
A Case-study on Using an Automated In-process Software Engineering
Measurement and Analysis System in an Industrial Environment

Irina Diana Coman, Alberto Sillitti, Giancarlo Succi
Free University of Bozen-Bolzano

{IrinaDiana.Coman, Alberto.Sillitti, Giancarlo.Succi}@unibz.it

Abstract

Automated systems for measurement and analysis

are not adopted on a large scale in companies, despite
the opportunities they offer. The fear of the “Big
Brother” and the lack of reports giving insights into
the real adoption process and concrete usages in
industry are barriers to this adoption. We report on a
case-study on the adoption and long-term usage (2
years of running system) of such a system in a
company focusing on the adoption process and the
related challenges we encountered.

1. Introduction

The automation of data collection is a key
requirement for the success of software measurement
programs [23], [24], [26], [27]. The traditional, manual
data collection is time consuming, tedious, error prone
and often biased or delayed [1]. Semi-automated data
collection (tools such as LEAP [2]) still poses the
context switching problem [3]: the semi-automated
data collection has negative impacts on the
performance of the developers as it requires them to
switch continuously between working and recording
the work.

To eliminate the context-switching problem, a new
generation of tools (such as Hackystat [3] and PROM
[4]) focuses on fully automated, non-invasive data
collection. Because they allow data collected from on-
going projects to be used for improvement of the same
project, these tools are also called Automated In-
process Software Engineering Measurement and
Analysis (AISEMA) systems.

 AISEMA systems aim at automatically collecting
the data, but also at providing tailored analyses for
decision support. They reduce the cost of data
collection, as they run in the background and let people
focus on their work without any additional workload
or distractions. They can collect a large variety of data.

Based on these data, they propose: support for process
management via software project telemetry [5],
assessment of low-level processes such as Test Driven
Development (TDD) [6], etc.

Although AISEMA systems have been around
already for several years, they are still not adopted on a
large scale. Among the commonly cited barriers for
industry adoption are the misuse of the data and the
privacy issues. Moreover, the very diversity of data
collected and analyses proposed can be intimidating as
there is a lack of clear understanding on which data
would be useful in a real situation.

Case studies focused on the usage of AISEMA
systems in industry can help overcome these barriers
as they offer concrete examples of benefits,
drawbacks, and strategies for overcoming challenges.
However, currently, few such reports are available.

In this paper, we present a case study of adoption
and usage of an AISEMA system in the software
department of a large Italian company. While we do
not claim generality of our findings, we consider that
they can contribute to further adoption in industry of
AISEMA systems by offering insights into the
adoption and usage of such systems.

The paper is structured as follows: section 2
discusses the related work; sections 3 and 4 present the
settings of the case study and our experience; section 5
discusses the main lessons learnt; finally, section 6
draws the conclusions and identifies directions for
future work.

2. Related Work

2.1. Establishing software measurement
programs in companies

Most reports on establishing software measurement
programs in companies stress the need for automation
of data collection as a key requirement for the success
of a metrics program [23], [24], [25], [26], [27], [28].

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 89

The AISEMA systems started as an attempt to address
this need and evolved to automate as much as possible
of a software measurement program. Thus, the
adoption and usage of AISEMA systems in companies
is closely related to establishing a software
measurement program.

It is generally agreed that establishing a
measurement program is a complicated and risky
undertaking with two out of three measurement efforts
failing or discontinuing after two years [24]. From the
reported experiences with measurement programs [23],
[24], [25], [26], [27], [28], [29], we identified several
factors agreed upon as success factors for
measurement programs:
• Incremental approach to data being collected.
The establishment of a measurement program should
start with the collection of the data that are needed to
address the most important goals of the company and
that are agreed-upon by all those involved. As the
measurement program evolves, more data are collected
to address other issues. The incremental approach is
considered needed mainly to minimize the burden of
data collection.
• Incremental approach to analyses presented. It
is easier for people to understand first a reduced set of
metrics and analyses than to try to handle right from
the start a large set. Moreover, as people get familiar
with these metrics and benefit from them, they are
increasingly able to see and propose new metrics and
new analyses for even increased benefits. This is seen
mainly as a consequence of the lack of experience of
people in measuring and being measured.
• Automated data collection. The collection of data
should be automated whenever possible. This should
increase the validity of data and decrease the overhead
of a measurement program, thus decreasing
developers’ resistance to measurement. Additionally,
the capture of the context of the collected data should
also be automated.
• Training. Adequate training should be provided to
the people involved in the measurement program at
various levels. Training can range from raising
awareness of metrics collected and purpose of
measurement to analysis techniques.
• Developer involvement. As the developers are
usually the ones that collect metrics, their involvement
is an important factor to the success of a metrics
program. They should have a good understanding of
what measures are collected and for what purpose.
Additionally, they should be involved in the actual
designing of the metrics program.
• Accuracy of data. The accuracy of data directly
influences the outcome of the measurement program.

