
In-Field Healing of Integration Problems with COTS Components

Hervé Chang and Leonardo Mariani and Mauro Pezzè∗

University of Milano Bicocca
Department of Informatics, Systems and Communication

viale Sarca 336, 20126 Milano, Italy
{chang, mariani, pezze}@disco.unimib.it

Abstract

Developers frequently integrate complex COTS frame-
works and components in software applications. COTS
products are often only partially documented, and devel-
opers may misuse technologies and introduce integration
faults, as witnessed by the many entries in fault repositories.
Once identified, common integration problems and their
fixes are usually documented in forums and fault reposito-
ries on the Web, but this does not prevent them to occur in
the field when COTS products are reused.

In this paper, we propose a methodology and a self-
healing technology that can reduce the occurrence of in-
field failures caused by common integration problems that
are identified and documented by COTS developers. Our
methodology supports COTS developers in producing heal-
ing connectors for common misuses of COTS products. Our
technology produces information that facilitate debugging
and patching of applications that use COTS products.

Application developers inject healing connectors into
their systems to automatically repair problems caused by
misuses of COTS products. Healing takes place at run-time,
on-the-fly and in-the-field. The activity of healing connec-
tors is traced in log files, to facilitate debugging and patch-
ing of integration problems. Empirical experiences with
several applications and COTS products show the feasibil-
ity of the approach and the efficiency of the technology.

1 Introduction

To mitigate the development costs, reduce the knowl-
edge required to implement applications, master the com-
plexity of the code and increase the software quality,
applications are frequently developed by reusing avail-

∗Mauro Pezzè is also professor at the University of Lugano, Faculty of
Informatics, via Buffi, 13 6900 Lugano (Switzerland).

able COTS1 frameworks, servers and components [20].
For instance, many Web applications are based on
the Struts (http://struts.apache.org/2.x/) and Spring
(http://www.springframework.org) frameworks, enter-
prise systems are frequently integrated with application
servers like JBoss (http://www.jboss.org) and Geronimo
(http://geronimo.apache.org/), and several desktop ap-
plications reuse libraries and execute within virtual environ-
ments, like Sun JRE (http://java.sun.com/javase/).

In general, COTS frameworks and components are reli-
able products, but the complexity of the technology and the
incompleteness of the available documentation can result in
faulty integration of COTS products.

Common integration problems stem from wrong usage
of the interfaces of COTS components, for instance due to
incorrect ordering of method invocations or incorrect data
values passed as parameters of method calls. A simple ex-
ample is the interaction with class MethodInvoker pro-
vided by the Spring framework. Class MethodInvoker
requires the invocation of method prepare before execut-
ing method invoke. Application developers often forget
to invoke the preparation method before method invoke,
as documented by Spring developers (see bug ID SPR-3386
http://jira.springframework.org/browse/SPR-3386).

More subtle failures can be caused by operations invoked
when the target applications are in particular states, by spe-
cific environmental conditions, and by unexpected values
in the configuration files required by COTS frameworks.
These problems are hard to be avoided at development time,
because it is hard to foresee all possible uses and misuses of
a technology, are difficult to be revealed before the system
deployment, because validation can hardly cover all possi-
ble usage scenarios, and can cause serious failures, such as
application crashes [17, 36].

These problems can be tackled with testing, static analy-

1Here we use the term COTS (Commercial off-the-shelf) to indicate
software products provided and maintained by third-parties, but not neces-
sarily commercial products.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 166

sis and defensive programming [28, 18, 31].
Testing is fundamental to reveal integration problems

and reduce the number of faults in deployed software ap-
plications. However, testing is not an exhaustive verifica-
tion technique, and can often fail to reveal all problems re-
lated to the interplay of multiple and rare conditions [28].
In section 5, we report data about problems that are related
to integration with COTS frameworks, and have been dis-
covered in the released versions of software products, even
after extensive pre-release testing.

Static analysis can effectively analyze complex combi-
nations of events that can cause software failures. However,
static analysis techniques are limited by scalability and false
positive problems. Static analysis techniques are effective
in analyzing artifacts of limited size and complexity, but do
not scale up well to large programs [23]. Scalability can
be obtained at the cost of restricting the scope of the analy-
sis to some classes of problems, for instance, several sta-
tic analysis techniques can recognize predefined sets of bug
patterns [18], but cannot effectively reason about all pos-
sible behaviors of large software systems. Static analysis
is hindered by the many false positives that it usually gen-
erates [18, 32]. The complexity of the analyzed artifacts
is typically managed by introducing some degree of impre-
cision in the analysis, which often results in false alarms
that need to be investigated by software analysts. Appli-
cations that integrate COTS components are usually quite
large. Static analysis can provide useful results, but can-
not remove all the integration problems that are frequently
reported.

Defensive programming can be used to develop COTS
components that are robust with respect to possible misuses
by client applications [31]. Defensive programming can re-
duce the failures observed in the field, but is effective only
with the misuses that can be identified at design-time, which
cover only a limited subset of possible misuses.

In this paper, we propose a self-healing approach that
handles faults that derive from the integration of COTS
frameworks and components into software applications.
The approach handles problems at run-time, and can suc-
cessfully heal some of the faults that inevitably escape test-
ing and analysis.

Our technology is based on the idea of transforming
the information about possible incompatibilities that is dis-
covered and published by COTS developers, into healing
connectors that can be automatically injected into applica-
tions to heal integration problems that are not understood
by application developers. In this way, we effectively in-
corporate into applications the information that is avail-
able to the COTS developers, and that can avoid integration
problems, without involving application developers, who
may not understand all details of interactions with complex
COTS products. Our approach comes with two benefits: on-

the-fly and in-the-field healing masks failures, and logging
eases off-line debugging and fault fixing.

