as follows:

(a) committers of change sets involved in the build,
as they have a direct impact on the build result

(b) creators, commenters, and subscribers on the
work items associated with change sets, as they
communicated on the build related tasks

2. the directed connections represent communication
flow from contributor ci to cj , communicating about
a common set of work items that we name WIs if:

(a) ci is creator of or commenter on WIs and pro-
vides information that is read by cj

(b) cj is commenter or subscriber of any work items
WIs (assuming that cj reads all comments of ci)

For Build N in Figure 2 contributors c1, c2, c3, and c4
delivered change sets to the stream in the time range t0 to
t1. Thus, they are added to the associated Build N Network.
To connect the contributors in the network, we explore the
work items w1 and w2 as they are associated with the de-
livered change sets. The contributors c1 and c2 commented
on w1. As we assume that c2 reads all comments of the
work items he comments on, we create a directed connec-
tion from c1 to c2, representing the communication flow.
Vice versa, we create a directed connection from c2 and c1.
As c2 is only subscribed to work item w2 and did not add
any comments, we only create directed connections from c3
and c4 to c2, as those contributors commented on w2. The
resulting communication-based social network Build N net-
work represents the communication related to the develop-
ment that leads to the failed Build N .

4.5 Communication network measures

To characterize the communication structure represented
by the constructed networks for each build, we compute a
number of social network measures. The measures that we
include in our analysis are: Density, Centrality and Struc-
tural holes. Some of these measures characterize single
nodes and their neighbours (ego networks), while others re-
late to complete networks. As we are interested in analysing
the characteristics of complete communication networks as-
sociated to integration builds, we normalize and use ap-
propriate formulas to measure the complete communication
networks instead of measuring the individual nodes.

4.5.1 Density

Density is calculated as the percentage of the existing con-
nections to all possible connections in the network. A fully
connected network has a density of 1, while a network with-
out any connections has the density of 0. For example, the
density in the directed network in Figure 3 is 12/42 = 0.28.

4.5.2 Centrality measures

We use the centrality measures group degree centraliza-
tion and group betweenness centralization for complete net-
works, which are based on the ego network measures degree
centrality and betweenness. The degree centrality measures
for the ego networks are:

• The Out-Degree of a node c is the number of its out-
going connections CoD(c). E.g. CoD(c1) = 2 in Fig-
ure 3.

• The In-Degree of a node c is the number of it s incom-
ing connections CiD(c). E.g.CiD(c1) = 1 in Figure 3.

• The InOut-Degree of a node c is the sum of its In-
Degree and Out-Degree CioD(c). E.g. CioD(c1) = 3
in Figure 3.

To compute the Group Degree Centralization index
for the complete network we use formula (1) from Free-
man [11], in which g is the number of nodes in a network,
and CD(ci) is any of the degree centrality measures of a
node ci as described above. CD(c∗) is the largest node de-
gree index for the set of contributors in the network. The
formula is also used by [14, 24].

CD =
∑g

i=1[CD(c∗)− CD(ci)]
(g − 1)2

(1)

To calculate the Group Betweenness Centralization in-
dex for a whole network, we need to compute the between-
ness centrality probability index for each actor of the net-
work. The probability index assumes that a “communica-

5

c1 c2

c6c7

c3 c4

c5a) b)

Figure 3. Example of a directed network to il-
lustrate our social analysis measures.

tion” takes the shortest path from a contributor cj to con-
tributor ck and if the network has more shortest paths, all
of them have the same probability to be chosen. If gjk

is the number of shortest paths linking two contributors,
1/gjk is the probability of using one of the shortest paths
for communication. Let gjk(ci) be the number of shortest
paths linking two contributors that contain the contributors
ci. Freeman [11] estimates the probability that contributor
ci is between cj and ck by gjk(c1)/gjk. The betweenness
index for ci is the sum of all probabilities over all pairs of
actors excluding the ith contributor. Formula (2) shows the
normalized betweenness index for directed networks.

CB(ci) =

∑
j<k gjk(ci)/gjk

(g − 1)(g − 2)
(2)

To compute a betweenness index for the complete net-
work instead of a single node, we used Freeman’s for-
mula for Group Betweenness Centralization. The formula
is shown in equation (3), in which CB(c∗) is the largest be-
tweenness index of all actors in the network.

