
The Impact of Process Choice in High Maturity Environments: An Empirical
Analysis

Narayan Ramasubbu, Rajesh Krishna Balan
Singapore Management University

[nramasub,rajesh]@smu.edu.sg

Abstract

We present the results of a three year field study of

the software development process choices made by
project teams at two leading offshore vendors. In
particular, we focus on the performance implications
of project teams that chose to augment structured,
plan-driven processes to implement the CMM level-5
Key Process Areas (KPAs) with agile methods. Our
analysis of 112 software projects reveals that the
decision to augment the firm-recommended, plan-
driven approach with improvised, agile methods was
significantly affected by the extent of client knowledge
and involvement, the newness of technology, and the
project size. Furthermore this decision had a
significant and mostly positive impact on project
performance indicators such as reuse, rework, defect
density, and productivity.

1. Introduction

The choice of software development process is
considered to be a crucial factor in building systems on
time and with high quality. As a result, there are
numerous software development process frameworks
and methodologies available for software teams. The
comparative strengths and weaknesses of the prevalent
software development processes have been extensively
studied in prior research [for e.g., 1, 2, 3, 7, 16, 20, 21].
However, there is no one universally applicable or
unanimous choice of development process. In the face
of such diversity, software development organizations
continue to invest heavily in software process
improvements by standardizing their development
processes [10]. This standardization, i.e., minimizing
heterogeneity by adopting one uniform process across
the firm, has been shown to lead to benefits of
improved productivity, quality and cycle time [4, 12,
13, 14].

Firms that have achieved reasonably high levels of
process standardization are usually said to be operating

at high levels of process maturity as exemplified by the
CMM level-5 [24] and Six-Sigma firms [19]. The two
institutions used for this study were both assessed at
CMM level-5. As such, they mandated the use of a
highly structured, plan-based approach for the
operationalization of all the CMM Key Process Areas
(KPAs). Our goal is to investigate the performance
outcomes of project teams that deviated from this
mandate by adopting an agile approach to the
implementation of the CMM KPAs in their projects.

 While there have been commentaries and
theoretical arguments from other scholars [7, 8, 9, 11,
17, 18, 20, 25, 28], this study is a first step in the
direction to empirically test the “balanced process
hypothesis” [8], and investigate the performance
impacts of process diversity, albeit in the narrow
context of offshore software development. Using data
collected from 112 software projects from two leading
offshore software development firms, we empirically
test the hypothesis if augmenting the standard plan-
driven development processes with agile methods leads
to superior project performance. Also, through field
research we uncover the dominant factors specific to
offshore software development that propelled some
project teams to choose a non-standard approach to
their development processes over the standard
processes recommended by their firms.

2. Research sites: high process maturity

environments

Consistent with the research goals of this study,
we sought to observe the development process choices
at firms that employ rigorous, standardized processes,
and at the same time provide room for improvisations.
We obtained permission to conduct our research at
development centers of two different leading offshore
software firms that fit our criterion. The development
centers involved in our study had been assessed to be
operating at the CMM and People CMM (PCMM)
level-5, and had won several awards for superior

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 529

quality management practices. Thus, this setting
provided an ideal environment for conducting our
study on development process choices.

The CMM specifies a series of actions that a
company can perform to optimize and streamline its
internal processes (across all aspects of the company).
The Level-5 certification is the highest certification
level and indicates that the company has been assessed
as having highly optimized processes across 24 Key
Process Areas (KPA). Companies are free to
implement these KPAs using any process they want as
long as they satisfy the goals specified by the CMM.
Further details about the CMM certification process
can be found elsewhere [22].

