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Abstract

Lightweight fault-localization techniques use program
coverage to isolate the parts of the code that are most sus-
picious of being faulty. In this paper, we present the results
of a study of three types of program coverage—statements,
branches, and data dependencies—to compare their effec-
tiveness in localizing faults. The study shows that no single
coverage type performs best for all faults—different kinds of
faults are best localized by different coverage types. Based
on these results, we present a new coverage-based approach
to fault localization that leverages the unique qualities of
each coverage type by combining them. Because data de-
pendencies are noticeably more expensive to monitor than
branches, we also investigate the effects of replacing data-
dependence coverage with an approximation inferred from
branch coverage. Our empirical results show that (1) the
cost of fault localization using combinations of coverage is
less than using any individual coverage type and closer to
the best case (without knowing in advance which kinds of
faults are present), and (2) using inferred data-dependence
coverage retains most of the benefits of combinations.

1. Introduction

Debugging is one of the most expensive and time-

consuming processes for software developers. To address

this expense, researchers have presented techniques to pro-

vide automated assistance in finding the faults that cause

executions to produce incorrect outputs (i.e., fail). Many of

these techniques monitor runtime events to find those events

that correspond to the executions that fail. In particular, re-

searchers have investigated using the runtime coverage of

entities such as statements [1, 2, 8, 9] and branches [10, 11],

which require lightweight instrumentation, and information

flows [12], which require more expensive instrumentation.

These researchers have shown empirically that techniques

that use this coverage information provide guidance that can

reduce the developer’s effort in searching for the faulty parts

of the software.

There are many types of coverage information that fault-

localization techniques can utilize. However, to date there

has been little research into which type of coverage max-

imizes fault-localization effectiveness or which type of

lightweight coverage is best for fault localization in prac-

tical scenarios, such as deployed software [14], where mon-

itoring overhead must be low. To understand the relation-

ship among different types of lightweight coverage and the

relative effectiveness of using them for fault localization,

we performed, and present in this paper, an experiment on

a set of Java programs. Our experiment explores the rela-

tive benefits of three lightweight types of runtime coverage

monitoring—statements, branches, and du-pairs1—for use

in the Tarantula [9] fault-localization technique. Tarantula

runs a test suite on the target program, assigns suspicious-

ness scores to statements, and ranks the statements from

most suspicious to least suspicious. To perform a quantita-

tive comparison of all three coverage types, and to provide

an understandable view of branch and du-pair suspicious-

ness, we created a method that measures the effectiveness

of branches and du-pairs in terms of statements.

Our comparative experiment shows that the choice of

coverage type can greatly affect the effectiveness of fault-

localization: some faults are best localized by statements,

others by branches, and still others by du-pairs. However,

in general, it is impossible to know which kinds of faults

exist in a program before finding these faults, and thus,

which type of coverage is best (i.e., ideal) for fault local-

ization. Therefore, given the results of this first study and

our analysis of the contributions of each coverage type to

fault localization, we developed a new technique that com-

bines multiple types of coverage to leverage the strengths of

the constituent types. This technique produces an aggregate

fault-localization result in terms of statements.

To evaluate our combined scoring technique, we per-

formed a second study on the same programs to deter-

mine whether fault-localization based on combined cover-

1A du-pair consists of a definition (i.e., assignment) d of a variable v
and a use (i.e., read) u of variable v containing the value assigned at d.
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age types is more effective than its constituent types and

better approximates the ideal choice of coverage type per

fault. This study showed that, for these subjects, com-

bined coverage is more effective than statement, branch,

and du-pair coverage applied individually. The study also

showed that, across all faults studied, the effectiveness of

using combined coverage is more stable (i.e., less variable)

than using any individual coverage type.

An important concern in our work is runtime overhead.

Studies [13, 16] show that statements and branches can

be monitored efficiently (9%-18% overhead), but du-pairs

have a much higher runtime overhead (66%-127%). To

make fault localization as lightweight as possible, we ap-

plied a technique [16] that infers an approximation of du-

pair coverage from branch coverage. To evaluate the fault-

localization accuracy of inferred du-pair coverage, we per-

formed a third study in which we compared full, more ex-

pensive du-pair coverage with our cheaper, approximate du-

pair coverage. Our study shows that, for the same subjects,

there is only a small loss in fault-localization effectiveness

and stability when using the inferred du-pair coverage.

This work provides several benefits for fault-localization

research. One benefit is that it shows that the type of cov-

erage information for which the software is monitored does

matter: different faults are found best by different cover-

age types. Another benefit is that it shows that, by combin-

ing different types of coverage information, both the overall

cost and the variability of the fault-localization effort can

be reduced. A third benefit is that du-pair inferencing lets

runtime monitoring be efficient without greatly sacrificing

effectiveness. A fourth benefit is that our combination can

easily integrate into practice by utilizing only information

from branch coverage, which is obtainable from common

software-development and testing tools (e.g., gcc).

The main contributions of this paper are:

• A method for understanding and comparing the

fault-localization effectiveness of different types of

coverage in terms of statements and a study of

fault-localization using this method for statements,

branches, and du-pairs. The study shows that no cov-

erage type is the most effective for all types of faults.

• A new combination technique that exploits the unique

strengths of coverage types—statements, branches,

and du-pairs. This technique can leverage du-pair

coverage inferred from low-overhead monitoring with

only a small loss of effectiveness for fault localization.

• A study demonstrating that, on average, combining

coverage types improves the effectiveness of fault lo-

calization, better approximates the ideal choice of cov-

erage per fault, and provides more stable fault localiza-

tion than using individual coverage types.