Thus, accurate data is a prerequisite for the success of
any measurement program.
• Integrity of data and analyses. The people
involved need to have confidence in the integrity of the
data and analyses that are presented. Regardless of the
actual facts, a perception of “tinkered” data can
compromise a measurement program.
• Usefulness. The data collected should be useful
and its usefulness should be obvious to all participants.
• Prompt feedback. All people collecting data need
to know how the data are used. This increases the
chances that they view positively the measurement
program.
• Dedicated team for measurement. There should
be a team of several individuals that have the explicit
responsibility of the measurement program. However,
there is not a general agreement on whether this should
be the sole activity of the team or not.
• No usage of data for people assessment. Data
should be used to understand and improve, not to
assess people [23].
• High frequency of data collection. The frequency
with which metrics are collected and made available
has positive and significant influence on their use in
decision making [28].

Due to the close relation between adoption of

AISEMA systems and establishment of a software
measurement program, the success factors for the two
are also likely to be related. Several of the above
success factors are met by intrinsic properties of
AISEMA systems: automated data collection, accuracy
of data and high frequency of data collection. In
section 5, we relate our lessons learnt on the adoption
of an AISEMA system to the above success factors.

2.2 Existing automated measurement systems

Most of the existing automated measurement
systems belong to one of the following categories:
• Timesheet software systems. Examples of such
systems are MetriQ1 Rescue Time2, SLife3
TimeSnapper4, Web TimeSheet5 or TrackTime6. These
systems are mainly concerned with recording the total
time spent on tasks or general activities such as playing
music or navigating the Internet. Their primary
intended usage is for reporting and generating

1 http://www.metriq.biz
2 http://rescuetime.com
3 http://www.slifelabs.com
4 http://www.timesnapper.com
5 http://www.replicon.com
6 http://www.mamooba.com/TrackTime

90

invoices. They are not specifically tailored for software
development as they do not go into the details of
specific development activities.
• Automated in-process software engineering
measurement and analysis (AISEMA) systems.
Examples of such systems are Hackystat [3], PROM
[4], 6th Sense Analytics [7], EPM [8], ECG [9], and
SUMS [10]. AISEMA systems are specifically tailored
for software development and they usually collect code
metrics as well as process data. They are non-intrusive
and propose a large variety of analyses and reports.

AISEMA systems adopt mainly two types of
approaches to data collection: generic (the data
collection is independent from the tools that the
developers use) and specific (the data collection
depends on the tools that the developers use).

Hackystat [3] collects data through “sensors”, one
for each software tool from which data are collected.
Currently, there are sensors for several IDEs, testing
frameworks, build tools, configuration management
systems, static analysis tools, issue tracking systems,
and word processing tools. The tool also collects size
metrics for various programming languages.

PRO Metrics (PROM) [4] collects both specific and
generic data. Currently, it has plug-ins for several
IDEs, word processing tools, email clients, and issue
tracking systems. PROM collects also object-oriented
and procedural metrics for various programming
languages (e.g., C/C++, Java, C#, etc.).

6th Sense Analytics is based on Hackystat sensors
and focuses mainly on 3 measures: Active Time,
Churn (lines of code added or deleted), and Flow
Time. EPM focuses on integrating data from issue
tracking systems, code repositories, and email servers.
ECG is still a prototype aimed at studying programmer
behavior and identifying various types of episodes
(such as copy-paste-change). SUMS focuses on
collecting data about development for high
performance computing.

2.3 Reported usages of AISEMA systems

Existing reports on the usage of automated

measurement systems are set mainly in laboratory
environments and provide examples of usage. Such
studies are a good starting point for understanding a
specific automated measurement system. However,
they do not uncover challenges that are specific to real-
world settings and to specific problems.

The studies on Hackystat report on its usage during
the development of the system itself [5], during an
university course [11], and in a laboratory experiment
performed to validate automated detection of TDD [6].

Ohira et al. [8] reported on the usage of EPM
during the development of another of their projects.
Nystrom et al. [10] present some preliminary analyses
done with SUMS on data collected during a workshop,
and during a laboratory experiment with undergraduate
students.

Previous studies involving PROM report on
analyses performed with the collected data, rather than
focusing on the adoption process. Rossi et al. [12] use
data collected with PROM in a public administration to
study the transition from Microsoft Office to
OpenOffice.org. Coman et al. use data collected with
PROM in a small company to explore an approach to
enhance the system with automated inference of
higher-level information [13] or to evaluate claimed
benefits of PP (Pair-Programming: two developers
working at the same computer) [18]. Moser et al. use
data collected with PROM in small companies to
analyze the effect of refactoring on maintenance [19],
quality [20], effort [21], and reuse [22].

3. Research settings

This work is the first analysis of the adoption and
usage for an extensive period (33 months) of an
AISEMA system in an industry environment. The
system used is PROM [4].

3.1 Data

In the company under study, the system collected
mainly three types of data: code metrics, issue tracking
data, and developer activity information.

The code metrics consisted in the object-oriented
metrics set proposed by Chidamber and Kemerer [17].
A component of the system connected to the code
repository and computed these metrics on a daily basis.
Another component connected to the issue tracking
system and retrieved information on the status of all
the issues on a daily basis.

The developer activity information consisted mainly
in “events” of interaction between developer and
computer. Generic data consisted in the application in
use and the title of the focused window. Specific data
consisted in detailed information from the IDEs. All
the data had granularity of 1 second. Additionally,
developers could also manually introduce data
regarding non-computer activities or PP sessions.