Both firms were equivalent in terms of the total
number of employees (about 25,000) and annual
revenues (about two billion USD) at the start of this
study. Both firms have a centralized Software
Engineering Process Group (SEPG) that is responsible
for governance of development processes. The SEPG
teams at both the firms invested heavily in
standardizing the development processes prevalent at
the firms. The standard, firm-wide recommended
processes, at the time of this study, at both firms, were
highly structured, plan-based approaches for each of
the KPAs of the CMM. Any non-standard processes
employed by individual projects needed prior approval
and were actively monitored by the SEPGs. To
maintain flexibility, tailoring of the standardized set of
processes (to use more agile methods for specific
KPAs for example) was allowed at the individual
project level. However all process tailoring was closely
monitored by Software Quality Assurance (SQA)
personnel who were part of the project team. The SQA
personnel at both the firms reported directly to the
SEPG managers and not to the respective project
managers. We discuss the process choice variation
across the projects in more detail in Section 3.1.1.

Through an analysis of the weekly reports
submitted by the SQA personnel in charge of
individual projects, we observed the incidents of non-
compliance to standardized development processes.
While the individual SQA personnel were authorized
to intervene and correct deviations due to human errors
and lethargy, voluntary and systemic deviations had to
be discussed at the organizational level SEPG
meetings. It was through our participation in these
internal, non-compliance meetings that we discovered
that some managers wanted to augment the heavily
structured, documentation oriented, plan-based
processes widely prevalent at the firms with agile
processes.

In particular, several project teams were using
agile processes to operationalize the CMM KPAs
instead of the standardized process templates

recommended by the SEPG. Since these deviations did
not affect the overall strategic mandate of the firms,
which was to be a “CMM level-5” company, the top
management at our research sites did not see such non-
standard process choices as an immediate threat.
However, they were curious to understand the
implications and performance outcomes of these non-
compliances in the long run. This coincided well with
our research interest, and hence our research goals
struck a chord with the interests and motives of the
executives at our research sites.

Thus, we set out to answer the following open
empirical questions at our research sites:

1. Are there specific conditions that encourage the
shift from standardized processes to non-standard
software development processes?

2. Do the non-standard approaches that mixed plan-
based processes with agile methods lead to
significant improvements in eventual project
performance?

3. Modeling the causal links: process choice

and performance

The first empirical research question raised in the
study deliberates the reasons for the adoption of non-
standard development processes that augment plan-
based approaches with agile practices, and the second
question seeks to analyze the causal effects due to the
adoption of non-standard development processes.
However the research setting in this study does not
facilitate experimentation – recall that we are only
observing real world projects that are being consumed
by real customers who pay for the software application.
Hence experimentation, especially induced by external
researchers, is not feasible. In the absence of
experimental data, we use observational data collected
through our field research. We then employ a
propensity score stratification analysis method to infer
the causal relationships raised by our research
questions. This method has been utilized by
researchers from other fields to investigate causal
effects using observational data [33]. We
operationalized our research method in the following
steps:

Step-1: Through interviews, discussions, non-intrusive

observations, and surveys we identify the
possible list of factors that drive the adoption of
the non-standard process implementations at our
research sites.

Step-2: After collecting data on the variables identified
in step 1 and statistically verifying them, we
estimate the probability of a project team

530

adopting a non-standard process. This is called
the propensity score for a project.

Step-3: We separate the sample of our projects into
“treated” (the projects that adopted non-standard
processes) and “controls” (the projects that
selected the standard processes). Using the
propensity scores calculated in step 2, we
“match” the individual projects in the “treated”
sample with similar projects in the “controls”
sample.

Step-4: By statistically comparing the performance
outcomes of the “treated” projects with the
matched projects from the “controls” group (i.e.,
projects with similar propensity score have a
similar probability of adopting a non-standard
process), we draw inferences on the
performance impacts of the process choice.

3.1. Observational data collection

Our data collection effort was spread across a
three year time period. In this period, we followed 112
software projects from start to finish, and gathered
detailed data on the software processes and project
performance of each of these projects. For the first
eleven months of the data collection period, one of the
authors was present in the field and observed project
activities on a day-to-day basis using a non-intrusive
approach. For the rest of the three year data collection
period, we conducted separate weekly teleconferences
with a volunteer from each firm’s SEPG department.
These volunteers helped us collect regular process and
performance data for each of the projects that were
being studied. The volunteers were neutral observers
and were not affiliated with any of the projects in our
sample. Out of the 112 projects, 34 project teams
employed non-standard process.