2. Coverage-based Fault Localization

Researchers have proposed a number of fault-

localization techniques based on coverage information

provided by test suites. Such techniques (e.g., [1, 8, 9, 10])

typically instrument and execute the program with the test

suite to gather runtime information. For each test case in

the test suite, the instrumented program records the entities

in the program (e.g., statements, branches, and du-pairs)

that were executed (i.e., covered) and whether the test

case passes or fails. This information is used to compute

a heuristic measure for each program entity that expresses

the suspiciousness of the entity as being responsible for

test-case failures. These techniques typically sort the

monitored entities in decreasing order of suspiciousness,

which provides a ranking of statements from most to least

suspicious. The results are then presented to the developer

for guidance in finding the faulty code.
One such coverage-based fault-localization technique is

Tarantula [9], which assigns to each statement a suspicious-
ness score between 0 and 1. Using the Tarantula technique,
a number of formulas have been proposed for computing the
suspiciousness of statements. Abreu and colleagues exper-
imented with a number of different metrics, including the
original Tarantula formula, and found that a similarity co-
efficient called Ochiai, often used in the molecular biology
domain, was the most effective [1]. Our earlier experiments
also showed that the Ochiai similarity metric was the most
effective. Hence, in this work, we use the Ochiai formula
computed for a statement s:

suspiciousness(s) =
failed(s)

√
totfailed × (failed(s) + passed(s))

where totfailed is the total number of failing test cases,

failed(s) is the number of failing test cases covering s, and

passed(s) is the number of passing test cases covering s.

To illustrate, consider program mid() and Fault 1 in

Figure 1. For now, consider only the top group of rows la-

beled Statements. To the right of the code, for Fault 1, there

is information about the six test cases: inputs are shown at

the top of the columns, statement coverage is represented by

bullets in the columns, and pass/fail status is shown at the

bottom of the columns. Columns representing failing test

cases are highlighted. To the right of the test-case columns,

a column labeled suspiciousness shows the suspiciousness

score calculated using the Ochiai formula. In this example,

faulty statement 7 has the highest suspiciousness score of

0.71, giving that statement a ranking of 1.

To measure the fault-localization cost (i.e., the inverse of

effectiveness) of a technique, we use the percentage of state-

ments in the program that must be examined before reach-

ing the first faulty statement; this measure has been used

by other researchers (e.g. [5, 8, 15]) for fault-localization

studies. For example, in Figure 1 and Fault 1, the ranking

of statement 7 (which contains the fault) is 1, so the cost
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Figure 1. Example with three different faults with coverage and suspiciousness values for each.
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Table 1. Suspiciousness scores for statements for all scoring approaches for mid() in Figure 1.
statement Fault 1 (statement 7) Fault 2 (statement 3) Fault 3 (statement 2)

st br du max- avg- avg- st br du max- avg- avg- st br du max- avg- avg-
SBD SBD BD SBD SBD BD SBD SBD BD

1 0.41 0.50 0.71 0.71 0.54 0.61 0.58 0.71 0.71 0.71 0.67 0.71 0.41 0.50 0.71 0.71 0.54 0.61
2 0.41 0.41 0.00 0.41 0.27 0.21 0.58 0.58 0.50 0.58 0.55 0.54 0.41 0.41 0.71 0.71 0.51 0.56
3 0.41 0.50 0.41 0.50 0.44 0.46 0.58 0.71 0.58 0.71 0.62 0.65 0.41 0.50 0.41 0.50 0.44 0.46
4 0.50 0.58 0.50 0.58 0.53 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.58 0.50 0.58 0.53 0.54
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6 0.58 0.71 0.58 0.71 0.62 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.58 1.00 0.58 1.00 0.72 0.79
7 0.71 0.71 0.71 0.71 0.71 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.50 0.71 0.71 0.64 0.61 0.00 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.50 0.71 0.71 0.64 0.61 0.00 0.00 0.00 0.00 0.00 0.00
10 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
11 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
13 0.41 0.41 0.71 0.71 0.51 0.56 0.58 0.58 0.50 0.58 0.55 0.54 0.41 0.41 0.71 0.71 0.51 0.56

fault rank 1 2 3 4 1 1 6 2 4 4 4 2 6 6 3 4 5 4

loc. cost 7.7% 15.4% 23.1% 30.8% 7.7% 7.7% 46.2% 15.4% 30.8% 30.8% 30.8% 15.4% 46.2% 46.2% 23.1% 30.8% 38.5% 30.8%

of finding Fault 1 is 1/13, or 7.7%. When multiple state-

ments share the same score, we use the approach reported

in the literature: all tied statements get the greatest ranking-

number for that set of statements. For example, for Fault 2

in Figure 1, statements 8 and 9, tied with score 0.71, have

a ranking of 2; statements 1, 2, 3, and 13 (including faulty

statement 3), tied with score 0.58, have a ranking of 6.

3. Evaluation of Individual Coverage Types

Our first objective was to evaluate and compare the fault-

localization effectiveness of the coverage types we address

in this paper: statements, branches, and du-pairs. In Sec-

tion 3.1, we describe how we associate branch and du-pair

coverage with statements, to permit comparison. In Sec-

tion 3.2, we present our study of these three coverage types.

3.1. Mapping Coverage to Statements

To facilitate a comparison of the effectiveness of state-

ments, branches, and du-pairs for fault localization, we de-

veloped a technique that maps branches and du-pairs to their

related statements. This mapping lets us measure the fault-

localization effectiveness of branches and du-pairs as per-

centages of statements that must be examined to find a fault.