3.3 Team and company

The team is part of the IT department of a large
Italian company. The team works mainly on

91

developing and maintaining custom software that is
needed by other departments of the company. Due to
the sensitive nature of the data presented here, the
company remains anonymous.

The software team is composed of several regular
developers, one senior developer acting as the leader
of the team and one manager of the IT department.
This manager is responsible for the IT department in
front of a higher-level, non-IT manager. During our
study, the team has grown from 10 to 20 regular
developers.

The regular developers in the team are all Italian,
between 35 and 40 years old. There is only one female
in the team. They all hold university degrees in
computer related fields and have from 10 to 15 years
of programming experience.

The team works on several projects, mainly in C#.
They are an Agile team [15] inside a non-agile
organization. They use a customized version of
Extreme Programming [14]. In particular, they use
weekly iterations, user stories, pair-programming, and
test-driven development.

The team works in a single large room where each
member has his own personal space. Therefore,
informal communication between the developers can
occur easily.

3.4 Goals of the introduction of PROM

The manager and leader of the team were the initial
promoters of the adoption of an automated
measurement system. They had two major goals:

• improve the process of the team.
• have a more objective and quantifiable way of
presenting the activities of the team to the upper-level,
non IT management of the company. Since the
company is not an IT producer, the IT department has
often been perceived as a “cost” for the company

During the adoption and usage of the system, other

goals became clear. These are presented in section 4.6.
Among the existing AISEMA systems, only

Hackystat and PROM collected the large variety of
data that was needed to address the goals of the
company. Due to lack of space, this paper does not
include a comparison of the two systems, but such a
comparison can be found in [4].

The main reasons for which the company chose
PROM are: availability of experts throughout the
adoption process, flexibility to use already existing
data, and possibility to extend data collection to
address specific goals of the company.

3.5 Adoption process

For the adoption of the system in the company, we
designed a plan in 5 steps, taking into account the
known factors of success for establishment of
measurement programs. The 5 steps of this plan are:
1. Planning. During this phase, we plan to refine the
goals and to identify the required measurements. To
accomplish this, we use the Goal Question Metric [16].
In this stage, the participants from the company are the
leader and manager of the team as well as the higher-
level manager.
2. Training. During this stage, we try to gain the
support of the developers for using the proposed
system. To accomplish this, we prepare tutorial movies
showing the installation and usage of the system and
we give several presentations on the system to the
developers and their leader. The presentations cover
the usage of the tool as well as detailed explanations
on the data collected. Following the presentations,
there are open discussions between us and the
developers. All open issues raised during these
discussions are addressed by the next round of
presentations.
3. Pilot deployment. During this stage, we test the
introduction of the system and the accuracy of data
collection. The system is installed on the machines of
only two developers. To assess the accuracy of the
data, the two developers receive via email a daily
summary of their own data. They provide us with
feedback signaling any problems or suggestions
regarding the data or their experience with the tool.
4. Deployment. The goal is to complete the
deployment of the tool on all developers’ machines
and to ensure the accuracy of the data collection. To
check the accuracy of the data, the developers receive
via email a daily summary of their own data. We
receive their feedback on the data and on other issues
related to the system.
5. Usage. In this stage, the system is fully functional
collecting accurate data and providing value to the
company via the requested reports and analyses.

4. Experience

As there are no established criteria for assessing the
success of the adoption of an AISEMA system, it is
hard to evaluate to which extent the adoption was
successful in the company under study. Considering
the two criteria for success of measurement programs
(usage in decision making and impact on organization
performance [29]), at this stage there are at least three
signs of success. The analyses showing the total time

92

spent waiting for the compilation of big projects
triggered the (long waited for) higher-level
management approval of new hardware. The analyses
showing the time spent on various activities led the
team manager to take into consideration dedicating one
person to answer emails from users in order to
decrease the high amounts of time that email was
taking from all developers. Although at this stage there
was no formal evaluation of the impact on organization
performance, the AISEMA system was perceived by
developers as having a positive impact on their
performance especially because of automating the time
consuming task of filling out the weekly activity
reports required by the accounting department.

Given the above positive signs and the continued
usage of the AISEMA system, we consider the
adoption process in this case as successful. However,
the phases of the adoption process itself sometimes
took place differently from our initial plan. We start
this section with a presentation and discussion of the
different phases of the adoption process as they took
place in the company under study. Then, we present
the actual goals as they emerged during and after the
usage of the system. Finally, we describe our
experiences regarding the critical issue of data
accuracy.

4.1 Planning

The initial planning phase took place before the two
years of AISEMA system usage and was longer than
expected (9 months). This was partially due to the busy
calendars and different roles and backgrounds of the
people involved (the higher-level manager, the team
manager and the team leader).

The definition of the GQM and the identification of
the means to collect the derived metrics required a
significant amount of effort. The participants had to
come to an agreement regarding the aspects to be used
for assessing and improving the performance of the
department. Our task was to try to understand all
points of view and to propose a solution that would
address them and would still be technically possible.
At the end of this phase, we produced a formal
document detailing the GQM and the mechanism for
collecting all required metrics using PROM. The actual
GQM is outside the scope of this paper and is not
presented here due to lack of space.