Our approach involves both developers of COTS compo-
nents and frameworks, hereafter COTS developers, and de-
velopers of applications that include COTS products, here-
after application developers. COTS developers should use
the information about integration faults that is routinely col-
lected and published on the Web, to produce healing con-
nectors, that is connectors that fix typical misuses of COTS
frameworks that are experienced after their release. Ap-
plication developers inject healing connectors into applica-
tions. Since at the time of the injection both the COTS com-
ponents and the applications that integrate them are avail-
able, healing connectors can heal both integration faults and
common misuses of COTS components in client applica-
tions.

To minimize run-time overhead, healing connectors are
activated only when COTS components raise exceptions.
The activated connectors apply the available healing strate-
gies. If the healing fixes the problem, the exception is
masked and the application continues run safely. If the heal-
ing fails, the exception is propagated to the caller side.

The paper is organized as follow. Section 2 presents how
healing connectors work in-the-field. Section 3 illustrates
the methodology followed by COTS developers to imple-
ment and release healing connectors, and the methodology
followed by application developers for injecting connectors
into applications. Section 4 shows the feasibility of the ap-
proach by describing our early experience with the identi-
fication of typical integration problems with COTS compo-
nents and the development of an initial set of healing con-
nectors. Section 5 presents empirical evidences of the ef-
fectiveness and efficiency of healing connectors with well-
known COTS components and frameworks. Effectiveness
is demonstrated by the successful healing of a number of
misuses that we found in popular applications available on
the Web. Efficiency is demonstrated by the limited over-
head introduced by healing connectors. Section 6 discusses
related work. Section 7 summarizes the main contributions
of our research and presents on going work.

2 Healing connectors

Healing connectors are software modules that are de-
signed by COTS developers to fix integration problems, and
are injected into applications that integrate COTS frame-
works and components. Healing connectors are activated
by exceptions raised by COTS components, and can be in-
jected both at the application side, by instrumenting the
application that uses the COTS frameworks, and at the
COTS side, by instrumenting the COTS frameworks, with-
out requiring source code. Connectors can be developed
with many different technologies: aspect-oriented technolo-

167

gies [13], the TPTP probekit [19] and bytecode instrumen-
tation tools [6]. In this section we describe the structure and
the behavior of healing connectors referring to the proto-
type implementation with the AspectWerkz aspect-oriented
framework that we used in the experiments [1].

A healing connector is composed of three elements: a
connector that intercepts exceptions and is developed as an
aspect, a set of healing strategies that are invoked by the
connector and are implemented as Java classes, and a spec-
ification of the points where the connector must be injected,
which is defined as a set of pointcuts and corresponding
joinpoints that bind the connector to all the specified point-
cuts.

Listing 1 shows an excerpt of the aspect class
MethodInvokerAspect that implements the heal-
ing strategy for the problem with the Spring class
MethodInvoker described in the previous section.
Every call to method invoke() triggers the execution
of the advice method handle, which propagates the
original invocation by executing jp.proceed(). If
jp.proceed() raises an exception, the exception han-
dler executes the corresponding healing strategy. Listing 2
shows the definitions of the pointcuts and joinpoints neces-
sary to bind the execution of the advice method handle to
any call to method invoke of class MethodInvoker.

p u b l i c c l a s s MethodInvokerAspec t{

p u b l i c O b j e c t h a n d l e (J o i n P o i n t j p) throws
Throwable{

t r y {
/ / i n v o c a t i o n o f t h e t a r g e t o p e r a t i o n
re turn j p . p r o c e e d () ;

}
ca tch (I l l e g a l S t a t e E x c e p t i o n i s e) {
/ / i m p l e m e n t a t i o n o f t h e h e a l i n g s t e p s here .

. . .
}

Listing 1. Excerpt of an Aspect class relative
to a healing connector.

<a s p e c t c l a s s ="healing.connector.springframework.
util.MethodInvokerAspect">

<p o i n t c u t name="pc" e x p r e s s i o n ="call(java.lang.
Object org.springframework.util.
MethodInvoker.invoke()"/>

<ad v i ce name="handle(JoinPoint jp)"
type ="around" bind−to="pc" />

</ aspect>

Listing 2. Specification of the binding of
aspect class MethodInvokerAspect.

Healing connectors may require some information about
the environment in which applications are executed to work
properly. For instance, a healing connector that heals a fail-
ing load of configuration files by searching the configura-
tion files in default folders requires a specification of the
folders. This specification can only be provided by the
application developers, and cannot be hard coded into the
healing connectors. To handle these cases, the bundle that
includes healing connectors also includes configuration files
that can be edited by application developers.

Healing connectors work in four main steps: detecting
exceptions, identifying healing strategies, executing strate-
gies and returning to normal. Figure 1 summarizes the be-
havior of healing connectors.

COTS swHealing StrategyConnectorApplication

request

exception

ALT

re-throw exception[strategy not
identified]

[else]

heal(exception, rtInfo)

healing

[healing
successful]

[else]

ALT result
result

result

exception
failure

re-throw exception

loadStrategies(exception)

(1)
detecting

exceptions

(2)
identifying

healing
strategy

(3)
executing
strategies

(4)
returning to

normal

Main Steps

identifyStrategy

failure

Figure 1. Behavior of a healing connector.

When detecting exceptions, healing connectors listen
to the types of exceptions related to the class of prob-
lems they address. For instance, connectors that heal
the problem related to the incorrect invocation order of
methods prepare and invoke of the Spring class
MethodInvoker described in Section 1, listens for ex-
ceptions of type IllegalStateException.

In this paper, we focus only on problems that can be
detected by monitoring exceptions, to avoid run-time over-
head when applications execute successfully, and to min-
imize overhead in case of failures (see Section 5 for em-
pirical data). Even focusing only on the limited class of
problems that raise exceptions, we address a large number
of important faults that frequently cause failures, as studied
and reported in [24]. However, the technique is not bounded
by this choice, and can be extended to other classes of prob-
lems.

When connectors catch exceptions, they load the healing
strategies available for the observed exception to see if any
of them may match a problem behind the caught exception.