(Additionally, this mapping provides a statement-based sus-

piciousness view of the program which can be presented to

the user with existing tools [9].)

Figure 2 illustrates the technique we use to compute

fault-localization costs for each coverage type. For state-
ment coverage, the technique first uses Tarantula to pro-

duce statement scores of suspiciousness, and then a Sorter

produces a statement ranking using those scores. For

branch/du-pair coverage, the technique first uses Tarantula

to assign a suspiciousness score to each branch or du-pair

(branch/du-pair scores). Then, the Mapper inputs these

branch/du-pair scores and outputs statement scores. To pro-

duce the statement scores of suspiciousness, the Mapper

first maps branches/du-pairs to statements using three rules.

Rule 1: Associate a branch (du-pair) with its conditional

(definition) statement. A branch with a high sus-

piciousness score suggests that the condition in the

branching statement might be incorrect, causing the in-

correct branch to be taken at runtime. A du-pair with

a high suspiciousness score suggests that the computa-

tion at the definition might be erroneous, causing the

incorrect value to flow to the use and causing a failure.

Rule 2: Associate a branch (du-pair) with all statements

that precede the conditional (definition) statement in

the same basic block2 and that perform intermedi-

ate computations that affect the condition (definition).

Faults in such statements might produce erroneous in-

termediate values that make the affected branch (du-

pair) cause a failure.

After applying Rules 1 and 2, some statements may still

be left unmapped to branches (du-pairs). The Mapper uses

Rule 3 to map those remaining unmapped statements.

Rule 3: For the branch mapping, associate an unmapped

statement with all branches on which the statement is

control dependent.3 For the du-pair mapping, associate

an unmapped statement with all du-pairs whose uses

are located in that statement.

The Mapper then assigns to each statement the highest score

of all branches (du-pairs) associated with that statement.

The Mapper uses the highest score because a fault might

cause the wrong associated branch (du-pair) to be executed;

this branch (du-pair) produces failures and obtains a higher

score than its alternative branches (du-pairs). The result-

ing statement scores are then input to the Sorter to create a

statement ranking for branches (du-pairs). The Cost Calcu-

lator takes this ranking and the list of all faulty statements
that constitute the fault, and outputs the fault-localization
cost for that fault.

2A basic block is a sequence of statements with a single entry and exit.
3Statement A is control dependent on branch L from conditional state-

ment B if the decision at B of taking L determines whether A is necessar-

ily executed.
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Figure 2. Computing fault-localization costs.

Table 1 shows, for the example in Figure 1, the state-

ment scores for all three coverage types using our mapping.

Columns st, br, and du correspond to statement, branch, and

du-pair coverage, respectively; in Section 4, we discuss the

other columns. The shaded rows show the scores for faulty

statements. The last two rows show the ranking of the faulty

statement (fault rank) and the cost of localizing the fault

(loc. cost), respectively.

To illustrate our statement mapping and ranking based

on branches, consider Fault 2 in Figure 1. The row group

Branches4 shows that Tarantula assigns scores of 0.00 and

0.71 to 3 True and 3 False, respectively. Using Rule 1, the

Mapper associates these branches with faulty statement 3,

and then assigns to statement 3 the higher of the scores for

these two branches (i.e., 0.71). Using Rule 2, the Map-

per also associates statement 1 with these branches because

statement 3 is dependent on statement 1 and both are located

in the same basic block. Thus, statement 1 is also assigned

a score of 0.71. Because this score is the highest among

all statements, statements 1 and 3 obtain a ranking of 2, re-

sulting in a fault-localization cost of 15.4%. In contrast, for

the same fault, the statement-coverage score for statement 3

is 0.58 with ranking 6, resulting in a fault-localization cost

of 46.2%. Hence, branch coverage is more effective than

statement coverage at localizing Fault 2.

To illustrate our statement mapping and ranking based

on du-pairs, consider Fault 3 in Figure 1. The row group

DU-Pairs shows that Tarantula assigns a score of 0.71 to

(2,13,m). The Mapper associates this du-pair with three

statements: statement 2 using Rule 1, statement 1 using

Rule 2, and statement 13 using Rule 3. Because 0.71 is

the highest score associated with these three statements, the

Mapper assigns all of them a score of 0.71 and a ranking

of 3, resulting in a fault-localization cost of 23.1%. In con-

trast, for the same fault, the statement- and branch-coverage

scores for statement 2 are both 0.41, ranking the fault 6

for both coverage types (with a fault-localization cost of

46.2%). For the faulty statement, the du-pair score is higher

because test cases fail only when the wrong value assigned

to m at statement 2 flows to statement 13 without being

modified between those statements.

Finally, consider Fault 1 in Figure 1. The costs in the last

4Includes a special Entry branch representing entrance to the program.

Table 2. Subjects, test suite sizes, and faults.
subject description LOC tests faults
Tcas collision avoidance 131 1608 10

Tot info information measure 283 1052 10

Schedule1 priority scheduler 290 2650 9

Schedule2 priority scheduler 317 2710 7

Print tokens1 lexical analyzer 478 4130 5

Print tokens2 lexical analyzer 410 4115 10

NanoXML v1

XML parser

3497 214 7

NanoXML v2 4009 214 7

NanoXML v3 4608 216 8

NanoXML v5 4782 216 7

XML-sec. v1

XML encryption

21613 92 7

XML-sec. v2 22318 94 7

XML-sec. v3 19895 84 2

JABA program analyzer 37966 677 11

row of Table 1 show that statement coverage localizes this

fault better than branch and du-pair coverage, because only

statement 7 gets the statement-coverage score of 0.71 (the

highest), whereas more than one statement gets that same

score from branch and du-pair coverage.