CB =
∑g

i=1[CB(c∗)− CB(ci)]
(g − 1)

(3)

4.5.3 Structural holes

We use the following structural hole measures:

• The Effective Size of a node ci is the number of its
neighbours minus the average degree of those in ci’s
ego network, not counting their connections to ci. The
effective size of node c1 in Figure 3a is 2−1 = 1. Note,
that only direct neighbours of c1 are considered and the
directed connections are replace with undirected. The
effective size of node c4 in Figure 3b is 2− 0 = 2.

• The Efficiency normalizes the effective size of a node
ci by dividing the it’s effective size with the number
of it’s neighbours. The efficiency of node c1 in Fig-
ure 3a is (2− 1)/2 = 0.5. The efficiency of node c4 in
Figure 3b is (2− 0)/2 = 1.

• Constraint is a summary measure that relates the con-
nections of a node ci to the connections of ci’s neigh-
bours. If ci’s neighbours and potential communication

partners all have one another as potential communica-
tion partners, ci is highly constrained. If ci’s neigh-
bours do not have other alternatives in the neighbor-
hood, they cannot constrain ci’s behavior.

To calculate network measures of the introduced ego net-
work measures on structural holes, we compute the sum of
the measures for each node of a network. As the measures
are based on network connections, we normalize the sum
by computing the fraction of the sum and the number of
possible network connections.

4.6 Data collection

We mined the Jazz development repository for build and
communication information. A query plug-in was imple-
mented to extract all development and communication ar-
tifacts involved in each build from the Jazz server. These
build-related artifacts included build results, teams, change
sets, work items, contributors, and comments. We imported
the resulting data into a relational database management
system to handle the data more efficiently.

We extracted a total of 1288 build results, 13020 change
sets, 25713 work item and 71019 comments. Out of a total
of 47 Jazz teams, 24 had integration builds. The build re-
sults we extracted were created during the time range from
November 5, 2007 to February 26, 2008.

Next, we had to make a decision for which builds and
associated communication to analyze. Our selection crite-
ria was that we analyze a number of build results that is
large enough for statistical tests and include both OK and
ERROR builds. Some teams used the building process for
testing puroses only and created just a view build results,
while others had either only OK or only ERROR build re-
sults. Predicting build results for a team that only produced
ERROR builds in the past, will most likely yield an ERROR,
since no communication information representing success-
ful builds is available. Thus, we considered teams that had
more than 30 build results and at least 10 failed and 10 suc-
cessful builds. Five teams satisfied these constraints and
were considered in our analysis. In addition, we included
the nightly, weekly, and one beta integration build, although
they did not satisfy our constraints, because they integrate
all subsystems of the entire project.

5 Analysis and Results

Table 1 shows descriptive statistics of the considered
builds and related communication networks of the five
teams (B, C, F, P and W in the first 5 columns) and the
nightly, weekly, and beta project-level integrations. For ex-
ample, team B created 60 builds from which 20 turned out
to be ERRORs and 40 OK. The communication networks of

6

Team Level Builds Project Level Builds
B C F P W nightly weekly beta

Builds 60 48 55 59 55 15 15 16
ERRORs 20 16 24 29 31 9 11 13

OKs 40 32 31 30 24 6 4 3

Contributors:
Min 3 9 6 5 13 43 37 55

Median 6 16.5 18 15 20 55 57 69.5
Mean 12.68 18.02 20.15 17.98 22.87 57.93 52.27 67.81
Max 58 31 64 61 52 75 75 79

Directed Connections:
Min 0 1 2 0 11 81 56 144

Median 13 39.5 95 36 74 236 149 280
Mean 51.58 53.4 87.78 63 88.35 253.1 171.9 285.8
Max 361 139 355 401 300 434 496 446

Change Sets:
Min 1 15 8 32 83 80 62 82

Median 10 38 35 46 111 117 115 178.5
Mean 10.83 44.38 42.65 47.25 115.3 129 114.2 166.8
Max 33 101 91 75 156 199 173 196

Work Items:
Min 0 2 1 1 10 11 5 31

Median 6.5 12 20 12 18 67 51 98
Mean 16.43 15.56 23.07 19.34 29.49 72.13 56.87 96.81
Max 131 50 100 107 119 132 202 170

Table 1. Descriptive build statistics.

this team had between 3 and 58 contributors (51.58 directed
connections in average) and spanned 0 to 131 work items.
The builds involved in average 10.83 change sets.

