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Abstract

Program analysis and automated test generation have
primarily been used to find correctness bugs. We present
complexity testing, a novel automated test generation tech-
nique to find performance bugs. Our complexity testing al-
gorithm, which we call WISE (Worst-case Inputs from Sym-
bolic Execution), operates on a program accepting inputs of
arbitrary size. For each input size, WISE attempts to con-
struct an input which exhibits the worst-case computational
complexity of the program. WISE uses exhaustive test gen-
eration for small input sizes and generalizes the result of
executing the program on those inputs into an “input gen-
erator.” The generator is subsequently used to efficiently
generate worst-case inputs for larger input sizes. We have
performed experiments to demonstrate the utility of our ap-
proach on a set of standard data structures and algorithms.
Our results show that WISE can effectively generate worst-
case inputs for several of these benchmarks.

1. Introduction

Automated test generation has been an area of active re-
search for more than three decades [20, 6, 23]. Many tech-
niques have been developed to automatically generate test
inputs, both by treating programs as black boxes [3, 24, 10]
and by examining the structure of programs [20, 7, 21, 15,
19, 28, 4, 29, 2, 9, 11, 25, 5]. The goal of most of these
automated testing techniques has been to find bugs and to
improve confidence in the correctness of software. Little
work has focused on generating test inputs that reveal per-
formance bottlenecks.

We present a novel automated test generation technique
to find performance problems in a program unit. Specifi-
cally, given a program that accepts inputs of arbitrary size,
our technique attempts to construct a test input of each pos-
sible size which exhibits the program’s worst-case compu-
tational complexity. For example, given a quicksort algo-
rithm which runs on integer arrays, our technique will con-
struct arrays of length n = 1, 2, . . . , for which the quicksort
computation requires a number of steps proportional to n2,

highlighting the worst-case O(n2) complexity of quicksort.
Since our technique tests the computational complexity of a
program unit, we call it a technique for computational com-
plexity testing, or simply complexity testing.

Complexity testing has several uses:

• We can check if an implementation of an algorithm
matches the theoretical worst-case computational com-
plexity. If complexity testing shows that the imple-
mentation has complexity worse than the theoretical
bound, then the implementation has a performance bug
and does not conform to its algorithmic specification.

• If we are designing a new algorithm, we can perform
a quick complexity testing of the algorithm and dis-
cover its worst-case computational complexity without
going into a manual computational complexity analy-
sis. Thus, complexity testing could help programmers
to discover inherent performance bottlenecks in their
algorithms without requiring any sophisticated knowl-
edge of the underlying theory.

• Since our technique yields a concrete test input show-
ing a worst-case execution of a program, it can aid in
debugging performance problems and understanding
the cause of worst-case executions.

Our complexity testing technique, Worst-case Inputs
from Symbolic Execution (WISE), is based on symbolic test
generation. A naı̈ve algorithm for using symbolic test gen-
eration to discover worst-case input of size n > 0 would
be to symbolically enumerate all feasible execution paths
of the program for inputs of size n and then create an input
for the longest feasible execution path. Although this naı̈ve
algorithm works for inputs of small sizes, it fails to scale
for inputs of larger sizes because the number of feasible ex-
ecution paths typically increases at least exponentially with
an increase in the size of inputs. For example, our symbolic
test generation tool could explore in a few minutes all fea-
sible execution paths of an implementation of the Bellman-
Ford algorithm for inputs of size 4, but for inputs of size 5
the tool failed to terminate even after 24 hours.

Our complexity testing technique WISE is an attempt to
significantly reduce this scalability problem. The technique
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is based on the insight that if we run our naı̈ve algorithm
on small input sizes, we should be able to learn some con-
cept or rule about the program that will help us to prune the
search for worst-case inputs of larger sizes. For example, in
case of an unbalanced binary search tree, we can learn the
concept that if we iteratively add elements larger than pre-
viously added elements, then we get a list instead of a tree.
The complexity of search in such a tree would be linear in-
stead of O(log n). We call these concepts generators. Once
we have computed a generator, we can use it to efficiently
generate worst-case inputs for larger input sizes.

In this paper, we propose a simple class of generators
called branch policy generators. These generators restrict
the conditional branches that may be included in an execu-
tion path, e.g. by allowing only the “true” branch to be
taken for a particular conditional statement. We give a pro-
cedure for computing a branch policy given the results of
exhaustive test generation on small input sizes. Further, we
show that, under certain conditions, this procedure is sound
for complexity analysis—i.e. that the computed generator
does not prune away all worst-case executions for any input
size. More precisely, we prove that, for each program P ,
for sufficiently large N the exhaustive search for all inputs
of size up to N will yield a sound generator.

We evaluate our technique on several Java benchmarks,
including a Quicksort routine, a red-black tree search, and
the Bellman-Ford graph algorithm. In our experiments, the
sufficiently-large input size N is less than 10 in all cases,
and the produced branch policy generators are effective in
pruning the space of program executions for large input
sizes. Our experiments demonstrate that WISE can effec-
tively find large worst-case inputs for real algorithms and
data structure operations.

2. Overview

In this section, we give an informal overview of the
WISE algorithm using the example in Figure 1. The ex-
ample is a Java implementation of insertion into a sorted
linked list. The code includes a driver which creates a new,
empty list and inserts N integers into it.

The WISE algorithm works in the following three stages:

1. First, WISE uses symbolic execution to generate test
inputs for all feasible execution paths of the program
when run on N = 1, 2, or 3.

2. Second, from these execution paths, WISE extracts a
generatorG (which we will define later), an entity that
characterizes a small subset of execution paths includ-
ing a worst-case execution path of the program.