The results for Figure 1 illustrate that different faults can

be best localized by different coverage types.

3.2. Study of Individual Coverage Types
The goal of this study is to compare statements,

branches, and du-pairs for fault localization using our

statement-mapping technique. First, we describe our em-

pirical setup, and then we present and analyze the results.

3.2.1. Empirical setup
We used DUA-FORENSICS [16], which analyzes the Java

bytecode language, instruments the program, and monitors

the program’s execution to collect coverage of statements,

branches, and du-pairs. DUA-FORENSICS is based on the

Soot analysis framework.5 In addition, we implemented the

process from Figure 2 to compute fault-localization costs.

Table 2 lists the subject programs, and for each program,

provides a description, the number of non-blank and non-

commented lines of Java code, the number of test cases,

and the number of faults studied. These faults are unique

and were seeded by other researchers. We excluded faults

located in unreachable code or in code called exclusively

from Java libraries (DUA-FORENSICS currently does not

analyze libraries). We also excluded faults for which no

available test case fails—at least one failing test case is nec-

essary to reveal the presence of a fault. The first six subjects

are part of the Siemens suite [7], which we translated from

C to Java. For Tcas and Tot info, we used only the first

10 faults to avoid biasing the average cost towards these

two subjects. The remaining programs are used in real sce-

narios. We studied four releases of NanoXML and three

releases of XML-security,6 which we treat as separate sub-

5http://www.sable.mcgill.ca/soot.
6We obtained NanoXML and XML-sec. from SIR: http://sir.unl.edu.
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Figure 3. Faults with the greatest variations in fault-localization costs.

Table 3. Average fault-localization costs.
subject statement branch du-pair ideal
Tcas 22.41% 23.67% 14.86% 8.53%

Tot info 24.99% 25.99% 20.09% 16.81%

Schedule1 5.78% 4.50% 11.23% 4.05%

Schedule2 32.30% 25.51% 19.40% 14.42%

Print tokens1 14.48% 4.96% 10.19% 4.30%

Print tokens2 5.40% 3.96% 4.54% 3.13%

NanoXML v1 3.25% 3.47% 4.54% 3.25%

NanoXML v2 4.64% 4.81% 3.85% 3.17%

NanoXML v3 6.10% 4.40% 3.05% 2.11%

NanoXML v5 5.06% 5.16% 3.83% 2.90%

XML-sec. v1 14.77% 11.44% 8.70% 8.10%

XML-sec. v2 8.44% 8.44% 9.62% 7.99%

XML-sec. v3 17.89% 17.86% 16.78% 16.78%

JABA 0.75% 0.82% 1.13% 0.70%

overall cost 11.49% 10.24% 9.02% 6.35%

standard dev 16.25% 15.40% 12.04% 9.27%

jects. In all, we studied 107 different faults.

For each fault, we instrumented the corresponding sub-

ject with DUA-FORENSICS, executed all test cases on the

instrumented subject, collected the coverage of statements,

branches, and du-pairs, and input this information to our

Tarantula-based tool to produce the fault-localization costs.

3.2.2. Results and analysis
In this experiment, we examine the effectiveness in terms of

fault-localization costs of each coverage type at three levels

of granularity: overall (average for all 107 faults), per sub-

ject (2 to 11 faults per subject), and individual faults.

Table 3 shows the average fault-localization costs per

subject (i.e., averaged over all faults in that subject) and

overall (i.e., averaged over all faults in all subjects) when

using statements, branches, and du-pairs (second, third, and

fourth columns, respectively). The result for the best cover-

age type for each subject is shaded. The ideal cost for a sin-

gle fault is the minimum of the three costs for that fault, cor-

responding to the best choice if we could correctly guess in

Table 4. Summary of coverage types per fault.
coverage ideal not ideal
type # faults avg. margin # faults avg. margin
statement 67 0.7% 40 13.8%

branch 22 0.8% 85 4.9%

du-pair 30 11.8% 77 3.7%

advance which coverage type is most effective for that fault.

Column ideal in Table 3 shows the average, per subject

and overall, of the ideal costs. For example, for the seven

faults in XML-sec.v1, the average fault-localization costs

for statement, branch, and du-pair are 14.77%, 11.44%, and

8.70%, respectively; the average ideal cost is 8.10%.

Table 4 shows a summary for each coverage type of the

faults for which a coverage was the ideal choice and the

faults for which it was not ideal (i.e., the localization cost

was higher than the ideal). For column group ideal (not
ideal), column # faults shows the number of faults for which

a coverage was the ideal (not the ideal). Column avg. mar-
gin shows the cost margin, on average for all faults in the

column group, by which the coverage was best (not the

best). Specifically, for each fault, the margin for ideal is the

difference in cost from the second-best coverage, and the

margin for not ideal is the difference in cost from the ideal

coverage. For example, statement coverage was the ideal

choice for 67 faults by a cost margin of 0.7% on average

and was not the ideal for 40 faults by 13.8% on average.