 Suitable bridges have been developed for PROM to
collect server-side data from their corporate
repositories of issues and version control systems.
Altogether, the planning phase played different roles
for those involved. It allowed us to get an initial,
although limited, understanding of the environment

and to get a perception of what would bring value to
the company. It allowed the two managers and the
team leader to clarify their goals and to get an initial
concrete understanding of how the AISEMA system
can actually help them achieve their goals. Finally, it
gave us all a concrete, although preliminary, common
understanding and starting point.

4.2 Training

The installation and usage of the client-side of the
system has been on a voluntary basis. Each developer
decided individually whether to install and use it.

During the training phase we tried to gain the
developers’ support for using the system. We started
with presentations on the installation and usage of the
system, followed by detailed explanations on the data
collected and its usage. The presentations were
followed by open discussions between us and the
developers. During these discussions, developers were
free to ask any questions and express any doubts about
the system. After each discussion we analyzed the
main concerns and identified ways to address them.

We made clear from the beginning the measures
taken to ensure privacy and to eliminate data misuse:
the data collection could be stopped temporarily or
definitively, completely or only for some applications,
at any moment, without needed explanations; the
analyses based on personal data were available only to
the one collecting it while the others (including
managers) could see only analyses of aggregates of all
data. However, this did not seem to address all
concerns of developers. Following discussions with
developers, we enhanced the system to allow the users
to see their own data previously to sending it to the
central server and delete it if desired.

Developers wanted to have a deep understanding of
the inner functioning of the system. They wanted to
know not only what data are collected, but also how
they are collected, how they are handled and stored,
how does the system handle special situations such as
idle time, interruptions, or pair programming.
Moreover, they wanted direct, unmediated (read-only)
access to the database where data were finally stored.

Although it was a long, resource consuming phase,
we consider that the training was crucial in gaining
support and active participation from developers. The
time between the presentations was also important as
the developers did not feel under time pressure to take
a decision. By getting all their questions answered and
seeing that the issues they raise are addressed, the
developers gained confidence in the system and at the
end of this phase all of them agreed to use it.

93

4.3 Pilot deployment

The pilot deployment consisted in deploying the
system on two developer machines. The system started
collecting data immediately and the developers
received every morning an email report containing the
data collected the previous day. The report contained a
breakdown of the time recorded on the various
applications and on the various files or methods. We
asked developers for feedback to ensure that the data
collected were accurate.

During this phase, we uncovered only minor issues,
mainly requests for improving the format of the daily
report. We addressed these requests. As we did not
uncover any other major data issues, we ended this
phase after two weeks.

4.4 Deployment

Table 1. Improvement requests gathered in deployment

phase.
Feature Description Feature Type

Add a short summary at the beginning of the report.
The details should follow.

Presentation

Show in the report the intervals of the day when data
was recorded, rather than the total time recorded.

Presentation

Group the files and applications shown in the report by
categories corresponding to higher-level activities.

Presentation

Recognize some frequently used external editors when
used from within the IDE.

Internal

Collect and report also data on resource usage, namely
the time required for compilation of various projects.

Internal

Automate time consuming tasks such as filling out
weekly forms on developers’ activity.

Internal

Allow regular expressions to define applications for
which data are not collected.

Internal

Collect automatically data on meetings and
appointments set in the Calendar in Outlook.

Internal

Allow manual entering of data corresponding to work
on tasks.

Internal

Support also team-programming and integrate it with
the issue tracking system.

Internal

Given the positive experience of the pilot

deployment, we expected that the deployment phase
would also be short and without major problems. In
reality, it was very long (almost 9 months) and many
issues surfaced. There were three main causes for this:
• The increased number of users and their increased
experience with the system triggered a large number of
requests for improvement, regarding both the
presentation and the internal features of the system
(Table 1). The longer usage revealed also several
special cases that had not been previously taken into
consideration. For example, while working remotely or

on a virtual machine, the system recorded only a long
“black-box” event of type remote or virtual
respectively. Where possible, the system had to be
installed also on the virtual machine or on the remotely
accessed machine to gather the data at the same level
of detail as on the physical machine of the developer.
• The changes to the process of the team (such as the
introduction of extensive usage of pair- and team-
programming) triggered new extensions to the system.
The initial support for pair-programming needed to be
extended with support for team-programming (more
than 2 developers working together on a task). The
support was also extended to retrieve the issues from
the issue tracking system and to store, at the end of a
session, the amount of work done together with a link
to the user selected issue.
• Changes to the environment (such as newly
installed extensions to the IDE or new company
security policies) affected the already installed and
working system. In some cases, there was a need of
redeployment of some of the components.

To clearly understand and address more complex

requests such as grouping of files and applications by
activities, we took an iterative approach. We proposed
a solution, showed it to the developers, and then used
their feedback to propose an improved solution.
Although effective, this approach also extended the
duration of the deployment phase.

4.5 Usage

This phase started when the system started
providing value to the company. The first delivered
value was a reliable daily and weekly report of activity
delivered to each developer. This was in fact the
upgraded version of the daily report that served
initially for checking data accuracy.