3. Finally, WISE uses guided symbolic test generation to
produce test inputs of larger sizes only for the paths

1 c l a s s List {
2 i n t x; List next;
3 s t a t i c f i n a l i n t SENTINEL = Int.MAX;
4 p r i v a t e List( i n t x, List next) {
5 t h i s.x = x;
6 t h i s.next = next;
7 }
8 p u b l i c List() {
9 t h i s(SENTINEL, n u l l);

10 }
11 p u b l i c vo id Insert( i n t data) {
12 i f (data > t h i s.x) {
13 next.Insert(data);
14 } e l s e {
15 next = new List(x, next);
16 x = data;
17 }
18 }
19 p u b l i c s t a t i c vo id main( i n t N) {
20 List list = new List();
21 f o r ( i n t i = 0; i < N; i++)
22 list.Insert(Input());
23 }
24 }

Figure 1. Sorted linked list.

conforming to the generator G. For each larger input
size, WISE outputs a worst-case generated test input.

We next describe these stages on the example in Figure 1.
In the first stage of the algorithm, we use symbolic exe-

cution and constraint solving to enumerate all feasible exe-
cution paths of the program. These feasible execution paths
for N = 3 are shown in the form of a computation tree in
Figure 2, where x1, x2, and x3 are the three symbolic inputs
to the program. Each node in the tree corresponds to a state-
ment in the Insert function in Figure 1, where the nodes
for conditional statements are labeled with predicates on the
inputs which determine whether the “true” or “false” branch
of the conditional is taken. For simplicity, we show only the
conditional statements at line 12 in Figure 2. The label on
the edge originating from a node represents the value of the
conditional statement during the execution of the program.
The dotted edges represent infeasible branches. There are
exactly 3! = 6 feasible execution paths in the tree, each
corresponding to a unique ordering of x1, x2 and x3. The
longest feasible execution path (i.e. the path containing the
largest number of conditional statements) is shown in bold.

In the second stage of the algorithm, after finding a
longest execution paths for each N = 1, 2, 3, we observe
that these longest paths obey the following simple rule:

• The “true” branch of the conditional at line 12 must al-
ways be taken if the branch is feasible. Equivalently,
the “false” branch of this conditional may be taken
only when the “true” branch is infeasible.
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Figure 2. List computation tree for N = 3.

A generator is a concise representation of these simple rules
observed during the execution of the program on small in-
puts (e.g. N = 1, 2, 3). In Section 5, we formally define
a class of generators, called branch policy generators, that
succinctly encodes such rules.

In the third stage of our algorithm, we use the above set
of rules (i.e. the generator) to restrict symbolic execution
to a small subset of feasible execution paths of the program
on inputs of larger sizes. Specifically, as our algorithm uses
symbolic execution to explore the computation tree of the
example program for larger input sizes, it prunes the search
by never taking the “false” branch of the conditional at line
12 when it is possible to take the “true” branch instead.

Thus, the symbolic test generation produces only test in-
puts in which each new element is inserted at the end of
the sorted linked list. Only a single feasible execution path
will be considered for each input size N , rather than all N !
feasible paths. Moreover, it is easy to see that this is the ex-
ecution path exhibiting the worst-case complexity of the ex-
ample program. An input corresponding to the worst-case
execution path is then computed using constraint solving.
For example, if N = 4, then x1 = 1, x2 = 2, x3 = 3,
x4 = 4, exhibits the worst-case complexity.

3. Background

In this section, we briefly describe the programming
model and test generation techniques WISE uses.

3.1. Programming Model

We describe our technique on a simple imperative pro-
gramming language. A program P in this language consists
of a sequence of labeled statements. The statements are one

of: (1) an input statement m := INPUT(), (2) an assign-
ment m := e to lvalue m of the value of e, an expression
free of side effects, (3) a conditional if p then goto l,
where l is the label of another statement in the same func-
tion and p is a predicate free of side effects, or (4) an Exit
statement, terminating the program.

For statement s, let succ(s) denote the set of statements
which can immediately follow s. Note all statements have
one successor except for conditionals, which have two suc-
cessor statements, and the Exit statement, which has none.

We say that a program is run on an input x1, . . . , xn of
size n, if the program executes the input statement exactly
n times and receives the inputs x1, . . . , xn in order.

Running a program produces an execution path—a se-
quence 〈s1, . . . , sk〉 of labeled statements where s1 is the
unique initial statement of P and where si+1 ∈ succ(si)
for each si. We consider only programs which always ter-
minate when run on an input of any fixed size.

3.2. Symbolic Execution

Let s1, . . . , sk be a path through program P . Symbolic
execution [6, 20] is a procedure for computing a symbolic
path constraint Φ(P, n, 〈s1, . . . , sk〉), a formula over pro-
gram inputs x1, . . . , xn that exactly characterizes the inputs
which cause program P to execute along path s1, . . . , sk.
That is, the first k statements program P will execute on
concrete inputs x1, . . . , xn are exactly s1, . . . , sk if and
only if x1, . . . , xn satisfy the formula Φ(P, n, 〈s1, . . . , sk〉).

We omit the details of any particular procedure for sym-
bolic execution or for solving the resulting symbolic path
constraints. WISE can be applied to any imperative, Java-
like language for which we have a complete symbolic exe-
cution and decision procedure.