Figure 3 shows the fault-localization costs of using each

coverage type for those faults in which the difference be-

tween the worst (highest) and best (lowest) cost is greater

than 2%. The graph shows 53 faults, or about 50% of all

faults. Faults are ordered by increasing difference between

the worst and best costs, and numbered according to their

position in that ordering. For readability, the costs for state-

ment coverage are depicted by a solid curve. The costs for

branch and du-pair coverage are shown as triangles and cir-

cles, respectively. This graph illustrates that different faults
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are best localized by different coverage types. For example,

faults 26 and 27 are best localized by statements, faults 16

and 50 are best localized by branches, and faults 46 and 48

are best localized by du-pairs.

Row overall cost in Table 3 shows that du-pairs are

more effective at localizing these faults than branches, and

branches are more effective than statements.7 However,

all three coverage types are far less effective, on average,

than the ideal case. Du-pairs are the most effective type for

eight subjects, branches are most effective on four subjects,

and statements are most effective on two subjects. Table 4

shows that statements are, surprisingly, at least as good as

the other types on 67 faults. In comparison, branches are

at least as good as the other types on 22 faults, whereas

du-pairs are at least as good as the alternatives on 30 faults.

Although statement coverage performs better in more cases,

it does so by a small margin—an average of 0.7% over the

second-best type—and when statements are worse than the

ideal, they are so by a large margin (13.8%). In contrast,

du-pair coverage performs best in fewer cases, but for a

much larger margin (11.8%), while performing worse than

the ideal in the remaining cases by a smaller margin (3.7%).

The standard deviations of the costs for all faults, shown

in row standard dev in Table 3, indicate that du-pairs have

a noticeably lower variability in cost than statement and

branch coverage, making du-pairs not only the most effec-

tive for fault localization, but also the most stable. However,

the ideal case has an even lower variability than du-pairs.

Hence, if we were able to predict the best coverage type for

a given fault, we would obtain considerable gains both in

cost and stability of the fault-localization effort.

Based on these results, for this set of subjects, test suites,

and faults, we conclude that:

1. Our mapping of branches and du-pairs to statements

is useful, letting these entities exhibit their expected

benefits at fault localization with respect to statements.

2. Overall, du-pairs are more effective and stable at fault

localization than branches, and branches are more ef-

fective and stable than statements.

3. Different faults are better found by different types of

coverage. Without prior knowledge, no individual cov-

erage type is the best choice for a fault or even for a

group of faults in the same subject.

4. The ideal case is, overall, much better than any sin-

gle coverage type. Therefore, there is ample room for

reducing the cost of fault-localization.

4. Combination of Coverage Types
Motivated by the unique strengths of statements,

branches, and du-pairs that we observed in our first study

7Faults 29–53 in Figure 3 illustrate why du-pairs are best: for many

faults in which the differences in fault-localization costs are the greatest,

the cost of using du-pairs is lower than the alternatives.

presented in Section 3.2, we created a new statement-

scoring technique that leverages these strengths. The goal

of our new scoring is twofold: reduce the overall cost of

fault-localization, and mitigate the variability in cost (i.e.,

make the cost more predictable) for a set of faults. In Sec-

tion 4.1, we present our combination approach. In Sec-

tion 4.2, we present a study comparing this technique with

individual types of coverage for fault localization.

4.1. Computing Combined Rankings

We present two main combination techniques: one based

on the maximum of the scores for the individual coverage

types and the other based on an average of the scores for the

individual types of coverage.

4.1.1. Max-Statement-Branch-DU-Pair
In Section 3, for each individual coverage type, we assigned

to each statement the score of the highest-scored entity of

that type associated with the statement. Continuing with

this strategy, we present our first combined scoring for-

mula, max-SBD, which assigns to a statement the highest

score among all entity types—statements, branches, and du-

pairs—associated with that statement. For program mid()
(Figure 1), the max-SBD columns in Table 1 present the

scores for this combination. For example, for Fault 3, max-
SBD gives a score of 0.71 to statements 1, 2 (the fault), and

13, which is only beaten by the score 1.0 of statement 6.

As a result, the faulty statement gets a ranking of 4 and a

fault-localization cost of 30.8%. This cost is worse than the

cost of using du-pairs (23.1%) but better than using state-

ments and branches (46.2% in both cases). For this fault,

max-SBD provides a better result than randomly selecting

one of the three individual types, which has an expected

cost of 38.5%. However, max-SBD does not perform well

with respect to individual coverage types for Faults 1 and

2. For all three faults, the average fault-localization costs

when using statements, branches, du-pairs, and max-SBD
are 33.3%, 25.6%, 25.6%, and 30.8%, respectively.

4.1.2. Average-Statement-Branch-DU-Pair
One problem with max-SBD is that, for each statement, it

takes into account only the coverage type with the high-

est score, ignoring the contributions of the other two types,

which might be better at localizing a particular fault. A

high score assigned to a non-faulty statement through only

one coverage type guarantees that such a statement is high

in the ranking, thus hurting rather than helping the fault-

localization effort. Thus, it is reasonable for each dis-

tinct coverage type to have some weight in the combination

scores. If all coverage types “agree” in assigning a high

score to a statement, then there is supporting evidence for a

high suspiciousness of that statement. Conversely, if some

types give a statement lower scores than the other types,
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Table 5. Difference from the ideal cost, per subject and overall, for individual types and combinations.
subject statement branch du-pair du-pair max-SBD max-SBD avg-SBD avg-SBD avg-BD avg-BD