We obtained the data required for this study
through interviews, surveys as well as from the internal
process databases maintained by the quality division of
each firm. As part of the CMM process, each project
was required to accurately and consistently report the
data used for this paper. We randomly sampled
portions of the data at regular intervals to check for
accuracy and consistency (either directly when we
were onsite or through the help of the volunteers). In
addition, the data for all the 112 projects used in our
study was audited, and verified as correct, by the
quality control group of each firm. Furthermore, except
for the data from the 34 projects that followed non-
standard software development processes, all data used
in this study was audited by external agents as part of
the regular CMM level-5 compliance checks. We are
thus confident that the data used in this paper is

reliable and of high quality and that we have a rich
understanding of the context in which these software
projects were executed.

In the rest of the section, we describe the
individual variables used for this analysis. These
variables were intentionally chosen with an aim to
practically deploy the methodology developed in this
study in real projects.

3.1.1. Development process choice variable. When a
new software project is initiated, the project manager,
along with the development team, can choose to follow
the standard development process that is prevalent in
the firm or follow a new or non-standard development
process for the project. As mentioned earlier, at both
our research sites the standard company approved
process for implementing each of the CMM level-5
KPAs was a highly structured plan-based approach.

Project teams that choose to follow non-standard
development processes had to seek permission from
the central Software Engineering Process Group
(SEPG). At the time of our data collection, 34 projects
had been formally approved to use non-standard
processes to implement the CMM level-5 KPAs for
their projects. All of the non-standard processes used
were agile methods – some projects used versions of
agile RUP while others used versions of XP or
SCRUM.

Each of these 34 projects used different process
choices across different KPAs (i.e., none of the 34
projects used similar processes across all 24 KPAs
compared to every other project). Hence, to obtain
statistically significant results, we grouped all the 34
projects that used a non-standard process for at least a
KPA together. By doing this, we are still able to
meaningfully quantify the performance impact of
choosing at least one non-standard process for the
project. The variable ‘Development Process Choice’ is
thus a binary variable that specifies the development
process that was used. The non-standard development
process is assigned the value of 1 and the standard,
firm-recommended development process is assigned
the value of 0.

We plan to collect more data about projects using
non-standard processes in the near future and then use
the larger data set to tease out the effects of particular
process choices on particular KPAs in future research.

3.1.2. Performance outcome variables. For this work,
we use five different performance indicators to
quantify the goodness of the software development
process chosen. These performance indicators were:

1) Development productivity: Development
productivity is defined as the ratio of software

531

code size in KLOC to the total development effort
in person-hours.

2) Defect Density: Defect density is defined as the
number of unique problems, per KLOC, that
were reported, before project signoff, by
customers during the acceptance tests and
production trials. It is calculated as follows:

3) Reuse: Reuse in this study is measured as the

amount of project code, measured as a percentage
of the total project code size, which was obtained
from the central generic code libraries maintained
by the two data collection sites. Reused modules
and objects were easy to find and count as every
project we studied explicitly tagged reused code
with unique identification. This was to make it
easy to find and replace generic code where
necessary.

4) Rework: It is measured as the percentage of total
actual project hours spent on fixing bugs reported
by customers during acceptance tests and during
the warranty period.

5) Project Management Effort: This variable is
measured as the percentage of total actual project
hours spent on project management activities. This
data was retrieved from the internal time sheets of
the project manager.

3.1.3. Client specific knowledge. Client specific
knowledge was measured through a project manager
survey before the start of the project. The survey had
the following six items measured on a 7-point scale (1
indicated no knowledge at all while 7 indicated
complete knowledge):

1. How well do you know the project objectives of the client?
2. How well do you know the business processes of the

client?
3. How well do you know the business rules of the client?
4. How well do you know the IT infrastructure of the client?
5. How well do you know the IT norms and standards

followed by the client?
6. How well do you know the interoperability constraints of

the client’s IT infrastructure?