3.3. Symbolic Test Generation

We now present in Algorithm 1 a standard symbolic or
concolic test generation procedure (e.g. [11, 25, 5]) lever-
aging the symbolic execution procedure Φ from the previ-
ous section. Function SymbolicTestGen(P, n, 〈s1, . . . , sk〉)
takes three arguments: a program P , an input size n, and
a partial execution path—that is, a sequence 〈s1, . . . , sk〉
of statements of P . When called on some P , n, and
〈s1, . . . , sk〉, the procedure returns the set of all feasible
execution paths on size-n inputs that have s1, . . . , sk as a
prefix. Further, for each such path, an input x1, . . . , xn is
returned that realizes the path.

Thus, SymbolicTestGen(P, n, 〈s1〉), where s1 is the first
statement of program P , will return every possible path
through P (on a size-n input), as well as test cases
x1, . . . , xn exercising each path.

Algorithm SymbolicTestGen(P, n, 〈s1, . . . , sk〉) works
by finding all feasible single-statement extensions
〈s1, . . . , sk, s〉 of the partial execution 〈s1, . . . , sk〉,
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Algorithm 1 SymbolicTestGen(P, n, 〈s1, . . . , sk〉)
if sk == Exit then

x1, . . . , xn ← an input satisfying Φ(P, n, 〈s1, . . . , sk〉)
return singleton set {(x1, . . . , xn; 〈s1, . . . , sk〉)}

else
Γ← empty set
for s ∈ succ(sk) do

if Φ(P, n, 〈s1, . . . , sk, s〉) is satisfiable then
Γ ← Γ ∪ SymbolicTestGen(P, n, 〈s1, . . . , sk, s〉)

end if
end for
return Γ

end if

and then recursing on each such extended execution.
Specifically, for each s ∈ succ(sk) it symbolically
executes 〈s1, . . . , sk, s〉, producing path constraint
Φ(P, n, 〈s1, . . . , sk, s〉). It checks the feasibility of the
extension by checking if the path constraint is satisfiable
(by, e.g., using an off-the-shelf SMT solver). The recursion
stops whenever a path reaches the end of program P—i.e.
an Exit statement.

The feasible execution paths of a program P can be seen
as forming a binary tree, called the computation tree of P .
Each node in the tree is labeled with a statement from P ,
with s1 at the root of the tree. Letting s1, . . . , sk be the path
from the root of the tree to some vertex labeled with sk,
the children of sk correspond to the statements s for which
s1, . . . , sk, s are prefixes of feasible execution paths—i.e.
for which Φn(s1, . . . , sk, s) is satisfiable. Thus, each root-
to-leaf path in the tree corresponds to a feasible execution.
Algorithm 1 can be viewed as a depth-first search on the
computation tree of a program P .

4. Algorithm

For a given n > 0 and a program P , we say that a feasi-
ble execution path is a worst-case execution path if it con-
tains the maximum number of conditional statements con-
tained by any feasible execution of P on inputs of size n.
An input that results in a worst-case execution path is called
a worst-case input. In this section, we describe in detail the
WISE algorithm, a complexity testing algorithm for finding
a worst-case input for input sizes up to a given M .

4.1. The WISE Algorithm

We described a naı̈ve complexity testing algorithm in
Section 1. The algorithm symbolically enumerates all fea-
sible execution paths of the program for each input size
from 1 to M , selects a single worst-case execution path for
each input size, and uses constraint solving to generate a
worst-case input for that path. Although this naı̈ve algo-
rithm is correct, it fails to scale to larger input sizes because

Algorithm 2 WISE(program P, N,M)
// Exhaustive test generation for small inputs.
for i = 1 to N do

testsi ← SymbolicTestGen(P, i, 〈s1〉)
end for
// Search for a worst-case generator.
G← FindGoodGenerator(tests1, . . . , testsN )
// Guided test generation for larger inputs.
for i = 1 to M do

testsi ← GuidedTestGen(P, i, G, 〈s1〉)
output worst-case input in testsi

end for

the number of feasible execution paths often increases ex-
ponentially as the input size is increased. We propose the
WISE algorithm to attempt to significantly reduce this scal-
ability problem. Formally, the WISE algorithm, given as Al-
gorithm 2, takes as parameters two natural numbers N and
M , and a program P , which can be run on input x1, . . . , xn
of size n for any n > 0. The algorithm works in the follow-
ing three stages:

1. First, WISE uses symbolic execution to generate test
inputs for all feasible execution paths of the program
when run on N = 1, 2, or 3.

2. Second, from these execution paths, WISE extracts a
generatorG (which we will define later), an entity that
characterizes a small subset of execution paths includ-
ing a worst-case execution path of the program.

3. Finally, WISE uses guided symbolic test generation to
produce test inputs of larger sizes only for the paths
conforming to the generator G. For each larger input
size, WISE outputs a worst-case generated test input.

4.2. Generators

Before proceeding, let us provide a generic definition
of a generator. A generator for a program P is a func-
tion mapping every prefix of an execution path of P to ei-
ther true or false. We require that generators be consistent,
meaning that whenever G(σ) is true, G(σ′) is also true for
every prefix σ′ of σ. We say that a generator G generates
an execution path or path prefix σ, or that σ conforms to a
G, if G(σ) is true.

We say that a generator G is a worst-case generator if
there exists a sequence σ1, σ2, σ3, . . . such that, for each σn,
both G(σn) is true and σn is a worst-case execution path
for inputs of size n. In the WISE algorithm, the require-
ment that the second stage computes a worst-case generator
guarantees that the third stage, which produces only execu-
tion paths conforming to this generator, will still produce
worst-case test inputs.
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Note that the definition of a generator is generic in the
sense that we do not specify how we create a such function.
A trivial example of a worst-case generator is the one that
returns true for execution paths. Note that the second stage
of the above algorithm could return this generator; however,
it would not help to prune the search space in the third stage.