approx approx approx approx
Tcas 13.87% 15.14% 6.32% 15.07% 7.95% 16.74% 6.45% 13.35% 5.96% 13.53%
Tot info 8.19% 9.18% 3.29% 2.58% 3.56% 2.85% 2.31% 1.31% 1.60% 0.08%
Schedule1 1.73% 0.45% 7.18% 6.30% 4.00% 2.49% 1.01% 0.97% 4.54% 3.81%
Schedule2 17.88% 11.09% 4.97% 6.51% 5.82% 6.80% 3.61% 5.77% 4.15% 6.41%
Print tokens1 10.18% 0.66% 5.88% 17.42% 5.13% 6.15% 1.19% 5.02% 1.01% 3.96%
Print tokens2 2.27% 0.83% 1.41% 4.21% 1.54% 4.04% 0.53% 1.54% 0.88% 2.08%
NanoXML v1 0.00% 0.21% 1.29% 2.60% 1.66% 2.76% 0.12% 0.43% 0.29% 0.74%
NanoXML v2 1.48% 1.64% 0.69% 1.07% 1.13% 1.16% 0.20% 0.28% 0.24% 0.58%
NanoXML v3 3.99% 2.29% 0.94% 0.88% 1.18% 0.96% 0.79% 0.45% 0.72% 0.44%
NanoXML v5 2.15% 2.25% 0.93% 1.42% 1.28% 1.66% 0.62% 0.92% 0.36% 0.75%
XML-sec. v1 6.67% 3.34% 0.61% -1.11% 1.42% -0.86% 1.65% 0.39% 1.47% -0.15%
XML-sec. v2 0.45% 0.45% 1.63% 0.78% 0.97% 1.23% 0.10% 0.39% 1.23% 0.56%
XML-sec. v3 1.10% 1.08% 0.00% 1.16% 2.07% 2.11% -0.28% 0.93% -0.14% 1.07%
JABA 0.05% 0.12% 0.43% 0.48% 0.58% 0.62% 0.24% 0.25% 0.35% 0.36%

overall diff 5.14% 3.89% 2.68% 4.26% 2.77% 3.71% 1.48% 2.44% 1.80% 2.64%

standard dev 13.28% 11.06% 5.50% 10.01% 5.03% 7.70% 4.03% 7.73% 4.66% 8.02%

the suspiciousness of the statement should be adjusted to

a lower value, instead of relying solely on the maximum,

as in max-SBD. Based on this intuition, we propose a sec-

ond combined scoring formula, avg-SBD, which is the av-

erage of the scores of all three individual types. We also

explore avg-BD, which is the average of the branch and du-

pair scores only, motivated by the results of our initial study

in which statements showed the worst overall performance.

For the example in Figure 1, Table 1 shows in columns

avg-SBD and avg-BD the scores of statements, the rankings

of faulty statements, and the fault-localization costs using

avg-SBD and avg-BD, respectively. For Fault 1, max-SBD
assigns 0.71 to four statements, whereas avg-SBD and avg-
BD assign 0.71 only to the fault and reduce the scores of the

other three, non-faulty statements. These two combinations

improve the ranking of the fault from 4 to 1 with respect to

max-SBD. Overall, for all three faults in the example, avg-
SBD performs as well as the best individual types (branches

and du-pairs) with an average cost of 25.6%, whereas avg-
BD performs even better, with an average cost of 17.9%.

4.2. Evaluating Combined Rankings

The goal of our second study was to evaluate the fault-

localization effectiveness and variability of the combina-

tions of coverage presented in Section 4.1.

4.2.1. Empirical setup
For this experiment, we used the same toolset described in

Section 3.2.1 and the same subjects and faults listed in Ta-

ble 2. We also added to our ranking tool the ability to score

and rank statements based on combinations.

4.2.2. Results and analysis
Because our first study showed that individual types per-

form, overall, considerably worse than the ideal case, we

wanted to investigate whether our combinations are closer

to the ideal (i.e., the minimum cost of using statement,

branch, and du-pair coverage), and, if so, how close they

get. We can treat the ideal individual coverage type per

fault as an approximation of the minimum cost that can be

achieved with this kind of lightweight coverage informa-

tion. Because different faults exhibit different levels of ef-

fectiveness for localization (see Table 3), the difference in

cost from the ideal is a better measure of improvement than

absolute costs. For these reasons, we focus in this study on

the cost difference from the ideal individual type per fault.

Nevertheless, to keep the absolute costs in perspective, we

refer the reader to the costs for the ideal case in Table 3.

Table 5 shows the average difference in cost from the

ideal, per subject and overall, for all fault-localization

strategies. In this section, we consider six strategies:

columns statement, branch, and du-pair, for individual cov-

erage types, and columns max-SBD, avg-SBD, and avg-BD
for our proposed combinations. Section 5 describes the re-

maining approx strategies. Table 5 shows that, overall, max-
SBD performs slightly worse than one of its constituents,

du-pair coverage, which incurs a cost difference from the

ideal case of 2.68%. Also, for no subject was max-SBD
more effective than the best individual coverage per sub-

ject. Therefore, max-SBD was not useful—it was better

to use du-pairs. In contrast, using avg-SBD costs, overall,

only 1.48% more than the ideal, which is closer to the ideal

than any other strategy, including du-pair coverage. Also,

on eight out of 14 subjects, avg-SBD performed better than

its constituents. The third combination, avg-BD, also per-

formed closer to the ideal than the individual types (1.80%

overall), and better than its constituents on seven subjects.

However, avg-SBD outperformed avg-BD overall and for

eight subjects. The overall superiority of both avg-SBD and

avg-BD over individual coverage types is statistically sig-

nificant.8 These results show that a combination of individ-

ual coverage types can indeed leverage the unique features

of the constituents and achieve more effective fault local-

ization, performing closer to the ideal of individual types

without knowing in advance the best type for each fault.