These survey items were adapted from prior
information systems and management studies [26, 27].
The average score of the six survey items provided the
score for the ‘client specific knowledge’ variable.

3.1.4. Extent of client involvement. This variable is
the estimated percentage of time (relative to the total
project time) that the client would spend with the
development team. This information was extracted

from the contractual agreement documents signed by
the client and the offshore vendor at the start of the
project.

3.1.5. Design and technology newness. The design
and technology newness variable measures how
familiar the project team is with the technology and
design concepts needed for a new project. This variable
was measured through a survey that was administered
before the start of each project. We reused the survey
questionnaire previously used by Takeishi [26] to
measure design and technology newness.

 To measure the design newness, the technical lead
of each project (not the project manager) was asked to
answer the following question: “For this project that
you are starting out, please rate the design newness
involved using the following 5-point scale.” The five
provided answers were:

1. No modification of design involved.
2. Some modification (changes were less than 30%) of

design that had been already developed at your
company.

3. A medium scale modification (30–60%) of design that
had already been developed at your company.

4. A major modification (more than 60-80%) of design
that had already been developed at your company.

5. Radically different design that is new to your
company.

To measure the technical newness, the technical

lead was asked the following question: “For the design
choice you have made for this project, please rate the
technology used to implement the design using the
following 5-point scale”. The 5-point scale went from
(1) I am very familiar with the technology to (5) a
completely new and unfamiliar technology. After
verifying (through factor analysis) that the individual
scores for the two-sub items contributed to a common
construct, we averaged the scores of the two sub-items
to obtain the overall score for design and technology
newness.

3.1.6. Estimated project effort. Estimated project
effort is the total person-hours estimated for the
project. We obtained this, at the start of the project,
from the project manager’s project planning and
estimation charts.

3.1.7. Allocated team size. Team size is the headcount
of the number of persons allocated for the project at the
start of the project.

3.1.8. Estimated code size. Estimated code size is the
estimated KLOC of the project. This was measured, at

Defects Density =
Defects

Code Size (KLOC)
Defects Density =

Defects

Code Size (KLOC)

532

the start of the project, from the project planning and
estimation charts of the project manager.

3.1.9. Data without any variance. We collected the
professional work experience of the team members, the
professional work experience of the project managers
and the attrition rate of employees in the projects from
the human resource department of the firms. However,
these variables demonstrated no significant variance
across the projects and we thus did not utilize them in
our empirical analysis.

The average professional work experience of the
team members in our sample was 36 months, the
average professional work experience of the project
managers in our sample was 108 months and the
average attrition rate in the project sample was 6.2%.
We believe that the high maturity of PCMM practices
and industry best practice human resource policies
implemented at the firms could be one reason for the
lack of significant variance of these parameters in our
sample.

3.2. Propensity score from the empirical data

After we collected our data, we developed the
empirical formulations to calculate the propensity
scores (i.e., the probability of a project team adopting a
non-standard software process) needed to validate our
model. Equation 1 presents our final regression model
with the coefficients and an error term.

Development
process
Choice

= α0 + α 1* (client specific knowledge) +
α2* (extent of client involvement)+ α3 *
(design and technology newness) + α4*
(estimated project effort) + α5*
(allocated team size) + α6* (estimated
code size) + ε1 …....(Eq. 1)

4. Results of analysis

In this section, we present the results of our
propensity score analysis. We first show the validity of
our model (using historical data – in this case, the data
from all 112 projects) and then use the model to show
the performance implications of using a non-standard
process.

4.1. Results: validation of model

In this section we provide validation results for our
propensity score model. We used the logistic
regression method to estimate the coefficients of
Equation 1 as the dependant variable (development
process choice) is a binary variable. The summary
statistics of the variables that were used to estimate the

regression coefficients are presented in Table 2 and the
regression results are presented in Table 1.