5.1 Individual communication measures
and build results

To examine whether any individual measure of commu-
nication structure can predict integration failure or success
(our Research Question 1), we analyze the builds from each
team and project-level integration in part in relation to the
communication structure measures as follows: For each
team we categorize the builds into two groups. One group
contains the ERROR builds and the other the OK builds. For
each build and associated communication network we com-
pute the network measures described in Section 4 and com-
pare them across the two groups of builds (ERROR and OK).

The communication measures used in the analysis were:
Density, Centrality (in-degree, out-degree, inout-degree,
and betweenness), Structural Holes (efficiency, effective
size, and constraint), and number of directed connections.
We used the Mann-Whitney test [39] to test if any of the
measures differentiate between the groups of ERROR and
OK related communication networks. We used the α-level
of .05 and applied the Bonferroni correction to mitigate
the threat of multiple hypothesis testing. None of the tests
yielded statistical significance, which indicates that no indi-

prediction

actual
OK ERROR

OK 26 5
ERROR 9 15

Table 2. Classification results for team F.

vidual communication structure measures significantly dif-
ferentiate between ERROR and OK builds.

We also tested for the possible effect of the technical
measures shown in Table 1: #Contributors, #Change Sets
and the #Work Items on the build result. Also, none of the
tests yielded statistical significance to differentiate between
ERROR and OK builds.

5.2 Predictive power of combined mea-
sures of communication structures

The second research question aims to assess whether the
combination of communication related network measures
can predict future build results. Thus we combined com-
munication structure measures analyzed in RQ1 into a pre-
dictive model that classifies a team’s communication struc-
ture as leading to an ERROR or OK build. We explicitly ex-
clude the technical descriptive measures such as #Contrib-
utors, #Change Sets and the #Work Items from the model
in order to focus on the effect of communication on build
failure prediction. We validate the model for each set of
team-level and project-level networks separately by train-
ing a Bayesian classifier [20] and using the leave one out
cross validation method [20].

For example, to predict the build result N of team F’s 55
build results, we train a Bayesian classifier with all other
54 build results and their communication related network
measures. Then, we input the communication measures of
Build N’s related communication network into the classifier
and predict the result of build N. We repeat the classifica-
tion for all 55 builds of team F and sum up the number of
correctly and wrongly classified results.

Table 2 shows the classification result for team F. The
upper left cell represents the number of correctly classified
communication networks as related to OK builds (26 vs. 31
actual), and the lower right cell shows the number of cor-
rectly classified networks as leading to ERROR builds (15
vs. 24 actual). The other two cells show the number of
wrongly classified communication networks.

The classification quality is assessed via recall and pre-
cision coefficients, which can be calculated for ERROR and
OK build predictions. We explain the coefficients for pre-
diction of ERROR builds.

Recall is the percentage of correctly classified networks as
leading to ERROR divided by the number of ERROR
related networks. In Table 2 the lower right cell shows

7

Team Level Builds Project Level Builds
B C F P W nightly weekly beta

ERROR Recall .55 .75 .62 .66 .74 .89 1 .92
ERROR Precision .52 .50 .75 .76 .66 .73 .92 .92

OK Recall .75 .62 .84 .80 .50 .50 .75 .67
OK Precision .77 .83 .74 .71 .60 .75 1 .67

Table 3. Recall and precision for ERROR and
OK build results using the Bayesian classifier.

the number of correct classified networks that are lead-
ing to ERRORs, which is divided by the sum of the val-
ues in the lower row, which represents the total number
of actual ERRORs. This yields for Table 2 a recall of
15/(9 + 15) = .62. In other words, 62% of the actual
to ERROR leading networks are correctly classified.

Precision is the percentage of as to ERROR leading classi-
fied networks that turned out to be actually ERRORs. In
Table 2, it is the number of correctly classified ERRORs
divided by the sum of the right column, which repre-
sents the number of as ERROR classified builds. In
Table 2 the precision is 15/(5 + 15) = .75. In prac-
tical terms, 75% of the ERROR predictions are actual
ERRORs.