Therefore, our goal should be to come with a good worst-
case generator—one that generates only a small set of fea-
sible execution paths. The generator described in Section 2
is an ideal generator, as it generated only the single longest
path for each input size.

4.3. Guided Symbolic Test Generation

In Section 3.2 we gave an algorithm SymbolicTestGen
for exhaustive generation of test inputs of size n. In the
next section, we present a modification of that algorithm,
GuidedTestGen, which uses a generator G to produce test
inputs more efficiently by pruning the computation tree of
program P , while still producing a worst-case input for each
input size n.

An invocation of GuidedTestGen(P, n,G, 〈s1〉) recur-
sively finds all feasible execution paths among those that
conform to generator G. Furthermore, inputs are found that
realize each such execution path. Notice that Algorithm 3
is identical to SymbolicTestGen in Algorithm 1, except that
recursive calls are guarded by a check that the path to be
explored conforms to G.

Thus, we can view GuidedTestGen as a depth-first search
of the computation tree of the program under test, except
that we prune as early as possible any subtree containing no
generated execution paths.

This pruning is critical to the feasibility of the WISE al-
gorithm. For a typical program, the size of the computa-
tion tree grows at least exponentially with the input size,
rendering exhaustive test generation completely intractable.
But with an appropriately chosen generators, guided sym-
bolic symbolic test generation can often prune all but a
polynomially-sized portion of the computation tree, en-
abling worst-case test inputs to be efficiently found.

5. Approximate Worst-Case Generators
for the WISE Algorithm

We have described the WISE algorithm without a de-
tailed description of the sub-algorithm FindGoodGenera-
tor. The description of this algorithm forms the content of
this section. Note that we are free to choose any worst-
case generator—the WISE algorithm will output a worst-
case test input for each input size as long as the generator
yields a worst-case execution path for each input size. We
have previously noted that the trivial generator which gen-
erates all execution paths is worst-case. This trivial genera-
tor, however, does not prune the search for larger worst-case

Algorithm 3 GuidedTestGen(P, n,G, 〈s1, . . . , sk〉)
if sk == Exit then

x1, . . . , xN ← input satisfying Φ(P, N, 〈s1, . . . , sk〉)
return singleton set {(x1, . . . , xN ; 〈s1, . . . , sk〉)}

else
Γ← empty set
for s ∈ succ(sk) do

if G(〈s1, . . . , sk, s〉) then
if Φ(P, n, 〈s1, . . . , sk, s〉) is satisfiable then

Γ← Γ ∪ GuidedTestGen(P, n, G, 〈s1, . . . , sk, s〉)
end if

end if
end for
return Γ

end if

inputs, and thus the WISE algorithm provides no benefit if
such a generator is returned. Our goal should be to find gen-
erators that are worst-case but generate only a small subset
of feasible execution paths.

In this paper, we propose a class of generators, called
branch policies, which we have found in practice to be quite
effective in efficiently finding worst-case inputs. Moreover,
we give an efficient, approximate FindGoodGenerators al-
gorithm to select a branch policy given an exhaustive list of
execution paths for small input sizes.

The given FindGoodGenerators algorithm is approxi-
mate in two senses: First, it does not guarantee that the
generator it returns is a worst-case generator. In Section 6,
however, we show that, for any given program P , the ap-
proximate FindGoodGenerators(tests1, . . . , testsN ) will re-
turn a worst-case generator for sufficiently large N . (And
we observed in our experiments that fairly small N were
sufficient.) Second, of the possible worst-case generators
FindGoodGenerators could return, we do not guarantee that
an optimal generator is found—i.e. one that best prunes the
space of feasible execution paths. Rather, FindGoodGener-
ator uses a greedy heuristic search.

5.1. Branch Policy Generators

In this section, we describe branch policies, a class of
generators that characterize execution paths by specifying
which branches they may and may not contain.

The motivation for branch policy generators is the ob-
servation that some worst-case execution paths always fol-
low a particular pattern of branches, i.e. they avoid some
branches completely or prefer one branch over the other
when a choice is available. For example, in the sorted
linked list in Figure 1, a worst-case execution path prefers
to take the “true” branch of the conditional at line 12 over
the “false” branch of the same conditional. Similarly, in
case of Quicksort, we obtain a worst-case execution path
if the array to be sorted is partitioned into arrays of size 1
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and (n − 2) in each invocation. This occurs if the “false”
branch of a certain conditional in the quicksort algorithm
is taken whenever it is feasible. We observed similar pat-
terns in many standard algorithms. Branch policies capture
this pattern by both explicitly disallowing some true or false
branches and by marking other branches as allowed only
when the alternative is infeasible.

Specifically, a branch policy BP divides the true and
false branches of every static conditional statement in
the program under test into three categories: (1) forbid-
den branches, (2) branches permitted only if every input
reaching the branch causes the branch to be taken, and
(3) fully permitted branches. More formally, a branch pol-
icyBP : Sc×S → {0, 1/2, 1} is a function, where Sc is the
set of all conditional statements in the program and S is the
set of all statements in the program. We say that the edge
from s to s′ in an execution path is forbidden ifBP (s, s′) is
0. Similarly, that the edge from s to s′ in an execution path
is permitted if BP (s, s′) is 1. If BP (s, s′) is 1/2, then we
say that the edge from s to s′ is permitted after some path
s1, . . . , sk = s only when every input yielding partial exe-
cution path s1, . . . , sk = s also yields s1, . . . , sk = s, s′.