168

Figure 1 illustrates the loading process as a single method
invocation. In general, since multiple strategies can be tried
to repair the problem, the process loads a chain of respon-
sibility of healing strategies [16] that are sequentially exe-
cuted until one of them fixes the problem or all the strategies
have been tried.

To identify healing strategies that may solve the prob-
lems behind the caught exception, healing connectors in-
spect the current status of the system to see if the exception
has been raised as a consequence of a problem that can be
healed by some available healing strategies. If no match-
ing strategy is found, the exception is re-thrown, otherwise,
the connector attempts to heal the problem by executing
the identified strategies. Identifying the strategies can be
as easy as checking information reported within the caught
exceptions, or may require invoking inspector methods to
investigate the state of the components or the environment.
For instance, when the connector detects exceptions that
may be caused by the incorrect invocation order of methods
prepare and invoke of class MethodInvoker, the
connector may invoke method isPrepared to check if
the called object of type MethodInvoker, is prepared or
not. If method isPrepared returns false, the connec-
tor has successfully identified a healing strategy that may
solve the problem, and can attempt to apply it. Figure 1
shows the simplest case that does not require additional
method invocations.

To attempt healing the fault, healing connectors execute
the identified strategies. The healing strategies are executed
on-the-fly and in-the-field. If successful, the application re-
turns to normal execution without failing. Healing strate-
gies may include different types of actions, depending on
the problem to be healed. Section 4 presents a preliminary
taxonomy of strategies that we derived from our early expe-
rience. Figure 1 shows the simple case of a healing strategy
that invokes a method.

If the healing strategies succeed, the control is normally
returned to the client, by propagating return values, if any.
If the healing strategies fail, the exception is re-thrown.

The activities of the healing connectors are logged into
log files, independently from the result of the healing
process. Log files can be inspected off-line by applica-
tion developers to debug and permanently fix the problems
healed on-the-fly by the healing connectors. In this way,
healing connectors fix problems on-the-fly when they first
occur, and developers can fix them permanently in new re-
leases. Permanent fixing can be quick, thanks to the detailed
log files produced by healing connectors.

3 Methodology

In this section, we discuss the impact of healing connec-
tors on the development of both COTS products and COTS

based applications by overviewing the methodology that
COTS and application developers should follow to release
healing connectors, and to integrate them into component-
based applications, respectively.

The designing of healing connectors does not impact
on the development before the release of COTS prod-
ucts. Novel activities are required only during maintenance,
when problems of integrating COTS products into applica-
tions are reported.

Currently, when application developers report prob-
lems with COTS products, COTS developers either release
patches, when problems can be solved at the level of sin-
gle COTS products, or document product misuses into offi-
cial forums on the Web, when integration problems can be
solved more effectively by modifying the application that
uses COTS frameworks. Unfortunately, application devel-
opers are not always up-to-date about the latest documented
problems, and COTS based applications often latently in-
clude many problems that are reported on forums and that
eventually cause in-field failures.

Healing connectors provide an effective alternative to
posting problems on forums, and reduce the impact of
known integration problems latently included into appli-
cations. When integration problems can be solved more
effectively by modifying the application than by patching
COTS products, COTS developers produce healing connec-
tors that are automatically interponed between applications
and COTS products to solve the integration problem. COTS
developers follow a three step process: check for failure
types, identify healing conditions, and develop healing con-
nectors.

To check for failure types, developers simply ver-
ify the type of exceptions raised by the integra-
tion problems. For example, the missing initializa-
tion of the Spring class MethodInvoker raises an
IllegalStateException. We already observed that
focusing only on problems that raise exceptions minimizes
the run time overhead, while still solving a large amount of
problems [24]. Extending the approach to other classes of
problems would change this step.

To identify healing conditions, COTS developers in-
vestigate the status of the COTS product when the
exception is raised, and identify the conditions that
hold at run-time and characterize the detected prob-
lem. For example, when the missing initializa-
tion of an object of type MethodInvoker raises an
IllegalStateException, method isPrepared in-
voked on that object returns false.

To develop healing connectors, COTS developers design
solutions of the problems triggered by the healing condi-
tions. For instance, a healing connector for the missing ini-
tialization of the Spring class MethodInvoker invokes

169

methods prepare and invoke, thus initializing the ob-
ject before invoking the method.

Even if COTS developers know the COTS products very
well, and fully understand the problems to be healed, heal-
ing connectors can introduce undesired side-effects into ap-
plications. To verify the correctness of the connectors in the
field, COTS developers design test cases that are executed
when connectors are integrated into applications. Test cases
must check that the misuse to be healed generates the ex-
pected exception indeed, the identification condition char-
acterizes the misuse, and the connector fixes the problems
on the fly. Listing 3 shows an example test case for the heal-
ing connector associated with the initialization problem of
class MethodInvoker.

@Test
p u b l i c vo id t e s t M e t h o d I n v o k e r C o n n e c t o r ()
throws I l l e g a l A c c e s s E x c e p t i o n ,

I n v o c a t i o n T a r g e t E x c e p t i o n {
/ / d e p l o y t h e h e a l i n g c o n n e c t o r
M et ho d I nv o ke rC on n ec to rD ep l oy e r . e n a b l e M o n i t o r i n g (

" call(java.lang.Object org.springframework.
util.MethodInvoker.invoke()) ") ;

t r y {
/ / c a l l i n v o k e w i t h o u t p r e p a r e d
minvoker . i n vo ke () ;

}
ca tch (I l l e g a l S t a t e E x c e p t i o n i s e) {

/ / c o n n e c t o r s h o u l d have h e a l e d t h e f a u l t
A s s e r t . f a i l ("Should not have raised

IllegalStateException") ;
}
f i n a l l y {

/ / u n d e p l o y t h e h e a l i n g c o n n e c t o r
M et ho d I nv o ke rC on n ec to rD ep l oy e r .

d i s a b l e M o n i t o r i n g () ;
}
}

Listing 3. JUnit test cases for the healing
connector that fixes the missing initialization
of the Spring class MethodInvoker.