We repeated the classification described above for each
team and project-level integration. Note that the model pre-
diction results only show how the models perform within
a team and not across teams. Table 3 shows the recall and
precision values for as to OK and ERROR leading classified
communication networks for each of the five team-level and
three project-level integrations. Since we are interested in
the power of build failure prediction, the error related values
from our model are of greater importance to us. The ERROR
recall values (how many ERRORs were classified correctly)
of team-level builds are between 55% and 75% and the re-
call values of the project-level builds are even higher with at
least 89%. The ERROR precision values are equally high.

6 Threats to validity

We conceptualized communication based on comments
on work items. Besides that, the Jazz team communi-
cates via email, chat, web-based information and face-to-
face meetings. Based on our observations and conversa-
tions with the Jazz team, we are certain that comments are
mostly used to communicate about work items. Since they
are work item-specific and immediately available.

For the network construction, we assumed that every de-
veloper commenting on or subscribed to a work item reads

all comments of that work item. This assumption might
not always be correct. By manual inspection of a selected
number of work items, we found that developers who com-
mented on a work item are aware of the other comments,
confirming our assumption.

Due to storage problems the Jazz teams erased some
build results. In the case of nightly builds we expected 90
builds (according to project duration) but found only 15.
This might affect our results but we argue that due to our
richness of data the general trend is still preserved. Hence
we expect that our findings would be supported by the com-
plete data, too.

Our results are only valid for the Jazz project and can not
be generalized to any software development project. Addi-
tional studies on different projects using Jazz could be con-
ducted to confirm our results.

7 Discussion

As far as we know, our study is one of the first to inves-
tigate communication structures at the level of integration
builds. This is a finer-grain level of analysis than that of cur-
rent studies in the literature, which found that coordination
failures are due to communication problems. By concep-
tualizing coordination failure as a failed integration result,
we studied the role of communication structures in success-
ful coordination. In Section 7.1 we discuss our contribution
which is two-fold: (1) while communication structure mea-
sures can not individually predict failed builds, (2) a set of
communication structure measures can be combined into a
model that predicts failed integration builds. Subsequently,
we discuss practical implications of our work in Subsec-
tion 7.2.

7.1 Communication as predictor for inte-
gration failure

In our analysis we examined the relationship between
integration builds and measures of the related communica-
tion structure. We found that none of the single commu-
nication structure measures (density, centrality or structure
hole measures) significantly differentiated between failed
and successful builds at the team-level and project-level.
Therefore none of these individual communication structure
measures could be used to predict integration build results.

In addition to the communication related measures, we
also examined whether the technical measures we computed
when constructing the communication networks – the num-
ber of change sets, contributors, and work items – have an
impact on the integration build result, as they are an indi-
cation for the size and complexity of the development tasks
to be coordinated. According to Nagappan and Ball [31],
one might expect that increased size and complexity of

8

time

Build N Network
Build N

Unknown

t0 t1

c1

c2

c3

c4Build N-1
Failed

Build N-2
Succeed

Prediction Model
training input

25%
50%

75%

100%

predition input
Prediction
Result

predict

Figure 4. Predicting Build N Result with dif-
ferent reduced communication data.

code changes relates to more build failures. But in our
study these single measures did not significantly differen-
tiate between successful and failed build results. However,
additional technical measures that were used by Nagappan
might be good predictors in Jazz as well.

The second contribution of this work is the predictive
model that uses measures of communication structures to
predict build results. Interestingly, the combination of com-
munication structure measures was a good predictor of fail-
ure even when the single measurements were not. Our
model’s precision in predicting failed builds, which re-
lates to the confidence one can have in the predicted result,
ranges from 50% to 76% for any of the five team-level inte-
gration builds, and is above 73% for the project-level inte-
gration builds.

We found that, for all prediction models, the recall and
precision values are better than guessing. A guess is decid-
ing on the probability of an ERROR or an OK build if the
build fails or succeeds. The probability is the number of
ERRORs or OKs divided by the number of all builds. For ex-
ample, if we know that the ERROR probability is 50% and
we guess the result of the next build we would achieve a
recall and precision of 50%. In our case, our model reached
an ERROR recall of 62% for team F, where as a guess would
have yield only 24/55 = .44 = 44% (see Table 1).