The upgraded daily report contained a summary of
time spent in solo and pair-programming (together
with the names of partners), the time spent on pair- or
team-programming (broken down by task and
partners), and the compilation time broken down by
project. The weekly report contained the same
information, but aggregated for each day of the past
week. The daily report contained additionally detailed
information on the time spent on various files and
applications.

In its new format, the developers considered the
reports as reliable, objective summaries of the work
done during the previous day or week. They relied on
the reports for the weekly stand-up meetings and for

94

filling out the weekly activity reports required by the
accounting department of the company.

The next step was to upgrade the system to provide
also directly the activity report in the form required by
the accountancy department.

Aggregated versions of these reports, showing the
usage of various software tools, the time needed for
compiling the projects, and the time spent by the team
on various tasks were available for the leader and
manager of the team. They offered them an overview
of the activities and of the resource usages.

The system also provided value to the company by
showing the evolution of the metrics agreed upon
during the planning phase. Metrics were gradually
added as some of them required integrating data that
the company was already collecting by other means or
extending the system to collect additional data.

Once most of these metrics were available, the
manager and the team leader realized that there are too
many metrics to be evaluated at a glance. Therefore,
they would need a reduced set of metrics (from 5 to 8)
that would inform them on the status of the projects
and of the process. However, this reduced set should
contain enough information to warn them of potential
problems. In case of such warnings, they would rely on
the detailed set of metrics to better understand and
localize the problem and to take decisions.

4.6 Goals of PROM usage

During the actual usage of the system, we received
extensive feedback from the developers, the team
leader and the manager of the team. It soon became
obvious that the different people involved had in fact
different goals for using the AISEMA system,
depending on their role in the team.

The developers wanted to automate time consuming
tasks such as filling out time sheets at the end of each
week. They also were interested in having a reliable,
objective view of self-performance.

The team leader needed to evaluate the status of the
process and of various projects at any time. He also
wanted to drive the improvement of his team based on
objective measurements. He needed global evaluations
of the process and of each project, and detailed
evaluations of the aspects that needed improvement.

The manager had two main goals: to evaluate the
work product and to make the IT department’s effort
visible to the non IT, higher-level, manager. To do so,
he needed an adequate, tangible, objective way of
evaluating the quality of the software produced and the
performance of the IT department. The evaluation of
quality and performance had also to be global rather
than focusing on a single specific aspect.

Although the goals were different, all people
involved had a common requirement about the metrics
presented: brevity. They needed to be able to
understand at a glance all the metrics corresponding to
a goal. Thus, even when wanting a global evaluation
that takes all aspects into account, they preferred a
short, aggregated result to a long, detailed one. This
aspect seemed to be crucial for metrics usage. In cases
where the aggregation was not obvious, they preferred
to give up some precision by ignoring some aspects.

4.7 Data accuracy

The data accuracy proved to be an issue that needed
constant monitoring during all the usage of the system.
Even though an initial assessment ensured the accuracy
of the data collection, the experience showed that the
situation can alter at any time. The main reasons for
the alteration of the data accuracy were the following:
• Software failures. The existing software systems are
fragile. The repeated crashes of the IDE on some of the
developers’ machines (while they were testing
problematic pieces of code) triggered the deactivation
of the plug-in for data collection.
• Changes to the software systems. The upgrades of
various tools interfered sometimes with the data
collection. Some upgrades of the IDE or the
installation of new plug-ins for the IDE disabled the
plug-in for data collection. The change of the security
policy of the company also affected temporarily the
transfer of the data to the central server.
• Hardware failures. Although infrequent, it happened
that some data were lost due to the hard-drive failure.
The data temporarily stored locally on a developer’s
machine have been corrupted and were lost.

In most of the cases, a simple reinstallation or

restart of the components affected was enough to solve
the problem. However, precious time was lost in
recognizing that there is a problem and in identifying
its source.

5. Lessons learnt

The experience gained can be summarized in 6
lessons learnt that are presented in detail in the
following paragraphs. Table 2 relates our experience to
the factors of success reported in the literature
(discussed previously in section 2.1) for establishment
of traditional measurement programs which do not use
AISEMA systems. We added to the existing factors,
three factors specific for AISEMA systems.

95

Table 2. Success factors in establishing traditional
measurement programs and in the adoption of AISEMA

systems.
Factors of
success

Traditional
measurement
programs

AISEMA systems

Incremental
approach to
data being
collected

Needed to minimize
burden of data
collection.

Not needed, as the collection of
additional data does not
increase the burden on
developers.

Incremental
approach to
analyses
presented

Needed to let people
accommodate.

Needed to let people
accommodate.

Automated
data
collection

Most programs use
manually or partially
automated data
collection.

It is intrinsically ensured.

Training People need training on
purpose of
measurement, metrics
collected, and analysis
techniques.

People need training on
purpose of measurement,
metrics collected, storage, and
inner functioning of the
AISEMA system.

Developer
involvement

Developers should be
involved in the design
of the metrics program.

Developers should be involved
in the design of the metrics
program and of the
functionalities of the system.

Accuracy of
data

Accuracy can be
ensured through data
collection discipline
and constant checking.

Accuracy can be ensured
through self-healing and self-
monitoring capabilities of the
AISEMA system.

Integrity of
data and
analyses

Confidence in the
integrity of data and
analysis cannot be
automatically ensured.