5.2. Test Generation with Branch Policies

Given a branch policy BP , we can define a generator
GBP as follows. G(s1, . . . , sk) is true iff, for each condi-
tional statement si on the path with i < k, either:

• BP (si, si+1) is 1, or

• BP (si, si+1) is 1/2 and if any input satisfies
ΦN (s1, . . . , si), then the input also satisfies
ΦN (s1, . . . , si, si+1). (I.e. any alternative exten-
sion of s1, . . . , si other than s1, . . . , si, si+1 is
infeasible.)

Once we have the generator GBP , guided symbolic test
generation can be done using Algorithm 3.

5.3. Finding a Good Branch Policy

In this section, we give a precise specification for a Find-
GoodGenerator implementation for branch policies and de-
scribe a simple, naı̈ve implementation. Further, we describe
an optimized, greedy implementation which can be used to
select a branch policies in practice.

In selecting a branch policy, we have two competing
goals: the branch policy should generate as few execution
paths as possible so that guided test generation is efficient,
but the branch policy must still generate worst-case execu-
tions for every input size. We balance these goals by giving
a FindGoodGenerator(tests1, . . . , testsN ) algorithm which
will only return branch policies which generate a worst-case
execution path for each input size from 1 to N . But, among

these potential generators, we return one which generates
the least number of total execution paths on N inputs.

Formally, let Cn(GBP ) denote the number of execu-
tion paths on inputs of size n generated by GBP . Fur-
ther, let maxn denote the set of all branch policies which
generate a worst-case execution on inputs of size n, and
max =

⋂N
i=1 maxi. Then, procedure FindGoodGenerator,

for executions tests1, . . . , testsN , returns:

arg min
GBP∈max

CN (GBP )

Note that we count only the executions on inputs of size
N , rather than on inputs of sizes up to N , on the theory
that this provides a better estimate of the relative costs of
different branch policies for larger input sizes.

Naı̈ve Selection Algorithm. A naı̈ve algorithm for com-
puting such a GBP is to simply enumerate all possible
branch policies for a program P—there are only finitely
many because P contains only finitely many statements.
For each potential GBP , we pass through the exhaustive
list testsi of i-input execution paths to check whether GBP
generates a worst-case execution for each input size, as well
as to count the total number of N -input executions it gen-
erates. Then, we simply return any acceptable GBP with
a minimal count. Note that this algorithm will always re-
turn some branch policy, because the trivial policy>, which
maps each branch to 1, clearly generates a worst-case exe-
cution path for each input size.

Optimization 1: Summarizing Executions. There is a
natural partial order on any class of generators—we can de-
fineG1 ≤ G2 iffG2 generates every path thatG1 generates.
This ordering can be efficiently checked for two branch
policies GBP and GBP ′ by observing that GBP ≤ GBP ′
iff BP (s, s′) ≤ BP ′(s, s′) for every pair (s, s′) ∈ Sc × S.

Further, for every n-input execution path or path prefix
σ = s1, . . . , sk there is a least branch policy BPσ such that
GBPσ (σ) is true. In particular,

• BPσ(s, s′) = 1 if there is some i such that si = s,
si+1 = s′, and Φn(s1, . . . , si) ; Φn(s1, . . . , si+1).

• BPσ(s, s′) = 0 if s, s′ never appears in σ.

• BPσ(s, s′) = 1/2 otherwise.

These two allow us to work with a summarization of the
executions tests1, . . . , testsN . Specifically, we need only
maxi, the set of least branch policies BPσ for each worst-
case execution σ on i inputs, and counti(BP ), a table
recording for each branch policy BP the number of exe-
cutions σ on i inputs for which GBP is the least generator.

With this summarization, we can restate the naı̈ve algo-
rithm as computing:

arg min
GBP

∑
GBP ′≤GBP

countN (BP ′)
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Algorithm 4 FindGoodGenerator(tests1, . . . , testsN )
G← ⊥
for i = N to 1 do

(maxi, counti)← SummarizeExecutions(testsi)
G′ ← arg minG′∈maxi

P
H≤GtG′ countN (H)

G← G tG′

end for
return G

These summaries can be computed with a single pass
through each of testsi. In practice, we interleave the compu-
tation of the summaries with the exhaustive test generation,
and thus do not explicitly store any testsi. This is a big win,
as the number of distinct least branch policies is typically
much smaller than the number of execution paths.

Optimization 2: Greedy (Approximate) Search. There
is also a natural semilattice structure on any class of gen-
erators, where the join G1 t G2 is the least generator
such that G1, G2 ≤ G1 t G2. For branch policies, this
join is easy to compute: (GBP1 t GBP2)(s, s′) = GBP ,
where for all statements s and s′, we have BP (s, s′) =
max(BP1(s, s′), BP2(s, s′)).

Algorithm 4, FindGoodGenerator, greedily selects a
branch policy using summaries of the test executions for
each input size from 1 to N . In the first iteration of the
main loop in FindGoodGenerator, a branch policy will be
found which generates a worst-case execution on N inputs
and also generates the least number of total N -input exe-
cutions. For many programs, this branch policy will also
generate a worst-case path for input sizes 1 to N − 1, in
which case later iterations of the loop will have no effect
and the branch policy will be returned.

However, for some programs this N -input branch pol-
icy G may not generate any worst-case execution paths for
some smaller input size k. (Consider a program which runs
one procedure for even-size inputs and one for odd-size in-
puts.) At iteration i = k, the loop in FindGoodGenerator
finds the branch policy G′ which generates a worst-case k-
input path, such that the combined branch policy G t G′
generates the minimal number of test executions on N in-
puts. Thus, the final branch policy is guaranteed to generate
a worst-case path for each input size up to N .