7.2 Practical implications

Our model can be used by Jazz teams to assess the qual-
ity of their current communication in relation to the result of
their upcoming integration. If a team is currently working
on a component and an integration build is planned in the
near future, the measures of the current communication in
the team can be provided as input to our prediction model
and the model will predict whether the build will fail with a
precision shown in Table 3. For example, if team P is work-
ing towards a build and our model predicts that the struc-
ture of its current communication leads to a failed build, the

team can have a 76% (see Table 3) confidence that the build
is going to fail. This information can be used by develop-
ers in monitoring their team communication behavior, or by
management in decisions with respect to adjusting collabo-
rative tools or processes towards improving the integration.

In our analysis we used the complete communication of
the build related time interval as input for the model to pre-
dict the build result. In Figure 4, this is the time interval
from t0 to t1 for Build N . This time interval might not
be appropriate for practical applications in which the build
process takes only a view minutes, as t1 is immediately be-
fore the build starts. Predicting the build result has no value
for the developers when they have no time left to react on
a build failure prediction and they can simply run the build
instead of predicting the result. For long builds that last sev-
eral days, the prediction at t1 is still practical relevant. De-
velopers might delay the build to perform reactive changes
on the failure prediction.

In an additional analysis we investigated the prediction
recall and precision by only considering the communica-
tion of reduced time intervals as input for our model. For
each build N result, we trained our model with the complete
communication of all build results except the one from N,
and predicted the result N by only considering the first 25%,
50% and 75% of the communication as input for the predic-
tion model (see Figure 4).

We only show the precision and recall of the prediction
for the 25% time range in Table 4, as they are already high
enough for practical use. We observe that the model has
almost the same predictive power as the model considering
the complete time range of the build. A possible explana-
tion is the involvement of work items in many builds. That
means that the task completion time of a work item is longer
than the time interval of a build and task related change sets
and communication occurs in multiple builds. When a de-
veloper delivers a change set in the first 25% of the build
related time interval and the change set is associated to a
work item that has already been discussed, the complete
past communication is included. Including the past com-
munication is valid, as our prediction model learns from the

Team Level Builds Project Level Builds
B C F P W nightly weekly beta

ERROR Recall .63 .69 .62 .62 .68 1 .45 .85
ERROR Precision .43 .46 .68 .75 .64 .75 .83 .92

OK Recall .60 .59 .77 .80 .50 .50 .75 .67
OK Precision .77 .79 .73 .69 .55 1 .33 .50

Table 4. Recall and precision results only in-
cluding first 25% of the communication.

9

communication history. In Jazz, a work item is in average
included in 5.17 builds (min=1, median=3, max=57), which
provides a possible explanation for having valuable predic-
tion results even early in the build related time interval.

With the results of this analysis, we are confident that
our prediction model is practically useful, even if it does
not consider the complete communication of a build. Thus,
developers and managers have time to react on build failure
predictions before the actual build fails.

8 Conclusion

Our results indicate that developer communication plays
an important role in the quality of software integrations.
Complementary to existing literature on communication
and coordination outcome in software engineering, we ob-
jectively measured coordination outcome by the result of
the integration build. To capture and study communica-
tion we used social network measures. Although we found
that no individual social network measure could indicate
whether a build will fail or succeed, the combination of net-
work measures can be combined into a predictive model.
The model indicates whether an integration will fail based
on the current communication structure of a development
team. For five project studied teams, our predictive model
yielded recall values between 55% and 75%, and precision
values between 50% to 76%.

The study of communication patterns in relation to team
performance is important given that communication is the
main mechanism for knowledge sharing in work groups.
Software engineers differ in the expertise, knowledge, and
background they bring to the development task. Group per-
formance depends not only on the information available to
developers and the knowledge distribution within the team,
but also on the properties of the communication structure
that facilitates knowledge dissemination.

Having identified that communication plays an important
role in integration success, future research should examine
the interaction with other factors that could determine inte-
gration failure. In addition to our focus of communication,
the analysis of code and code changes should be considered.
We believe that a combination of both will lead to even bet-
ter prediction models for software integration builds.

Based on the information provided by our predictive
model, awareness systems can be developed to provide rec-
ommendations to improving a team’s communication struc-
ture when developers face a likly build failure. We intend
to integrate our predictive model into the Jazz development
environment itself, and provide developers and managers
with a real-time communication quality feedback mecha-
nism that would predict possible failed builds based on the
current communication behavior in the project. This will
give us the opportunity to evaluate the value of our predic-

tions with respect to improvements in software coordina-
tion.