Confidence in the integrity of
data can be automatically
ensured by giving developers
access to the database and
knowledge on how data are
collected, accessed and treated.

Usefulness The metrics collected
should be useful.

The metrics collected should
be useful.

Prompt
feedback

Cannot be
automatically ensured.

Can be automatically ensured
through daily and/or weekly
reports.

Dedicated
team for
measurement

There is a need for a
team with the explicit
responsibility for the
measurement program.

Initially an experienced user of
the system is needed to design
the analyses; once designed,
the analyses are automated.

No usage of
data for
people
assessment

Cannot be
automatically ensured.

Can be partially ensured
automatically through data
privacy and control over one’s
own data.

High
frequency of
data
collection

It requires automated
data collection or
increased costs due to
more work.

It is intrinsically ensured.

Simplicity,
clarity, and
brevity in
presentation

No reports available. The presentation of data has to
be simple, clear and short (5-8
metrics) summarizing the
status and warning about
potential problems.

Different
data
aggregations

No reports available. Different aggregations of
metrics are needed for different
goals.

Integration of
data

No reports available. The data from external sources
should be integrated.

L1. It is important to gain support from
developers

An usually cited barrier in the adoption of
automated measurement systems in companies is the
lack of cooperation from developers. This is usually
attributed to fears of data misuse or the fear of the “Big
Brother”. Our experience shows however that these
barriers can be overcome by following five main steps:
• Ensure data privacy. Nobody has access to
personal data of somebody else. Everybody has access
to her own personal data and to aggregated data of all
the team.
• Give the developers the access to all the
information they require about the system and its
usage. Answer developers all questions they have
about the usage or inner workings of the system. Offer
them time to accommodate with the system and
organize several open discussions to identify and
address new issues as they appear.
• Offer the developers a fair choice on whether to
use the system or not. This requires management
support. Make clear from the beginning to the
developers that they have a choice on whether to use
the system or not. After the training phase, ask them
about their option. Respect their decision.
• Give developers full control over their own data.
Give the developers the possibility of interrupting or
stopping the data collection at any time and for any
interval of time. Allow them to specify applications
from which data would not be collected. Allow them
also to see and delete the data collected before sending
them to the server. Our experience shows that the
developers use very little these facilities. The mere
presence of these facilities seems to be a needed
reassurance that the privacy rights are respected.
• Take into account developers’ suggestions
regarding the usage of the system. During all the
phases of the adoption process, receive feedback from
developers and act towards addressing the issues
raised. Sometimes, this might imply a considerable
supplementary amount of work as new features are
added to the system. However, our experience shows
that such improvements can also bring value to the
company. For instance, the automation of the weekly
reports for the accounting department also brought
value to the company as the developers gained
precious time to devote to their tasks.

L2. Patience and commitment are needed until the
system produces value to the company.

The adoption of the AISEMA system in the
company under study had a very long set-up phase
(planning, training, pilot deployment, and

96

deployment). This was an initial investment from the
company, as the system was not yet delivering any
value while consuming resources. The company and
team’s patience and commitment to adopting the
system was rewarded only after this phase when the
system started incrementally to deliver value to the
company. Currently, it is still in use and the value
delivered is increasing as more usages are taken into
consideration.

L3. Presentation is as important as accurate data
collection.

The deployment phase was so long, partially due to
many requests to improve the presentation of the data
collected. The data collected did not bring real value
until the developers, the team leader, and the managers
started using it. To use it, they basically needed
simplicity, brevity and clarity in presentation, even at
the expense of precision. Figure 1 gives an example.

L4. There should be different aggregated views on
the data rather than hierarchical break down.

Our initial approach was that the developers have
access to their individual, detailed data, the leader to a
first level of aggregation over the data of the whole
team and the manager to an even higher level of
aggregation of the data. However, it soon became
apparent that in fact this hierarchical view on the data
was not appropriate. What was needed was a set of
different, parallel views on the data.

Each view should address the goals of one role in
the team. The views cannot be aggregations of those of
other roles, as the goals are not necessarily in an
ascending order of abstraction, but simply differently
oriented. For instance, the developers received daily
reports of their activity on different parts of the code,
while the leader preferred summarizing views of
metrics connected to increasing the external or internal
quality of the code.

The big challenge here is in designing these views.
Our experience shows that most of the goals require a
global view that takes into consideration several
aspects. Considering the goal of the manager to
evaluate the work product, there were more than 30
metrics defining external and internal product quality.
On the other hand, the people want between 5 and 8
metrics at most, preferably without losing accuracy.
Thus, the challenge consists in finding a sound way to
aggregate the many metrics into a few numbers that
would give the general picture.

Designing a sound aggregation of software metrics
is not obvious and it is still an open issue. Such an
aggregation should accept as input metrics with
different measurement scales. It should have an

adequate level of sensitivity to warn about potential
problems in various areas. It should also be robust to
the addition of new metrics. Such new metrics should
not modify the result, but rather increase its precision.

Figure 1. Metrics presentation. Big arrows show the
trend over the past 8 weeks while small ones show the
trend over the last week.