Overall, the results of our regression analysis
indicate that our empirical specification for
determining the probability of a particular project
adopting a non-standard development process is valid.
The model Chi-Squared statistic value is significant at
1% level, indicating that our model is statistically
valid. Unlike linear regressions, the coefficients
obtained from logistic regression are difficult to
interpret directly. This is because the values of the
coefficients indicate the extent to which a unit increase
in each of the corresponding input variables would
increase the log odds of the dependent variable
(development process choice). To make it easier to
visualize the true relationships between the input
variables and the dependent variable, we plotted the
following five graphs: for each of the five significant
input variables (allocated team size did not have a
significant effect on the results), we kept the other
variables at their mean levels (shown in Table 2), and
plotted that variable against the probability that the
variable would result in choosing the non-standard
development process choice. These graphs are shown
in Figures 1 to 5.

 From our empirical results, we observe that larger
projects (in terms of development effort and code size)
(Figure 4 and 5) as well as project teams that had a
larger extent of client-specific knowledge (Figure 1)
demonstrated a lower probability to adopt the non-
standard development processes. This result seems to
be reflective of the risk minimizing strategies of the
project teams when they are faced with large projects
and with familiar clients. We also observe that the
projects using completely new technology and design
(Figure 2) were more likely to use the non-standard
development process. This empirical result indicates
that the project teams at our research sites responded to
external risks such as dealing with newer technology
and design by adopting more agile processes.

In addition, our empirical results show that when
clients were involved to a larger extent with the project
teams (Figure 3), they were less likely to adopt agile
development processes. This result is surprising given
that the agile process manifesto emphasizes customer
centricity. When we analyzed this result further,
through discussions with managers and executives at
our research sites, we learnt that larger client
involvement in offshore (and outsourced) software
development might also mean that the clients wanted
more control. When viewed from the project control
and monitoring perspective, our empirical results make
intuitive sense as plan-based methods are a natural
choice when the emphasis is on detailed documentation

533

to help monitoring and auditing. We further discuss
this in Section 5.

Probability-values are shown in parentheses; results significant at 5%
are indicated by **; results significant at 1% are indicated by ***.
Other values, which are not in bold, are not statistically significant.
The model chi-squared statistic indicates that the goodness-of-fit of
our model is high. We use a two-tailed hypothesis test for deriving
all the p-values (i.e., we did not assume any positive or negative
direction of the result while testing).

Table 1. Regression Results

Figure 1. Effect of Client Specific Knowledge

Figure 2. Effect of Design and Technology Newness

Figure 3. Effect of the Extent of Client Involvement

Figure 4. Effect of the Planned Project Effort

Figure 5. Effect of Estimated Code Size

 Finally, our empirical results show that the best

predictors of process choice, in terms of probability of
choice being made, are the design and technology
newness metric (Figure 2), the planned project effort
(Figure 4), and the client specific knowledge metric
(Figure 1). The other two indicators (estimated code
size (Figure 5) and extent of client involvement metric
(Figure 3)) have much smaller but still statistically
significant effects.

0

5

10

15

20

25

30

1 2 3 4 5 6 7
Client Specific Knowledge

P
ro

ba
bi

lit
y

of
 N

on
-S

ta
nd

ar
d

P
ro

ce
ss

C

ho
ic

e
(%

)

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7

Design & Technology Newness

Pr
ob

ab
ilit

y
of

 N
on

-S
ta

nd
ar

d
Pr

oc
es

s
C

ho
ic

e
(%

)

0

1

2

3

4

5

6

7

0 20 40 60 80 100

Extant of Client Involvement (Person Hours)

Pr
ob

ab
ilit

y
of

 N
on

-S
ta

nd
ar

d
Pr

oc
es

s
C

ho
ic

e
(%

)

Variables Process Model Choice

Client specific knowledge -.546*** (0.000) α 1

Extent of client
involvement

-.003*** (0.000) α 2

Design and technology
newness

1.905*** (0.000) α 3

Estimated project effort -.001** (0.029) α 4

Allocated team size .0185 (0.864) α 5

Estimated code size -.001*** (0.000) α 6

Constant -.527 (0.878) α 7

Model Chi-Squared
Statistic

63.18*** (0.000)