9 Acknowledgements

We thank all members of the IBM Jazz project and SE-
GAL Group. Funding for this project was provided by
NSERC and IBM. IBM and Jazz are trademarks of IBM
Corporation in the US, other countries, or both.

References

[1] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators. IEEE
Trans. Softw. Eng., 22(10):751–761, 1996.

[2] R. M. Bell. Predicting the location and number of faults in
large software systems. IEEE Trans. Softw. Eng., 31(4):340–
355, 2005.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swami-
nathan. Mining email social networks. In Proc. of the 2006
Int. workshop on Mining Soft. repositories, pages 137–143,
2006.

[4] R. Burt. Structural Holes: The Social Structure of Competi-
tion. Harvard University Press, August 1995.

[5] M. Cataldo, M. Bass, J. D. Herbsleb, and L. Bass. On Coor-
dination Mechanisms in Global Software Development. In
Proc. of the 2nd Int. Conf. on Global Soft. Eng., pages 71–
80, 2007.

[6] B. Curtis, H. Krasner, and N. Iscoe. A Field Study of the
Software Design Process for Large Systems. Communica-
tions of the ACM, 31(11), 1988.

[7] D. Damian, L. Izquierdo, J. Singer, and I. Kwan. Aware-
ness in the wild: Why communication breakdowns occur.
In Proc. of the 2nd Int. Conf. on Global Soft. Eng., pages
81–90, 2007.

[8] C. R. B. de Souza, D. Redmiles, L.-T. Cheng, D. Millen, and
J. Patterson. How a good software practice thwarts collabo-
ration: the multiple roles of apis in software development. In
Proc. of the 12th ACM SIGSOFT Int. symposium on Foun-
dations of Soft. Eng., pages 221–230, 2004.

[9] C. R. B. de Souza, D. Redmiles, L.-T. Cheng, D. Millen,
and J. Patterson. Sometimes you need to see through walls:
a field study of application programming interfaces. In Proc.
of the Computer Supported Cooperative Work, pages 63–71,
2004.

[10] G. Denaro, S. Morasca, and M. Pezzè. Deriving models of
software fault-proneness. In Proc. of the 14th Int. Conf. on
Soft. Eng. and knowledge Eng., pages 361–368, 2002.

[11] L. C. Freeman. Centrality in social networks: Conceptual
clarification. Social Networks, 1(3):215–239, 1979.

[12] R. Frost. Jazz and the Eclipse Way of Collaboration. IEEE
Software, 24(06):114–117, 2007.

[13] S. R. Fussell, R. E. Kraut, F. J. Lerch, W. L. Scherlis, M. M.
McNally, and J. J. Cadiz. Coordination, overload and team
performance: effects of team communication strategies. In
Proc. of the Computer Supported Cooperative Work, 1998.

10

[14] P. A. Gloor, R. Laubacher, S. B. C. Dynes, and Y. Zhao.
Visualization of communication patterns in collaborative in-
novation networks - analysis of some w3c working groups.
In Proc. of the 12th Int. Conf. on Information and knowledge
management, 2003.

[15] C. N. Gonzalez-Brambila and F. Veloso. Social capital in
academic engineers. In Portland Int. Center for Manage-
ment of Eng. and Technology, 5-9 Aug. 2007.

[16] A. Griffin and J. R. Hauser. Patterns of Communica-
tion Among Marketing, Engineering and Manufactoring–A
Comparison Between Two New Product Teams. Manage-
ment Science, 38(3), 1992.

[17] R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The Geogra-
phy of Coordination: Dealing with Distance in R&D Work.
In Proc. of the Int. Conf. on Supporting Group Work, pages
306–315, 1999.

[18] A. Hargadon and R. I. Sutton. Technology brokering and
innovation in a product development firm. Administrative
Science Quarterly, 42(4), 1997.

[19] A. E. Hassan and K. Zhang. Using Decision Trees to Pre-
dict the Certification Result of a Build. In Proc. of the 21st
IEEE/ACM Int. Conf. on Automated Soft. Eng., pages 189–
198, 2006.

[20] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Predic-
tion. Springer, 3 edition, July 2003.