8We used paired t-tests with p-values of 0.02 or less.
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Figure 4. Comparison: avg-SBD vs. du-pairs.

For individual faults, Figure 4 presents the costs for the

best combination, avg-SBD, and the best individual cover-

age type, du-pairs. Because these costs are differences in

cost from the ideal case for individual coverage, the hori-

zontal line at 0% represents the cost of the ideal. (Whenever

du-pairs are the ideal for a fault, the cost point for du-pairs is

on the ideal line.) The graph shows results only for those 50

faults for which the difference between these two strategies

is greater than 1%. Faults are ordered by increasing differ-

ence between the costs of these two strategies, and num-

bered by their position in that ordering.9 The costs for du-

pair coverage are depicted by a solid curve and the costs for

avg-SBD are shown as squares. The graph shows that, more

often than not, using avg-SBD is less expensive and closer

to the ideal than using only du-pairs, which explains why

avg-SBD is more effective overall. There are a few cases in

which the combination is far less effective than du-pair cov-

erage, such as faults 48 and 49 (where statement and branch

coverage perform far worse than du-pair coverage, skewing

the cost for avg-SBD up). However, these cases are more

than compensated by cases in which avg-SBD performs far

better, such as faults 44–47, and 50.

Interestingly, avg-SBD and avg-BD obtain a lower cost

than the ideal for one subject—XML-security.v3—and sev-

eral faults (see Figure 4). We observed that this phe-

nomenon occurs for two reasons: (1) each constituent of

the combination assigns a similar score to a faulty state-

ment, and (2) many non-faulty statements that rank slightly

higher than faulty statements for one constituent (adding to

the cost when using only that constituent) get a low score

from the other constituents, so in the combination such non-

faulty statements end up ranking below faulty statements.

Based on these results, we can conclude that, for these

subjects, test suites, and faults:

1. It is possible to leverage the fault-localization contri-

butions of statement, branch, and du-pair coverage to

create combinations, such as avg-SBD and avg-BD,

9These fault numbers do not correspond to the numbering in Figure 3.

that perform closer to the ideal individual case than

any coverage type alone.

2. Although it is still not possible to prescribe a strategy

that will be the most effective for individual faults, we

can assert with statistical confidence that avg-SBD and

avg-BD perform better than individual coverage, on

average, for a sufficiently large set of faults.

5. Approximation of DU-Pair Coverage
Our empirical studies of fault-localization (Sections 3.2

and 4.2) demonstrate the potential effectiveness of using

du-pairs individually or with other coverage types. How-

ever, gathering du-pair coverage information can be expen-

sive [13, 16]. In this section, we investigate the effects

on fault localization of replacing du-pair coverage informa-

tion with an approximation obtained from branch coverage.

Branch coverage is considerably cheaper to obtain than du-

pair coverage in terms of runtime overhead [13, 16], while

being supported by existing tools. In Section 5.1 we pro-

vide background on du-pair coverage inferencing. In Sec-

tion 5.2, we present our study on inferred du-pair coverage.

5.1. Inferring DU-Pair Coverage

Santelices and Harrold [16] presented a technique that

infers an approximation of du-pair coverage from branch

coverage information. The technique first infers which def-

initions and uses were covered at runtime and then, using

additional static analyses, infers which du-pairs were def-

initely covered or not. Because the coverage of some du-

pairs cannot be inferred with certainty from branch informa-

tion alone for some executions, the technique reports such

du-pairs in those cases as possibly covered.10 In the next

study, we simply treat possibly-covered du-pairs as covered.

5.2. Study of Inferred DU-Pair Coverage

The goal of this study is to determine whether strategies

that replace du-pair coverage with du-pair information in-

ferred only from branch coverage achieve better fault local-

ization than statement coverage and branch coverage, which

incur the same runtime overhead (i.e., branch monitoring).

5.2.1. Empirical setup
As in the previous two studies, we performed our experi-

ment using the same toolset, subjects, and faults listed in

Table 2. To infer du-pair coverage, we used the functional-

ity already existing in DUA-FORENSICS [16].

5.2.2. Results and analysis
In this section, we present the results and analysis of the

fault-localization costs and variability for the four strate-

10The study of this technique [16] revealed that of 85% of du-pairs re-

ported as possibly-covered were actually covered.
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Figure 5. avg-SBD approx vs. branch coverage.

gies that require du-pair coverage—du-pair, max-SBD, avg-
SBD, and avg-BD—after replacing du-pair coverage with

the approximation inferred from branch coverage.

In Table 5, for each of the four columns involving du-

pair coverage (i.e., du-pair, max-SBD, avg-SBD, and avg-
BD), there is a corresponding column to the right with the

qualifier approx, which shows the results for the same strat-

egy using approximate du-pair coverage. For each of these

strategies, the approximate version performs, overall and

for most subjects, worse than the original version. For du-

pairs, Table 5 shows that du-pair approx adds enough im-

precision to make this strategy worse than branches, thus

making du-pair approx not recommendable (i.e., it is better

to use just branch coverage). The three approximate com-

binations, however, show an improvement over branches in

both cost-proximity to the ideal and stability. Again, as in

fault localization based on precise du-pair coverage (Sec-

tion 4), avg-SBD approx is the best combination, whereas

max-SBD approx is the worst. In particular, avg-SBD ap-
prox reduces the cost difference from the ideal when using

branch coverage for fault localization from 3.89% to 2.44%,

and reduces the standard deviation of this cost from 11.06%

to 7.70%. The superiority in effectiveness of avg-SBD ap-
prox over branch coverage is statistically significant.8