Application developers can integrate healing connectors
transparently without knowing either about the potential
problems or the healing strategies. Application developers
download connectors made available by COTS developers.
Connectors are automatically injected into applications with
procedures that depend on the technology. For example,
using aspect-oriented techniques, the injection of connec-
tors consists in instrumenting the application at the speci-
fied joinpoints to insert calls to the precompiled aspects of
the healing connectors. The injection can be done automat-
ically offline by post-processing the application classes, or
online by redefining the classes bytecode at runtime.

Connectors are activated only when exceptions are
raised, thus developers can inject all available connectors
without impacting on the applications.

Finally connectors are validated by first executing the ap-
plication system tests, to check that the healing connectors
do not introduce new problems, even when inactive, then
by executing the test cases associated to the healing con-
nectors to validate that healing connectors do not introduce
unexpected side effects when activated.

4 Developing Healing Connectors

In this section, we discuss the feasibility of developing
healing connectors by investigating faults of COTS prod-
ucts documented on forums. In the next section, we in-
vestigate the effectiveness of the connectors to heal inte-
gration problems. In our study, we proceeded as follows:
we browsed fault repositories and we collected information
about common misuses and integration problems, we inves-
tigated the problems to identify classes of faults that can be
handle with common strategies, and we developed healing
connectors for the identified faults.

We browsed four bug repositories: the bug repository
for the Sun standard JDK and its libraries [34], the Spring
framework bug repository [3], the JBoss bug repository [2]
and bug repositories for various systems hosted by the
Apache software foundation [5]. We identified four classes
of common faults that correspond to four healing strategies,
and we implemented 31 healing connectors for the consid-
ered COTS frameworks [12].

The four classes of common misuses and integration
problems that we identified in the repositories, and for
which we developed healing connectors are invalid para-
meter, incorrect usage of interfaces, faulty method and en-
vironmental fault. These four healing strategies aim at heal-
ing the execution of the failing operation.

In the following, we survey the classes of common mis-
uses, we exemplify them with cases taken from our experi-
ence, and we suggest healing strategies that we successfully
used in the cases considered so far, as discussed in the next
section.

An invalid parameter problem occurs when an appli-
cation invokes a method of a COTS component with a
parameter value that does not meet the method require-
ments, and raises an exception. For example, constructing
a JavaNet URI object with underscore characters raises a
URISyntaxException, see for instance the ActiveMQ
bug ID AMQ-11882; while constructing an HTTPClient
GetMethod object with invalid characters results in an
IllegalArgumentException, see for instance bug
ID HTTPCLIENT-6783. The responsible for the failure is

2http://issues.apache.org/activemq/browse/AMQ-1188
3http://issues.apache.org/jira/browse/HTTPCLIENT-678

170

mainly the application that invokes the method with a wrong
value for a parameter. The fault can be often fixed easier by
correcting the application than by patching the COTS com-
ponent.

Invalid parameter problems can be healed with a change
parameter and retry strategy that automatically substitutes
illegal parameter values with legal ones before invoking
again the method that raised the exception. For example, we
built a connector that fixes the ActiveMQ fault by replacing
the string parameter hostname with its IP address and then
re-invoking the original operation, and we built a connector
for the HTTPClient GetMethod fault by escaping the in-
valid characters of the parameter and then re-invoking the
original operation.

An incorrect usage of interfaces occurs when an appli-
cation invokes a method of a COTS component and the
component cannot serve it thus raising an exception. Com-
mon problems of this type are missing initializations or in-
cidental usages of dead connections. Typical examples of
this class of problems are the missing invocation of method
prepare when using object MethodInvoker that we
use as a working example in this paper, and sending a mes-
sage using a disconnected javamail Transport that both
raise an IllegalStateException, see for instance
bug ID GERONIMO-16694. As in the former case, the re-
sponsible for the failure is mainly the application, and the
fault can be fixed easier by correcting the application than
by patching the COTS component.

Incorrect usage of interface problems can be healed with
a call operations and retry strategy that automatically in-
vokes suitable methods to fix the component before invok-
ing again the method that raised the exception. The invo-
cation of method prepare before the method invoke
implemented by class MethodInvoker that we use as a
working example in the former sections is an example im-
plementation of this strategy. A connector to heal the java-
mail Transport problem can invoke method connect be-
fore re-invoking the send operation.

A faulty method problem occurs when an application
invokes a faulty method of a COTS component. Al-
though in many cases faulty method problems can be fixed
by patching the COTS component, in some cases devel-
oping healing connectors turns to be convenient. For
example, invoking method classLoader.loadClass
with an array syntax parameter under Java 6 results in
a ClassNotFoundException, see for instance the
Geronimo bug ID GERONIMO-31425.

Faulty method problems can be healed with a replace
calls strategy that automatically substitute the failing in-
vocation with invocations of methods that produce results
equivalent to the method that raised the exception. In

4https://issues.apache.org/jira/browse/GERONIMO-1669
5https://issues.apache.org/jira/browse/GERONIMO-3142

the previous example, replacing the invocation of method
classLoader.loadClasswith the invocation of oper-
ation Class.forName successfully returns the expected
result. This healing connector turns out to be particularly
convenient since neither the developers producing Sun Java
6 are willing to patch their code, nor the developers inte-
grating this COTS product are willing to implement this
workaround in their code6.

An environmental fault occurs when the interaction be-
tween an application and a COTS component is badly
affected by environmental conditions, and raises excep-
tions. Typical examples are interactions between appli-
cations and components that require deployment descrip-
tors or files that are missing in the environment. En-
vironment problems can result in the generation of sev-
eral exceptions. In our experience, we frequently noticed
IOException and ClassNotFoundException. For
example, when reusing the Xalan XSLT processor,
failing to deploy the required jar files leads to a
TransformerConfigurationError, see for in-
stance the Magnolia CMS bug ID MAGNOLIA-19587. En-
vironment faults often depend on system administrators,
who deploy the systems, but can sometimes be fixed with
healing connectors if suitable extra-information about the
execution environment is available.