To provide the company with value as soon as
possible, during this case-study, we took a different
approach. Together with the managers, we selected, for
each goal, a maximum of 8 metrics (losing thus some
precision) and we tried to convey as much information
as possible through the data presentation by means of
size, color and shape. Thus, we showed for each metric
the trends over various time intervals by means of a
big and a small arrow, on green, red or white
background (Figure 1). The direction of the arrow
shows the trend, the size of the arrow shows the time
interval, and the color of the background helps spotting
problems fast.
L5. The system should be able to integrate data
from various sources.

Relying only on the data that the system itself
collects limits the value that the system can bring to the
company. The company was actually collecting lots of
data (for instance data about nightly builds) even
before adopting the AISEMA system. These data were
used only a couple of times per year for company
review. Moreover, they were used mainly for
justifying the process rather than for steering it. The
little usage of the data made the developers consider
data collection as yet another bureaucratic burden.

In the case under study, the AISEMA system was
easily extendable to use also the existing data from
external sources. This enriched the analyses that the
system offers to its users. Importing these data from
external sources ensured a smooth adoption, without
requiring the team to change its existing process.
While it is clear that no system will ever collect all
possible data in all specific situations, it should be
flexible enough to adapt with little effort and to make

97

use of existing accurate data regardless of how they are
actually collected.

Additionally, an AISEMA system obviously does
not automatically collect data regarding non-computer
related activities of developers (such as meetings or
phone calls). In our case, this problem was addressed
in two ways:
• the AISEMA system collected also data from the
electronic calendars of users regarding scheduled
events (such as meetings).
• users could manually input data regarding other
activities such as phone calls or unplanned meetings.

L6. The system should be self-monitoring and self-
healing.

Our experience showed that data accuracy should
not be taken for granted even though it has been
ensured by an initial assessment (section 4.7). Changes
in the environment might affect the quality of the data
collected even in a subtle way that is not producing a
visible error (for instance data with corrupted values
but intact structure). The measurement system has to
constantly monitor itself and the data collected in order
to identify as soon as possible potential problems.

When possible, the system should also be able to
perform self-healing. For instance, a plug-in that was
disabled due to repeated crashes of the instrumented
IDE should be re-enabled. However, when self-healing
is not possible, a warning of the potential problem and
suggestions about possible causes are still very helpful.
From our experience, these two phases consume the
most time and energy. Once the problem is noticed and
its cause identified, the solution is usually simple.

In the case of the system we used, the failure
detection mechanisms are in general located at each of
the components. However, this was not enough, as in
some cases the components were silently disabled.
Moreover, in the case of a lack of connection (which
might however be legitimate) the failure of a local
component is not visible to the server.

6. Conclusions and future work

In this paper, we presented a case study on the

adoption and long term usage (nine months of planning
followed by two years and on-going usage) of an
AISEMA system in the software department of a
company. Our findings have to be considered taking
into account the characteristics of the company and of
the system under study. By offering insights into the
benefits and challenges of the adoption and usage of an
AISEMA system in industry, we hope that this report
can help other companies to consider their adoption of

a measurement system. The lessons learnt can also
guide improvement of AISEMA systems as they show
existing challenges in usage and propose solutions.

Our experience shows that the company planning to
adopt an AISEMA system should be willing to accept
a long initial set-up phase. At the end of this phase, the
system starts delivering value to the company.

Contrary to the existing perception that developers
are against AISEMA systems, we found out that their
cooperation can be easily gained by following 5 steps:
ensuring data privacy, detailed information on the
system prior to usage, a free choice of usage, full
control to developers over data collection, and taking
into account developers’ suggestions. The full control
over the data collected is rarely used in practice, but its
presence is a needed reassurance to the developers.

The presentation of data and analyses is just as
important as their accuracy and integrity. While lots of
data are required to have an accurate view on
processes or products, the data should be aggregated to
provide people with summarizing views. The
AISEMA systems should provide views that show the
status at a glance and warn when there are problems.
The views do not represent a hierarchy of aggregations
of data built one on top of another. Instead, they
should be parallel aggregations of the same data that
address the different goals of the different roles in the
team.

The aggregation of the data is still an open issue.
We consider as an initial list of requirements of a
sound aggregation the following: ability to deal with
data on different scales, robustness to addition of new
metrics, adequate level of sensitivity. We consider this
list as a very preliminary and incomplete one and we
envisage future work that explores the issue of useful
aggregations of software engineering data.

The AISEMA systems should be enhanced with
self-monitoring and self-healing capabilities. They
should be able to cope with changes in the
environment where data are collected (software and
hardware changes or failures). They should also
constantly monitor the quality of the data collected and
warn about potential problems. We are currently
working on an approach to detect potential problems of
various components on client machines, by performing
continuous checks of data consistency on the server.

7. References

[1] Johnson, P. M., and Disney, A., A Critical Analysis of
PSP Data Quality: Results from a Case Study. Journal of
Empirical Software Engineering, Vol. 4(4), 1999.

98

[2] Moore, C. A., Project LEAP: Personal Process
Improvement for the Differently Disciplined, ICSE, 1999.

[3] Johnson, P. M., Kou, H., Agustin, J., Chan, C., Moore,
C., Miglani, J., Zhen, S., and Doane, W. E. J., Beyond the
Personal Software Process: Metrics Collection and Analysis
for the Differently Disciplined. ICSE, 2003.