Figure 5 illustrates the benefit of avg-SBD approx with

respect to branch coverage for individual faults. The graph

shows the differences in cost from the ideal individual

choice for branch coverage as a solid curve and for avg-
SBD approx as squares. The graph illustrates only those 36

faults for which the difference between the two strategies is

greater than 1%. These faults are ordered by increasing dif-

ference in cost between the two strategies. The results show

that, more often than not for these faults, avg-SBD approx
is more effective than branches. The greater effectiveness

of avg-SBD approx over branches is accentuated for those

faults that exhibit the greatest difference in cost between

the two strategies, such as faults 24–36. These results for

individual faults help understand why avg-SBD approx per-

formed better at fault-localization than branches, overall.

Interestingly, there are subjects for which the approx ver-

sion of a strategy is more effective than the original ver-

sion of the same strategy. For example, for Tot info, avg-
SBD approx is closer to the ideal than avg-SBD. This phe-

nomenon might appear counter-intuitive, but it can be at-

tributed to the heuristic nature of the fault-localization tech-

nique. Specifically, reporting a du-pair as possibly covered

but not actually covered by failing test cases implies that at

least the definition and use were covered, even if no value

flowed between them. In such cases, the definition might

obtain a suspiciousness score higher than for precise du-pair

monitoring. If, by chance, the definition actually contains

a fault, the effectiveness of the approx strategy can be im-

proved. Overall, however, our results show that the impre-

cision introduced by inferred du-pair coverage, more often

than not, increases the suspiciousness scores of statements

unrelated to the fault with respect to the suspiciousness of

the faulty statements.

Based on these results, we can conclude that, for these

subjects, test suites, and faults:

1. Using approximate du-pair coverage inferred from

branch coverage reduces, in general, the effectiveness

of fault localization with respect to precise du-pair cov-

erage. There are a few cases, however, in which this

imprecision incidentally improves effectiveness.

2. Both avg-SBD approx and avg-BD approx are more

effective and stable at fault localization than branch

coverage, while incurring the same runtime overhead.

Therefore, it is possible to extract more information

from branch monitoring (e.g., approximate du-pair

coverage) than just branch coverage in order to im-

prove fault-localization over branch coverage alone.

6. Related Work
Many researchers have developed fault-localization tech-

niques based on coverage or profiling information. In this

section, we briefly survey this research.

Jones and colleagues [8, 9] developed the Tarantula tech-

nique that computes suspiciousness for each statement and

ranks those statements. In recent work, Abreu and col-

leagues [1] compared the original Tarantula formula with

the Jaccard and Ochiai coefficients. Their experiments

showed that Ochiai, independent of test design, performs

best for statement coverage. In this paper, we extended and

studied Tarantula, using the Ochiai coefficient, for different

entity types (i.e., branch and du-pair) and combinations of

these types, for more effective and predictable (while still

affordable) fault localization.

Masri [12] applied Tarantula to different coverage types,

including branches and du-pairs, but, for most faults, his

method could only utilize either branches or du-pairs, but

not both. Therefore, a comparison of these two coverage
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types was impossible. Nevertheless, his study showed that

branches and du-pairs can be more effective at fault lo-

calization than statements. Masri also studied information

flows, which were more effective at fault localization than

branches and du-pairs. In this paper, we presented a way

to map branches and du-pairs to all statements and faults,

enabling a full comparison. Moreover, we combined these

coverage types to provide more effective and predictable

fault localization than individual coverage types. However,

we did not consider information flows because they are

much more expensive to monitor than lightweight entities,

which are the focus of our work.

Dallmeier and colleagues [6] developed a lightweight

fault-localization technique that uses sequences of method

calls to localize faults at the class level. Liu and col-

leagues [11] developed a technique called SOBER that uses

profiles (i.e., counts) of branch executions within each test

case to localize branches that are related to faults. In con-

trast, our work localizes faults at the statement level and

takes advantage of multiple, lightweight coverage types.

Liblit and colleagues [10] developed SBI, which samples

predicate coverage information and computes suspicious-

ness for certain types of predicates. However, they did not

provide a way to combine those types.

More heavyweight approaches include a technique

based on the Probabilistic Program Dependence Graph

(PPDG) [3], by Baah and colleagues, which creates models

by collecting data and evaluating predicates on executions.

Retrieving and operating on program variables is, in our

own experience on monitoring, considerably more expen-

sive than collecting the coverage of du-pairs or branches.

7. Conclusion and Future Work
In this paper, we presented a method for comparing the

fault-localization effectiveness of different lightweight cov-

erage entities—statements, branches, and du-pairs. Using

this method, we performed a study to empirically compare

those entity types and concluded that different faults are bet-

ter found by different types. On average, for all faults and

also for most subjects, we presented two combinations that

outperformed individual types. Although it is still not pos-

sible to prescribe a particular type or combination for indi-

vidual faults, our study shows that, for a sufficiently large

set of faults, our combination approach is the best choice be-

cause it comes closest to the ideal. Furthermore, we showed

that using inferred du-pair coverage in combinations is more

effective than branch coverage alone, while requiring the

same runtime overhead, which is truly lightweight.

In the future, we will extend our experiments to include

other relatively lightweight coverage types such as acyclic

paths [4]. Also, because du-pairs can be more precisely in-

ferred from acyclic paths, we expect to evaluate the gains in

fault localization from using such paths.
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