Environment faults can be healed with a change envi-
ronment and retry strategy that modifies the environment to
enable the operations that failed before invoking again the
method that raised the exception. For example, we imple-
mented a healing connector that solves the previous prob-
lem by dynamically loading the jar files and deleting the
corrupted directories before re-invoking the original opera-
tion.

5 Empirical Validation

In this section, we discuss the suitability of our approach
to heal COTS based applications. We report data from our
experience with COTS based applications downloaded from
the Internet. The suitability of our approach depends on the
possibility of instantiating the generic strategies presented
in the previous sections to generate effective healing con-
nectors, and on the run-time overhead of the connectors.
We studied the effectiveness of the generic strategies by ap-
plying them to solve problems reported on the Internet, and
we measured the overhead of the generated connectors.

Effectiveness of Healing Connectors Here we report
the experience on six popular COTS based applications
with known incompatibilities with COTS components.

6http://bugs.sun.com/bugdatabase/view bug.do?bug id=4976356
7http://jira.magnolia.info/browse/MAGNOLIA-1958

171

Application Failure Healing Connector

Name Category Size
(LOC)

COTS
component Description

Bug informa-
tion (ID, Pri-
ority, Status)

Strategy Description # Acti-
vations

Apache Geron-
imo (v.2.0-M3)

J2EE Ap-
plication
server

179,875

Sun JRE
1.6 (Class-
Loader
compo-
nent)

At startup, a faulty
implementation of
classloader.loadClass
raises an exception when
used to load an array
with name specified with
array syntax

GERONIMO-
3142, Major,
Resolved

S3

Substitute the in-
vocation of class-
Loader.loadClass()
with
Class.forName()

2

JBoss Applica-
tion platform
(v.5.0.0.Beta2)

J2EE Ap-
plication
server

685,767

Sun JRE
1.6 (Class-
Loader
compo-
nent)

At startup, a faulty
implementation of
classloader.loadClass
raises an exception when
used to load an array
with name specified with
array syntax

JBAS-4491,
Major, Closed S3

Substitute the in-
vocation of class-
Loader.loadClass()
with
Class.forName()

7

Developer
application
reproduced
from bug report
GERONIMO-
1669

J2EE Web
applica-
tion

168

Apache
Geronimo
(JavaMail
compo-
nent)

Disconnected smtp
transport raises an
exception when sending
a mail Message

GERONIMO-
1669, Major,
Closed

S2

Call the trans-
port connect()
operation before
re-invoking the
send the message

1

Apache
ActiveMQ
(v.4.1.0)

Messaging
broker 120,433

Sun JRE
(JavaNet
compo-
nent)

Starting ActiveMQ
raises exceptions when
hostname contains
underscore characters

AMQ-1188,
Minor,
Resolved

S1

Replace the host-
name string para-
meter by its IP
address, and re-
invoke the origi-
nal operation

3

Apache Ser-
viceMix
(v.3.2.1)

Enterprise
service
bus

110,713

Sun JRE
(JavaNet
compo-
nent)

Starting ServiceMix
raises exceptions when
the hostname contains
underscore characters

SM-492, Ma-
jor, Closed S1

Replace the host-
name string para-
meter by its IP
address, and re-
invoke the origi-
nal operation

1

Magnolia CMS
(v.3.5.1)

Enterprise
content
man-
agement
system

58,499 Xalan
XSLT

Magnolia cannot run and
raises exceptions when
initializing its content
repositories

MAGNOLIA-
1958,
Blocker,
Closed

S4

Dynamically
load the jar files,
delete the cor-
rupted repository
directories, and
re-invoke the
original operation

1

Table 1. Healing of faults in different applications.

Execution Time (ms)

Healing connector COTS component Application # Measure-
ments without connectors w/ inactive healing w/ active healing

Change parameter
and retry (S1) Sun JRE JavaNet

ActiveMQ 300 0.06606 0.07066 0.16724

ServiceMix 100 0.09184 0.10647 0.29835

Call operation and
retry (S2)

Geronimo/ Java-
Mail J2EE Web app. 100 370.24 373.68 394.53

Replace call (S3) Sun JRE 1.6
Classloader

Geronimo 200 0.02591 0.02997 6.51212

JBoss AS 700 0.00824 0.00917 0.14336

Change environment
and retry (S4) Xalan Magnolia 100 48.67019 53.25770 20.78151

Table 2. Time overhead of the different healing strategies.

172

We studied the potential incompatibilities and the docu-
mented workarounds, we checked the compatibility with
the generic strategies presented in the previous sections, and
we developed healing connectors by specializing strategies
for known fixes. For the experiments reported in this sec-
tion, we used four of our connectors to heal the six reported
problems, since two of them can heal integration problems
of two different applications with the same COTS frame-
works. We verified the effectiveness of the connectors by
testing the applications with and without connectors to ver-
ify that the failures observed when executing test cases on
the original applications are successfully healed when exe-
cuting the same test cases with the healed connectors. Ta-
ble 1 summarizes the empirical results.

The table lists the Applications, the considered Failures
and the designed Healing Connectors. For each application,
we report the Name that identifies the application on the
Web, the Category that indicates the technology addressed
in the experiments, and the Size. For each failure, we in-
dicate the third-party COTS component that causes prob-
lems when integrated in the application, we provide a short
informal Description of the integration problem and some
Bug information that points to the bug report, gives the bug
priority (Blocker, Critical, Major, Minor, Trivial) and in-
dicates the bug status at the time of writing (New, Open,
In Progress, Resolved, Closed, Reopened). All faults are
solved by activating a suitable connector. For each heal-
ing connector we indicate the Strategy implemented by the
connector to heal the fault referring to the ones discussed in
the previous section (S1 stands for change parameter and
retry, S2 stands for call an operation and retry, S3 stands
for replace call and S4 stands for change environment and
retry), we provide a short Description of the specific healing
strategy implemented by the connector, and we indicate the
number of faults that activated the connector, which corre-
sponds to the number of times faults have been successfully
healed (# Activations).