[4] Sillitti, A., Janes, A. Succi, G., and Vernazza, T.,
Collecting, Integrating and Analyzing Software Metrics and
Personal Software Process Data EUROMICRO, 2003.

[5] Johnson, P. M., Kou, H., Paulding, M., Zhang, Q.,
Kagawa, A., and Yamashita, T., Improving Software
Development Management through Software Project
Telemetry. IEEE Software, August 2005.

[6] Kou, H. and Johnson, P. M., Automated Recognition of
Low-level Process: A Pilot Validation Study of Zorro for
Test-driven Development. Intl. Workshop on Software
Process, 2006.

[7] Burnell, G. 6th Sense Analytics. Homepage,
http://www.6thsenseanalytics.com

[8] Ohira, M., Yokomori, R., Sakai, M., Matsumoto, K.,
Inoue, K., and Torii, K. Empirical Project Monitor: A Tool
for Mining Multiple Project Data. Workshop on Mining
Software Repositories, 2004.

[9] Schlesinger, F. and Jekutsch, S., 2006.
ElectroCodeoGram: An Environment for Studying
Programming. Workshop on Ethnographies of Code, 2006.

[10] Nystrom, N. A., Urbanic, J., and Savinell, C. 2005.
Understanding Productivity through Non-intrusive
Instrumentation and Statistical Learning. 2nd Workshop on
Productivity and Performance in High-End Computing, 2005

[11] Johnson, P. M., Kou, H., Agustin, J. M., Zhang, Q.,
Kagawa, A. and Yamashita, T. Practical Automated Process
and Product Metric Collection and Analysis in a Classroom
setting: Lessons Learned from Hackystat-UH. Intl.
Symposium on Empirical Software Engineering, 2004.

[12] Rossi, B., Scotto, M., Sillitti, A. and Succi, G. An
Empirical Study on the Migration to OpenOffice.org in the
Public Administration. Special Issue on Web-based,
Community Driven Open Source Systems of the Intl. Journal
of Information Technology and Web Engineering, 2006.

[13] Coman, I. D. and Sillitti, A. An Empirical Exploratory
Study on Inferring Developers’ Activities from Low-Level
Data. Intl. Conference on Software Engineering and
Knowledge Engineering, 2007.

[14] Beck, K. and Andres, C. 2005. Extreme Programming
Explained: Embrace Change. Addison-Wesley, 2005

[15] Cockburn, A. 2006. Agile Software Development: The
Cooperative Game, 2nd ed., 2006.

[16] Basili, V.R., and Weiss, D.M. 1984. A Methodology for
Collecting Valid Software Engineering Data. IEEE
Transactions on Software Engineering, Vol. 10(3), 1984.

[17] Chidamber, S. R. and Kemerer, C. F. A Metrics Suite for
Object Oriented Design. IEEE Transactions on Software
Engineering, Vol. 20(6), 1994.

[18] Coman, I. D., Sillitti, A. and Succi, G. Investigating the
Usefulness of Pair-Programming in a Mature Agile Team.
Intl. Conference on Agile Processes and eXtreme
Programming in Software Engineering, 2008.

[19] Moser R., Pedrycz W., Sillitti A. and Succi G. A model
to identify refactoring effort during maintenance by mining
source code repositories. Intl. Conf. on Product Focused
Software Process Improvement, 2008.

[20] Moser R., Abrahamsson P., Pedrycz W., Sillitti A., and
Succi G., A case study on the impact of refactoring on
quality and productivity in an agile team. IFIP Central and
East European Conference on Software Engineering
Techniques, 2007.

[21] Abrahamsson P., Moser R., Pedrycz W., Sillitti A.,
Succi G., Effort Prediction in Iterative Software
Development Processes – Incremental Versus Global
Prediction Models. Intl. Symposium on Empirical Software
Engineering and Measurement, 2007.

[22] Moser R., Sillitti A., Abrahamsson P., and Succi G.,
Does refactoring improve reusability?. Intl. Conf. on
Software Reuse, 2006.

[23] Pfleeger, S. L., Lessons Learned in Building a
Corporate Metrics Program, IEEE Software, May 1993.

[24] Daskalantonakis, M., A Practical View of Software
Measurement and Implementation Experiences Within
Motorola, IEEE Transactions on Software Engineering, Vol.
18, 1992.

[25] Offen, R. J. and Jeffery, R., Establishing Software
Measurement Programs, IEEE Software, pp. 45-53,
Mar./Apr. 1997.

[26] Hall, T. and Fenton, N. Implementing Effective Software
Metrics Programs, IEEE Software, Mar./Apr. 1997.

[27] Iversen, J. and Mathiassen, L., Lessons from
Implementing a Software Metrics Program. Hawaii Intl.
Conf. on System Sciences, 2000.

[28] Gopal, A., Krishnan, M. S., Mukhopadhyay, T., and
Goldenson, D. R., Measurement Programs in Software
Development: Determinants of Success. IEEE Transactions
on Software Engineering, Vol. 28(9), 2002.

[29] Berry, M., and Jeffery R., An Instrument for Assessing
Software Measurement Programs. Empirical Software
Engineering, Vol. 5, 2000.

99

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