Note that this is only a greedy approximation of the ab-
solute “minimal” generator returned by the naı̈ve algorithm.
However, this approximation did not seem to negatively im-
pact the scalability for the few benchmarks in which branch
policies for different input sizes needed to be merged.

This greedy FindGoodGenerators has to loop over only
the branch policies for each input size i which are the least
branch policies for worst-case executions. In practice, this
is much more efficient than enumerating all possible branch
policies, as there are typically only a handful of worst-case
executions to consider.

6. Theoretical Guarantees for WISE

In the WISE algorithm, we pick some N and search for
a generator G which generates a worst-case path for each
input size from 1 to N . Then, when searching for larger
worst-case inputs, we restrict ourselves only to execution
paths conforming to G. We would like some assurance that
our generator selection will lead us to find the actual worst-
case paths for larger input sizes. We show below that, when
restricted to a finite class of generators, for every program
P there is anN for which the WISE algorithm is guaranteed
to produce worst-case inputs for larger input sizes.

Proposition 6.1. Let P be a program and G be a finite set
of generators for P . Then there exists anN > 0 such that if
G ∈ G generates a worst-case path for each input size from
1 to N , then G is a worst-case generator.

Proof. Let Gi ⊆ G be the set of all generators which gener-
ate a worst-case path for each input size from 1 to i. Clearly
Gi ⊇ Gi+1 for each i.

Consider the descending chain G1 ⊇ G2 ⊇ · · · . Because
G is finite, this chain must become stationary at some GN =
GN+1. Then, any G ∈ GN is a worst-case generator.

In fact, GN contains all worst-case generators in G.

In particular, the set of possible branch policies for a
program P is finite because P contains only finitely-many
conditional branches. The second stage of the WISE algo-
rithm computes a branch policy that generates a worst-case
path for input sizes 1, . . . , N . Thus, if WISE is run with a
sufficiently-large N , this policy is a worst-case generator.

Other examples of finite classes of generators include
context-sensitive branch policies, in which, e.g., the policy
for some conditional statement can depend on the previous
k conditional branches or the nearest k enclosing function
calls, or bounded-size regular expressions or context-free
grammars over the statements of P .

It is easy to see that Proposition 6.1 does not hold for
some infinite classes of generators. For example, consider
the class of generators consisting of all regular expressions
over the alphabet of statements in a program P . For any N ,
consider a generator G = σ1|σ2| · · · |σN , where each σi is
a worst-case execution path for inputs of size i. Although
G generates a worst-case path for each input size from 1 to
N , it generates no paths for any larger input size.

7. Experimental Results

We have implemented WISE in a prototype tool for Java.
We use concolic execution [25], a combination of concrete
and symbolic execution, to explore the feasible execution
paths of a program. We have applied WISE to a number of
data structure and algorithms. We obtained several of these
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Benchmark Statistic
Input Size (N)

N∗
1 2 3 4 5 10 15 20 30

Exhaustive Paths 1 2 6 24 120 3628800 - - -

2
Sorted

Guided
Paths 1 1 1 1 1 1 1 1 1

Linked-List Iterations 1 2 3 4 5 10 15 20 30
insert

Path-Length
Longest 2 3 4 5 6 11 16 21 31
Average 2.00 2.50 3.00 3.50 3.99 6.48 8.98 11.48 16.48

Exhaustive Paths 1 2 4 12 36 20736 21233664 - -

2
Heap insert Guided

Paths 1 1 1 1 1 1 1 1 1

(JDK 1.5)
Iterations 1 2 3 5 7 20 35 55 95

Path-Length
Longest 7 13 20 29 38 89 144 209 339
Average 4.00 5.50 5.50 6.22 6.25 6.60 6.73 6.75 6.88

Exhaustive Paths 3 10 42 216 1320 - - - -

8
Red-Black

Guided
Paths 1 1 1 1 1 1 1 1 1

Tree search Iterations 3 5 5 7 7 11 13 13 17
(3rd Party)

Path-Length
Longest 4 7 7 10 10 16 19 19 25
Average 4.00 6.01 7.00 8.20 9.00 11.66 13.41 14.63 16.34

Exhaustive Paths 1 2 6 24 120 - - - -

8
Quicksort Guided

Paths 1 1 1 1 1 1 1 1 1

(JDK 1.5)
Iterations 1 2 4 7 11 18 21 23 28

Path-Length
Longest 5 10 17 26 37 144 309 484 974
Average 4.00 7.50 12.15 17.92 24.71 97.12 174.82 260.40 447.62

Exhaustive Paths 1 3 13 75 541 102247562 - - -

3
Binary

Guided
Paths 1 1 1 1 1 1 1 1 1

Search Tree Iterations 1 3 6 10 15 55 120 210 465
search

Path-Length
Longest 1 4 7 10 13 28 43 58 88
Average 1.00 4.00 6.00 7.49 8.70 12.58 14.88 16.63 18.97

Exhaustive Paths 1 2 6 24 120 3628800 - - -

7
Mergesort Guided

Paths 1 1 1 1 1 125 2216426 - -

(JDK 1.5)
Iterations 1 2 4 7 11 271 4157281 - -

Path-Length
Longest 4 8 14 22 32 106 206 - -
Average 4.00 7.50 11.75 16.45 21.45 63.57 123.87 - -