The healing connectors that we developed so far success-
fully healed all integration faults that we found on the Web
without introducing side effects, and the strategies that we
designed so far demonstrated to be effective to heal all the
integration faults that we found on the Web.

The preliminary experience reported in this section con-
firms our hypotheses. The connectors that we developed
so far have been obtained by instantiating general strate-
gies starting from fault reports. COTS developers can de-
velop the connectors without knowing the failing applica-
tions, and application developers can inject the connectors
into their applications without knowing the connector de-
tails and with almost no overhead on the application perfor-
mance, as discussed in details below.

Overhead As discussed in the previous section, healing
connectors are triggered by exceptions, thus we do not ex-
pect a significant impact on performances when applica-
tions execute correctly. We do expect a small overhead due
to the new checks that are introduced in the application by
AspectWerkz and that verify the eventual need of activating
the aspects that implement the connectors. Healing connec-
tors impact on performance when applications raise excep-
tions. Usually connectors try to heal the problem locally,
and thus we do expect different performance when connec-
tors are activated. The changes in execution time depends
on the difference between the execution time of the heal-
ing connectors and the execution time of either the original
functionality, if applications run correctly, or the exception
handlers, if applications fail. In some cases, healing con-
nectors may even improve performances.

We investigated the overhead that healing connectors in-
troduce into the applications by executing the set of case
studies presented in Table 1 with and without connectors,
and by comparing the execution time. The applications
presented in Table 1 may execute for several seconds for
processing user requests. For instance, we experienced
with integration failures that occur during the (long) start-up
phase of the Geronimo and the JBoss AS servers. The exe-
cution time of the failing operations are usually a small frac-
tion of the processing time of a user request, and we did not
reveal any significant change in performances when mea-
suring the processing time of user requests with and with-
out healing connectors. Thus confirming our hypothesis of
the locality of performance changes. To study the execu-
tion overhead of healing connectors over single operations,
we measured the execution time of single method invoca-
tions with and without connectors. Table 2 summarizes the
results by listing the execution time measured without con-
nector, with inactive and active connectors for the different
connectors.

Table 2 names the connectors according to the strategy
they implement (Healing Connector), and, for each connec-
tor, indicates the component responsible for the integration
fault (COTS component), the applications involved in the
failure (Application), the number of measurements (# Mea-
surements) and execution time without connectors, and with
inactive and active connectors (Execution time (ms)).

We obtained time figures by averaging values measured
over 100 executions for each connector, and thus 100 ∗ n
measurements for executions that activate connectors n
times. To obtain a precision below the millisecond that is
required to measure the extremely limited overhead in the
case of inactive healing connectors, we use the Java Na-
tive Interface [33] that allows to programmatically query the
number and frequency of CPU clock cycles. The empirical
investigation about overhead has been ran on an Intel Core2
2.4GHz box with the JRE 1.6.0 04 (except when the use of

173

JRE 1.5 is specifically required by the investigated configu-
ration). On the technical viewpoint, time measurements are
collected by aspects injected around the monitored methods
with offline weaving.

Table 2 shows a small overhead of inactive connectors
over the execution of the single faulty method (less than
1% in the best case, no more than 16% in the worst case).
The overhead of active connectors is more relevant, but still
limited to few milliseconds (less than 26 milliseconds in
the worst case). In one case the performance of active con-
nectors is even better than without connectors (28 millisec-
onds faster). The big variance of performance change in
presence of active connectors confirms our hypothesis that
changes depend on the operations executed to heal the prob-
lem, and may even improve with respect to the performance
of the original system. For instance, the implemented heal-
ing connector for the integration problem between Xalan
and Magnolia uses a class loading strategy that runs faster
than the one natively implemented in the system. The val-
ues of the order of milliseconds confirm the hypothesis that
performance changes can hardly be perceived at user level
and are limited to local changes.

6 Related Work

The problems of faults or incompatibilities that derive
from integration between applications and COTS products
have been investigated from different viewpoints: patching
infrastructures, software connectors, runtime failure detec-
tion, fault tolerance and self-healing. In this section we
summarize the main approaches for each category, and we
discuss relations, commonalities and complementarities be-
tween these techniques and the one presented in this paper.

Patching Infrastructures Releasing patches to be in-
stalled to fix faults in field is common engineering prac-
tice. Updating and upgrading software systems is often fa-
cilitated by infrastructures for managing upgrades, like the
Windows update system [27].

State-of-art patching infrastructures handle effectively
software updates at user sites, as it happens when soft-
ware providers release patches to all users through their in-
frastructure. State-of-art patching infrastructures can cope
with end-user applications, but are not designed for fix-
ing integration faults and misuses between applications and
COTS frameworks. Patches that deal with integration faults
between applications and COTS frameworks should be re-
leased by COTS developers, and applied either at the inte-
gration or at the application level.

Software Connectors Software connectors have been re-
cently suggested as first-class architectural elements to me-
diate the interactions and bridge incompatibilities between

components. State-of-art connectors address a large vari-
ety of component interactions and several works have fo-
cused on the definition of taxonomies and classification
frameworks for software connectors. For instance, Mehta et
al. [26] propose a general taxonomy for software connectors
and Becker et al. [8] define a selection of adaptation patterns
to handle functional and non-functional mismatches. Our
healing connectors share the overall goal of handling com-
ponent incompatibilities. For example, they can be seen as
implementing the adaptor type and the interceptor pattern as
described respectively in [26] and [8]. However, our healing
connectors specifically address the needs of COTS and ap-
plication developers, implement the on-the-fly recovery of
component integration problems and are activated locally
only when known problems are identified.