Observations 112

0
10
20
30
40
50
60
70
80
90

100

2000 3000 4000 5000 6000 7000 8000 9000

Estimated Project Effort (Person Hours)

P
ro

ba
bi

lit
y

of
 N

on
-S

ta
nd

ar
d

P
ro

ce
ss

C

ho
ic

e
(%

)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

500 1000 1500 2000 2500 3000 3500

Estimated Code Size (KLOC)

P
ro

ba
bi

lit
y

of
 N

on
-S

ta
nd

ar
d

P
ro

ce
ss

C

ho
ic

e
(%

)

534

4.2. Results: process choice matters

Following the statistical validation of the
propensity score calculation model, we estimated the
probability of adoption of non-standard development
processes for all the projects in our sample. Then we
stratified our project sample in to 1) a treated sample
which consisted of the projects that adopted the non-
standard development processes and 2) a control
sample that consisted of the projects that adopted the
firm recommended standard plan-driven development
processes. We then proceeded to test the hypothesis if
the performance outcomes of the projects in the treated
sample were different from those in the control sample.

The first step in this analysis was to identify
projects that are equivalent to each other, except for
their process choice decision. This matching step is
important because, as mentioned before, our data is
collected from field research and not through
experiments. We did not have full control over all
experimental parameters and thus cannot be
completely sure that the choice of development process
was not being impacted by unknown variables. As
such, a simple mean difference test between the two
samples could yield biased results as there may have
been hidden influences affecting the choice of process.

To account for this possible non-random
influence, we utilize our validated empirical model of
process choice to calculate a propensity score (a
measure of how close things “match”) for each project.
Using these propensity scores and a set of matching
algorithms (Kernel matching, nearest neighbor

matching, stratification matching, difference-in-
difference method) we match each project in our
sample to its nearest equivalent. We then place all
projects in equivalent sets based on their propensity
scores, and then compare the performance indicators of
projects in the same set that have different software
development choices. By doing this matching step, we
are able to compare equivalent projects (across the six
input variables) and minimize the influence of
unobserved variables similar to a controlled lab
experiment.

Table 3 shows the results of comparing the
performance indicators of projects within each set that
have different development process choices.

Performance
Variable

Treated
Sample
Value

Matched,
controls
Sample
Value

Difference P-Value

Productivity 101.234 27.846 73.388 0.057*

Defect
Density 0.007 0.002 0.006 0.003**

Rework 1.224 5.290 -4.066 0.003**

Reuse 22.857 6.000 16.857 0.014**

Project
Management

Effort 11.982 4.964 7.017 0.178

Results significant at 5% are indicated by *; results significant at 1%
are indicated by **. Other values, which are not in bold, are not
statistically significant. We use a two-tailed hypothesis test (i.e., we
did not assume any positive or negative direction of the result while
testing). Higher scores are better for Productivity and Reuse with
the opposite being true for Defect Density and Rework. The unit for
each of these variables is the same as shown in Table 2.

Table 3. Effect of Non-standard Process Choice

Variable Unit Mean Std. Dev. Min Max

Model Input Variables

Client specific knowledge Unit-less measure. (7 is best, 1 is worst) 4.36 1.96 1 7

Extent of client involvement % of total project hrs 22.68 18.75 0 100
Design and technology