Bellman-Ford

Exhaustive Paths 1 2 63 184875 - - - - -

2
Guided

Paths 1 1 1 1 1 1 1 1 1
Iterations 1 2 5 9 14 54 119 209 464

Path-Length
Longest 1 55 147 315 583 4263 14043 32923 109983
Average 1.00 54.50 143.10 314.25 582.97 4263.00 14043.00 32923.00 109983

Dijkstra’s

Exhaustive Paths 1 1 4 56 2592 - - - -

3
Guided

Paths 1 1 1 1 1 1 1 1 1
Iterations 1 1 1 1 1 1 1 1 1

Path-Length
Longest 12 32 62 102 152 552 1202 2102 4652
Average 12.00 32.00 62.00 102.00 152.00 552.00 1202.00 2102.00 4652.00

Exhaustive Paths 1 1 3 297 - - - - -

5†
Traveling Guided

Paths 1 1 1 1 1 - - - -

Salesman
Iterations 1 1 3 6 10 - - - -

Path-Length
Longest 4 12 35 127 587 - - - -
Average 4.00 12.00 34.62 118.09 451.70 288291.52 ∼8.66e7 - -

Table 1. Results of exhaustive and guided symbolic test generation for various benchmarks and input
sizes. For each benchmark and input size, we give five quantities: Exhaustive reports the total number
of feasible paths explored by exhaustive symbolic test generation. Guided: Paths and Guided: Iterations
report the number of explored paths and calls to the constraint solver during guided symbolic test
generation, using the branch policy found by WISE on inputs of size up to N∗. Path-Length: Longest
reports the length of longest path found during guided test generation. Path-Length: Average reports
the average path length observed over 10,000 executions of the benchmark program on random
inputs of the given size. An ’-’ entry indicates the run could not be completed in 3 hours.
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benchmark programs from Sun’s JDK 1.5 and implemented
the rest on our own.

We know from Section 6 that, for any program, if we
run WISE with sufficiently large N then we will produce
a worst-case branch policy—i.e. a branch policy that gen-
erates worst-case execution for larger input sizes. In our
experiments, we aim to validate the following hypotheses:

1. In practice, the necessary N is small enough to make
WISE feasible—that is, WISE’s exhaustive test gener-
ation is feasible for inputs of size up to this N .

2. The produced worst-case branch policies significantly
prune the search space for finding larger worst-case ex-
ecutions.

Thus, for each of our benchmarks, we run the first two
stages of WISE—exhaustive test generation and computa-
tion of a branch policy—for as large N as was feasible in
three hours on our test machine.

We then determined by hand the minimal N for which
a worst-case generator is found—denote this by N∗—and
then ran the third stage of WISE with the worst-case branch
policy found for N = N∗ on inputs of size up to 30. The
results are summarized in Table 1.

Hypothesis 1. Table 1 shows that, for all of our bench-
marks, the sufficiently-large N∗ was less than nine. Fur-
ther, for all but the Traveling Salesman benchmark, exhaus-
tive test generation was very feasible on inputs of size up
to the found N∗, requiring no more than a few minutes of
computation.

(The number and length of execution paths grow so
rapidly in the Traveling Salesman benchmark, a branch-
and-bound search with a trivial bounding procedure, that
exhaustive test generation was not feasible even for a com-
plete graph with N = 5 vertices. However, the output of
WISE for N = 4 contained a worst-case branch policy and
allowed us to determine that N∗ = 5 for this benchmark.)

Hypothesis 2. Table 1 shows that, for all but the Merge-
sort benchmark, the worst-case branch policies computed
by WISE generate only a single path for larger input sizes.
That is, in these cases WISE finds worst-case generators that
prune away the entire search space except for a single worst-
case execution path. Thus, WISE’s guided test generation
is very efficient, producing worst-case executions for input
sizes of up to 30 (and beyond) in only a few seconds and
with a small number of constraint solver calls.

The two exceptions are the Traveling Salesman and
Mergesort benchmarks. As mentioned above, the worst-
case execution paths for the Traveling Salesman benchmark
rapidly become extremely long, as the backtracking search
must explore all (N−1)! cycles in theN -vertex input graph.
(For N = 9, the longest path contains 1.5M branches.)

Thus, even though our branch policy generates only a single
path, guided test generation is infeasible for N ≥ 10.

In the Mergesort benchmark, on the other hand, our
worst-case branch policy is not effective enough in prun-
ing the search for worst-case executions. There is a condi-
tional statement at which Mergesort selects the least item
from one of the two lists it is merging. Although Mergesort
always has the same asymptotic complexity, the worst-case
empirical complexity is achieved when Mergesort alternates
between the two lists during merging. Our branch pol-
icy merely records that a worst-case path could take either
branch of this conditional. Thus, although WISE’s guided
test generation greatly prunes the search space (e.g. by a
factor of 600,000 for N = 15), it must still explore expo-
nentially many paths.

Observations. One can gain insight into the asymptotic
worst-case complexity of an algorithm by examining the
empirical complexity of the worst-case inputs generated by
WISE. (For example, by plotting the path lengths versus in-
put size.) Further, the worst-case branch policy generator
found by WISE can provide insight into the source of an al-
gorithm’s worst-case complexity. Here we highlight some
of the interesting branch policies and empirical complexi-
ties we observed in our experiments.