Runtime Failure Detection Runtime failure detection is
the first step of self-healing approaches. The most common
approaches to detect failure at run time are based on excep-
tion handling and assertions.

Exception handlers manage unexpected events directly
in the field with a good degree of flexibility, by means of
special procedures embedded into programs at design time.
Unfortunately, programmers take advantage of the opportu-
nities offered by exception handling only partially: a large
amount of exception handlers coded into programs execute
simple and generic procedures that often only propagate the
exception or terminate the program, as reported in a study
by Cabral and Marques [9]. Poor exception handling prac-
tice may even produce additional program failures thus de-
creasing software reliability. In a recent paper, Li et al.
show that between 12% and 16% of the failures reported
in J2EE application servers are caused by poor exception
handling [24]. The limitations of exception handling are
not intrinsic in the mechanism, but depend on design and
programming practice. In general exception handling is a
powerful mechanism for supporting failure detection at run
time. In this paper, we exploit exception handlers to cap-
ture unexpected events, and trigger the problem identifica-
tion and healing steps.

Assertions embedded in the code indicate conditions that
must hold during program execution [31]. Runtime viola-
tions of assertions indicate anomalous execution condition
that may lead to program failures. Although not widely ex-
perimented within self-healing solutions yet, assertions can
well complement exceptions, and can be used to include a
rich set of verification points into programs. Some asser-
tion frameworks raise exceptions when conditions are vi-
olated [22], thus in principle they can be easily integrated
within our solution.

Fault Tolerance Research on fault tolerance has widely
investigated techniques to handle and reduce the impact of

174

failures, focusing in particular on failures with severe ef-
fects [4, 7]. Approaches to fault-tolerant systems share the
overall goal with self-healing approaches, since both classes
of approaches aim to handle failures in the field at runtime,
to minimize their impact. Fault tolerance approaches aim
primarily to avoid catastrophic consequences, and do not
focus on healing per se, while self-healing approaches aim
to heal faults or prevent fault occurrence without focusing
on their consequences. As a result the two fields are inves-
tigating different although overlapping solutions that often
complement each other, but sometime satisfy different re-
quirements.

Self-Healing Self-healing approaches aim to augment
software systems with capabilities to automatically heal
software at runtime. Some self-healing techniques focus
on non-functional problems, for instance Vaidyanathan and
Trivedi propose a technique to address aging problems [35],
Candea et al. address transient problems [10], Krena et al.
focus on concurrency problems [21]. We focus on func-
tional faults that cannot be handled with approaches for
non-functional problems.

Self-healing techniques that address functional faults
can be grouped in four classes: functional redundancy,
checkpoint-recovery, rollback, and ad-hoc healing.

Healing based on functional redundancy consists of
identifying and replacing failing sequence of actions with
equivalent, but correct, sequence of actions. For example,
Carzaniga et al. propose a technique to automatically de-
rive workarounds from specifications [11]. Lack of com-
plete specifications, as often happen with COTS compo-
nents, limits the applicability of this technique.

Healing techniques based on the use of checkpoints and
recovery mechanisms consist of embedding into software
systems an infrastructure that records the status of the sys-
tem at specific program points, and recovers the application
from those states if failures occur [15, 29].

Healing solutions based on rollback mechanisms are
similar to solutions based on checkpoints. These techniques
allow to partially rollback failing executions, and automati-
cally add extra behaviors to increase the probability to suc-
ceed in future executions, for instance Quin et al. propose
re-executing the application in a safe environment [30],
while Lorenzoli et al. define a technique to identify the
likely faulty operations and thus identify the rollback point
dynamically [25].

Solutions based on checkpoints and rollbacks are quite
resource consuming and do not heal faults, but try to over-
come them. Our solution based on healing connectors is
lightweight, thus widely applicable, and provides capabili-
ties for healing the faulty executions through different kinds
of strategies.

Other researchers propose ad-hoc healing mechanisms to

be embedded into software systems, for instance, Demsky
and Rinard propose techniques to handle consistency prob-
lems with data structures in an ad-hoc fashion [14]. Ad-hoc
mechanisms can be used to automatically heal specific unit
faults within COTS products, but do not replace our healing
connector mechanism defined to handle misuses and inte-
gration problems.

7 Conclusions

Modern software systems extensively reuse COTS com-
ponents and frameworks. COTS products reduce develop-
ment costs and speed up development, but can introduce
integration faults that may be harder to address than clas-
sic integration faults, since the information required to ad-
dress these faults is often distributed between COTS devel-
opers and application developers. COTS developers own
the knowledge necessary to fix problems with COTS com-
ponents, since they know their products, they gain knowl-
edge about common misuses from official and unofficial fo-
rums, and they know how to fix misuses, but they do not
own the application code to be fixed. On the other hand,
application developers own the code to be fixed, but they
own only a fraction of the knowledge available to COTS
developers.

In this paper, we proposed a practical solution that can
both increase reliability of software working in the field and
ease debugging. In our approach, COTS developers release
solutions to common misuses in the form of healing con-
nectors that can be automatically integrated into software
systems. Application developers simply download and de-
ploy these connectors.

The empirical experience reported in this paper shows
that healing connectors can effectively heal faults in the
field, with very low cost and execution overhead. COTS de-
velopers can produce general healing connectors applicable
in many different contexts, and application developers can
integrate connectors at practically no development cost. Ex-
ecution overhead is almost non perceivable by application
users when software works correctly. The performance of
the applications when healing connectors fix faults may be
perceivable but not dramatic and can increase system avail-
ability by down time due to unrecovered faults.

We are currently working on the definition of a wider set
of healing strategies to address other kinds of COTS inte-
gration problems, implementing a wider number of healing
connectors for different COTS products and also studying
the degree of reuse of the healing connectors across dif-
ferent COTS products. We are also defining a reliable in-
frastructure that facilitates discovery, configuration and de-
ployment of healing connectors to enable extended empiri-
cal investigation to confirm the data presented in this paper.