[21] J. D. Herbsleb and R. E. Grinter. Splitting the organization
and integrating the code: Conway’s law revisited. In Proc.
of the 21st Int. Conf. on Soft. Eng., pages 85–95, 1999.

[22] J. D. Herbsleb and A. Mockus. An Empirical Study of Speed
and Communication in Globally Distributed Software De-
velopment. IEEE Transactions on Soft. Eng., 29(6):481–
494, June 2003.

[23] J. D. Herbsleb, A. Mockus, and J. A. Roberts. Collaboration
in Software Engineering Projects: A Theory of Coordina-
tion. In Int. Conf. on Information Systems, 2006.

[24] P. Hinds and C. McGrath. Structures that Work: Social
Structure, Work Structure and Coordination Ease in Geo-
graphically Distributed Teams. In Proc. of the 20th Conf.
on Computer Supported Cooperative Work, pages 343–352,
2006.

[25] H. Holmstrom, E. O. Conchuir, P. J. Ågerfalk, and
B. Fitzgerald. Global Software Development Challenges: A
Case Study on Temporal, Geographical and Socio-Cultural
Distance. In Proc. of the 1st Int. Conf. on Global Soft. Eng.,
pages 3–11, 2006.

[26] L. Hossain, A. Wu, and K. K. S. Chung. Actor centrality cor-
relates to project based coordination. In Proc. of the 20th an-
niversary Conf. on Computer Supported Cooperative Work,
pages 363–372, 2006.

[27] S. Kim, J. Whitehead, and Y. Zhang. Classifying software
changes: Clean or buggy? IEEE Transactions on Soft. Eng.,
34(2):181–196, 2008.

[28] R. E. Kraut and L. A. Streeter. Coordination in Software
Development. Communications of the ACM, 38(3):69–81,
March 1995.

[29] A. Meneely, L. Williams, W. Snipes, and J. Osborne. Pre-
dicting Failures with Developer Networks and Social Net-
work Analysis. In Proc. of the 16th ACM SIGSOFT Int.
Symposium on Foundations of Soft. Eng., 2008.

[30] A. Mockus and D. M. Weiss. Predicting risk of software
changes. Bell Labs Technical Journal, 5(2):169–180, 2000.

[31] N. Nagappan and T. Ball. Use of relative code churn mea-
sures to predict system defect density. In ICSE ’05: Proc. of
the 27th Int. Conf. on Soft. Eng., May 2005.

[32] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to pre-
dict component failures. In Proc. of the 28th Int. Conf. on
Soft. Eng., pages 452–461, 2006.

[33] M. B. Pinto and J. K. Pinto. Project Team Communication
and Cross-Functional Cooperation in New Program Devel-
opment. Journal of Product Innovation Management, 7(3),
1990.

[34] M. Pinziger, N. Nagappan, and B. Murphy. Can Devel-
oper Social Networks Predict Failures? In Proc. of the
16th ACM SIGSOFT Int. Symposium on Foundations of Soft.
Eng., 2008.

[35] R. Reagans and E. W. Zuckerman. Networks, Diversity, and
Productivity: The Social Capital of Corporate R&D Teams.
Organization Science, 12(4), 2001.

[36] D. L. Rulke and J. Galaskiewicz. Distribution of Knowl-
edge, Group Network Structure, and Group Performance.
Management Science, 46(5):612–625, 2000.

[37] A. Sarma and A. van der Hoek. Towards awareness in the
large. In Proc. of the Int. Conf. on Global Soft. Eng., pages
127–131, 2006.

[38] A. Schröter, T. Zimmermann, and A. Zeller. Predicting
Component Failures at Design Time. In Proc. of the 5th Int.
Symposium on Empirical Soft. Eng., pages 18–27, Septem-
ber 2006.

[39] S. Siegel. Nonparametric Statistics for the Behavioral Sci-
ences. 1st edition, 1956.

[40] W. Souder. Managing Relations Between R&D and Mar-
keting in New Product Development Projects. Journal of
Product Innovation Management, 5(1), 1988.

[41] S. Wasserman and K. Faust. Social Network Analysis: Meth-
ods and Applications. Cambridge University Press, Novem-
ber 1994.

[42] T. Zimmermann and N. Nagappan. Predicting defects using
network analysis on dependency graphs. In Proc. of the 30th
Int. Conf. on Soft. Eng., pages 531–540, May 2008.

11

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