For each of our four data structure benchmarks, we wrote
a driver program which inserts N integers into the data
structure and then used WISE to find the worst-case com-
plexity of one search or additional insertion. Table 1 shows
that, for insertion into a sorted linked-list and look-ups in a
red-black tree, the worst-case executions found by WISE are
only 1.5 to 2 times longer than our observed average path
lengths, as these methods have the same average-case and
worst-case asymptotic complexity—O(n) andO(log n), re-
spectively. Similarly, for insertions into a binary heap
and look-ups in a binary search tree, the WISE’s execu-
tions show the O(log n) and O(n) worst-case complexities,
even though the average-case complexities are, respectively,
nearly constant and O(log n). For the list, heap, and binary
tree, the branch policies neatly constrain the inputs to be
an increasing or decreasing sequence, by requiring allowing
only the “true” or “false” branch of conditionals comparing
newly-inserted elements to previous ones.

Similarly, WISE highlights the O(n2) worst-case of
Quicksort, while the average-case complexity is only
O(n log n). Our branch policy requires that, whenever fea-
sible, each element must be less than the pivot when com-
pared. Thus, as the JDK 1.5 Quicksort uses a median-of-3
pivot, each split leaves a sub-array with (n − 2) elements.
(Note: For n > 40, the JDK 1.5 Quicksort actually switches
to a median-of-9 for the pivot. We remove this from our
benchmark, because it would force WISE to do exhaustive
test generation up to N∗ = 40.)

For our three graph algorithm benchmarks, we use com-
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plete graphs on n vertices as inputs. For Bellman-Ford
and Dijsktra’s Algorithm, WISE produces inputs exhibit-
ing the O(n3) and O(n2) worst-case complexity. Roughly,
the branch policies for these benchmarks require that we re-
lax an edge whenever feasible. For Bellman-Ford, this en-
sures that there is a negative-weight cycle so that the algo-
rithm does not terminate early. For our Traveling Salesman
benchmark, although WISE is only able to generate worst-
case inputs up to n = 9, these inputs suggest that the worst-
case complexity is roughlyO(n!). WISE’s branch policy re-
quires that, whenever feasible, the branch-and-bound search
not prune its current subtree. (It prunes a path whenever its
length exceeds that of the shortest cycle found so far.)

8. Limitations
Our experimental results demonstrate that our complex-

ity testing technique WISE can effectively find large worst-
case inputs for many standard algorithms and data structure
operations. However, it is not clear whether WISE can be
applied to larger applications with multiple components.

Such large applications can pose several challenges to
WISE: (1) They may be too complex to be handled by exist-
ing symbolic execution and constraint solving techniques.
(2) It mot not be feasible for WISE to perform exhaustive
test generation for large enough input sizes, both because
a larger input size may be required to find a generator and
because of an increased number of paths even for small in-
puts. For example, to produce a generator for an applica-
tion that uses one algorithm for inputs of size up to 40 and
another for larger inputs, WISE would need to perform ex-
haustive test generation for inputs of size up to at least 41,
which is likely to be intractable. (3) The generators found
by WISE may not prune enough executions for larger input
sizes. For example, our Mergesort branch policy still leaves
an exponential search for worst-case executions. This oc-
curs because a worst-case Mergesort execution must alter-
nate between the two sides of a critical conditional, but our
generator can only capture that worst-case paths are always
permitted to take either branch.

More sophisticated generators could help in addressing
these challenges in scaling WISE up to larger applications.
For example, generators that encode that certain branches
must be taken in alternating or other regular sequences. Fur-
ther, it may be possible for a technique to produce more and
more precise generators as it generates and explores execu-
tions for larger and larger input sizes.

9. Related Work
Loop bounds in iterative programs have traditionally

been calculated using ranking functions [8]. Ranking func-
tions are bounded functions on loop variables that keep on
decreasing in every loop iteration. A bound on the rank-
ing functions gives an approximation of the loop bound.

Gulavani and Gulwani [14] used this observation to develop
static analysis based methods to construct numeric abstract
domains for timing analysis. The execution time obtained
by these static analysis techniques is an upper bound on
the actual execution time of the program. Their approach
produces an upper bound on the worst-case computational
complexity, whereas WISE produces a lower bound on the
worst-case computational complexity.

Profilers [13, 27, 1] based on dynamic program analysis
are often used to find performance bottlenecks in programs.
These tools periodically or continuously sample the pro-
gram counters and collect various timing statistics about a
program. More recently, Goldsmith et al. [12] have come up
with a novel idea to empirically compute the observed com-
putation complexity. Their technique uses profiled data in
conjunction with curve-fitting to compute empirical compu-
tational complexity. The complexity bound that they com-
pute is based on real-world usage and may not represent the
worst-case complexity. WISE directs test generation so that
it can discover the worst case complexity.

There has been a large body of work in estimating the
worst case execution time for embedded and real-time sys-
tems [22, 30, 16, 17, 18]. The major concern for these sys-
tems is modeling the underlying architecture and environ-
ment such as cache hit/miss, instruction pipelining etc. This
problem is tackled using several techniques from pattern
matching and abstract interpretation (e.g. interval based ab-
stract interpretation [16]). An exciting piece of recent work
in this area has been game theoretic timing analysis [26].
Our approach is orthogonal to these efforts. Further, most
of these techniques assume that loops have finite bounds,
independent of input size, and they completely unroll them.
We handle loops with bounds depending on the input.

10. Conclusion
We introduce complexity testing, a novel automated test

generation technique that finds worst-case inputs for a pro-
gram unit. Experiments on several standard benchmark pro-
grams show that complexity testing can efficiently discover
worst-case executions for large input sizes.

Complexity testing is a first step towards automated test-
ing for performance and scalability. We believe that com-
plexity testing can help relieve the burden of manual com-
putational complexity analysis, similar to the way that au-
tomated software testing and software model checking help
relieve the burden of manual program verification.
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