175

Acknowledgment
This work is partially supported by the European Com-

munity under the IST program of the 6th FP for RTD -
project SHADOWS contract IST-035157.

References

[1] Aspectwerkz. http://aspectwerkz.codehaus.org/, visited in
2008.

[2] JBoss issue tracker. http://jira.jboss.org/, visited in 2008.
[3] Spring issue tracker. http://jira.springframework.org/, vis-

ited in 2008.
[4] R. Abbott. Resourceful systems for fault tolerance, reliabil-

ity, and safety. ACM Computing Surveys, 22(1), 1990.
[5] Apache Software Foundation. Apache issue tracker.

https://issues.apache.org/, visited in 2008.
[6] Apache Software Foundation. BCEL.

http://jakarta.apache.org/bcel/, visited in 2008.
[7] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Ba-

sic concepts and taxonomy of dependable and secure com-
puting. IEEE Transactions on Dependable and Secure Com-
puting, 1(1):11–33, 2004.

[8] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Ro-
manovsky, and M. Tivoli. Towards an engineering approach
to component adaptation. In Architecting Systems with
Trustworthy Components, volume 3938 of LNCS. Springer,
2006.

[9] B. Cabral and P. Marques. Exception handling: a field study
in Java and .NET. In proceedings of the 21st European Con-
ference on Object-Oriented Programming, volume 4609 of
Lecture Notes in Computer Science. Springer, 2007.

[10] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot a technique for cheap recovery. In
proceedings of the 6th Symposium on Operating Systems
Design and Implementation, 2004.

[11] A. Carzaniga, A. Gorla, and M. Pezzè. Self-healing by
means of automatic workarounds. In proceedings of the
2008 International Workshop on Software Engineering for
Adaptive and Self-Managing Systems. ACM, 2008.

[12] H. Chang, L. Mariani, and M. Pezzè. Self-healing strategies
for component integration faults. In proceedings of the 1st
IEEE International Workshop on Automated Engineering of
Autonomous and Run-Time Evolving Systems, 2008.

[13] C. A. Constantinides, A. Bader, T. H. Elrad, P. Netinant, and
M. E. Fayad. Designing an aspect-oriented framework in an
object-oriented environment. ACM Computing Surveys, 1,
2000.

[14] B. Demsky and M. Rinard. Automatic detection and repair
of errors in data structures. SIGPLAN Notices, 38, 2003.

[15] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message-passing
systems. ACM Computing Surveys, 34(3):375–408, 2002.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1994.

[17] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mis-
match or why its hard to build systems out of existing parts.
In proceedings of the 17th International Conference on Soft-
ware Engineering. ACM, 1995.

[18] D. Hovemeyer and W. Pugh. Finding bugs is easy. In Com-
panion of the 19th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 2004.

[19] IBM. Eclipse test & performance tools platform.
http://www.eclipse.org/tptp/, visited in 2008.

[20] R. Johnson. J2EE development frameworks. IEEE Com-
puter, 38(1):107–110, 2005.

[21] B. Krena, Z. Letko, R. Tzoref, S. Ur, and T. Vojnar. Heal-
ing data races on-the-fly. In proceedings of the 2007 ACM
Workshop on Parallel and Distributed Systems: Testing and
Debugging, 2007.

[22] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary de-
sign of JML: a behavioral interface specification language
for java. SIGSOFT Software Engineering Notes, 31(3):1–
38, 2006.

[23] T. Lev-Ami, T. Reps, S. Sagiv, and R. Wilhelm. Putting sta-
tic analysis to work for verification: A case study. proceed-
ings of the International Symposium on Software Testing and
Analysis, 2000.

[24] J. Li, G. Huang, J. Zou, and H. Mei. Failure analysis of open
source J2EE application servers. In proceedings of the 7th
International Conference on Quality Software. IEEE Com-
puter Society, 2007.

[25] D. Lorenzoli, L. Mariani, and M. Pezzè. Towards self-
protecting enterprise applications. In proceedings of the 18th
IEEE International Symposium on Software Reliability En-
gineering, 2007.

[26] N. Mehta, N. Medvidovic, and S. Phadke. Towards a tax-
onomy of software connectors. In proceedings of the 22nd
International Conference on Software Engineering, 2000.

[27] Microsoft. Windows update.
http://www.windowsupdate.com/, visited in 2008.

[28] M. Pezzè and M. Young. Software Testing and Analysis:
Process, Principles and Techniques. Wiley, 2007.

[29] D. K. Pradhan and N. H. Vaidya. Roll-forward checkpoint-
ing scheme: A novel fault-tolerant architecture. IEEE Trans-
actions on Computers, 43:1163–1174, 1994.

[30] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating
bugs as allergies—a safe method to survive software fail-
ures. In proceedings of the 20th ACM Symposium on Oper-
ating Systems Principles, 2005.

[31] D. S. Rosenblum. Towards a method of programming with
assertions. In proceedings of the 14th International Confer-
ence on Software Engineering. ACM, 1992.

[32] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison
of bug finding tools for java. In proceedings of the Inter-
national Symposium on Software Reliability Engineering,
2004.

[33] Sun. Java native interface specification 1.1. Technical report,
Sun Microsystems, 2003.

[34] Sun Developer Network. Bug database community.
http://bugs.sun.com/, visited in 2008.

[35] K. Vaidyanathan and K. Trivedi. A comprehensive model for
software rejuvenation. IEEE Transactions on Dependable
and Secure Computing, 2(2), 2005.

[36] D. Yakimovich, J. M. Bieman, and V. R. Basili. Software
architecture classification for estimating the cost of COTS
integration. In proceedings of the 21st IEEE International
Conference on Software Engineering, 1999.

176

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Leonardo Mariani
	Also by Mauro Pezze