newness Unit-less measure. (5 is best, 1 is worst) 2.58 1.28 1 5

Estimated project effort
Person-hours 4864.24 4970.68 17 27231

Allocated team size No. project personnel 11.51 7.49 2 36

Estimated code size KLOC 169.74 404.99 0.37 3200

Process Performance Indicators

Productivity KLOC / total project hours 213.04 1470.93 0.16 12923.42

Defect Density Total Delivered Errors / KLOC 0.01 0.02 0.00 0.18

Rework % of total project hrs 10.00 7.00 0.00 27

Reuse % of total project KLOC 22.31 27.13 0.00 100

Project Management Effort % of total project hrs 10.08 9.83 0.14 55.44

Table 2. Summary Statistics of the Variables Used in the Analysis

535

Our results from this analysis indicate that projects
that adopted a non-standard development processes, by
augmenting plan-driven processes with agile methods,
performed significantly better than their counterparts
(treatment = 1 is non-standard development process
choice) in terms of improved productivity, and higher
reuse levels. However, we do see a minor increase in
the defect density levels in the projects that chose the
non-standard development processes. At the same
time, we also notice that the required effort to fix these
errors, as captured by the rework performance variable,
significantly reduced. We did not notice any significant
differences between the samples in terms of project
management effort spent on the projects.

These results are significant as they show that,
even in high process-maturity environments, deviating
from the established processes can result in significant,
non-trivial project performance improvements. Project
managers could thus use this model, at the start of the
project, to decide if changing some of the processes
used for the KPAs would result in better project
performance. Currently, our model only tells a
manager whether using a non-standard process would
result in performance improvements over the standard
process. In the future, we plan to augment our model to
provide specific process choices (i.e., use a particular
process for a particular KPA).

4.2. Results: summary

Overall, our empirical analysis supported the
“balanced process” hypothesis that augmenting plan-
driven processes with agile methods can lead to
improved performance. Also, we showed that five of
the six input variables have significant effects on the
project’s performance. These five input variables,
which can be measured at the start of a project, can be
reliably used to predict the development process choice
(standard plan-driven or non-standard agile) that
should be used by a starting software project. Finally,
these results serve as a rigorous empirical support for
prior theoretical arguments advanced by other scholars
[for e.g., 7, 9, 17].

5. Discussion

In this section, we discuss the robustness and the
limitations of this study as well as provide some
intuitive explanations for some of the observed effects.

5.1. Robustness of model

We checked the robustness of our empirical model
and coefficients in the following ways: first, we

clustered our data according to the firm the samples
came from and obtained robust variance estimations
for the coefficients of the propensity score model.
Next, we performed checks for multi-collinearity and
the effects of outliers before finalizing the results [6].
All these checks indicated that our final model and
coefficients were robust. We conducted additional
checks and sensitivity analyses to ensure the
robustness of the propensity scores and treatment effect
results shown in Table 3. First, we ensured that in each
matching category of projects, the mean propensity
score was not different between the treated and control
samples. Secondly, while analyzing the treatment
effects, we compared our results by employing
different matching algorithms (kernel matching,
nearest neighbor, stratification). Our results did not
significantly vary according to the matching algorithm
we used.

Breakdown point indicates that the significance level is > 0.1
Table 4. Sensitivity of Treatment Effects

Finally, we checked the sensitivity of our results

using the Rosenbaum bounds method [5], the results of
which are presented in Table 4. In this sensitivity
testing method, the probability (log odds) of
differential assignment due to unobserved factors
(Gamma) is repeatedly varied to increase the bias
introduced in our empirical model. The increased bias

Gamma

Upper-
bound

significance
level

Lower
bound

significance
level

Model
break down

point

Productivity

1 (typical bias) 0.057 0.057

1.5 (moderate
bias) 0.149 0.014 Break

down point
2 (High bias) 0.246 0.004

Rework

1 (typical bias) 0.003 3
No

Breakdown
1.5 (moderate

bias) 0.00 0.014

2 (High bias) 0.000 0.03
Re-use

1 (typical bias) 0.014 0.014
No

Breakdown
1.5 (moderate

bias) 0.040 0.002

2 (High bias) 0.090 0.000

Defect Density

1 (typical bias) 0.023 0.023

1.5 (moderate
bias) 0.072 0.004

2 (High bias) 0.131 0.009 Break
down point

536

eventually breaks down our model and the treatment
effects completely vanish (i.e., the upper-bound
significance level becomes > 0.1). The sensitivity
analyses of our model, shown in Table 4, indicate that
the model developed in this study is robust and does
not breakdown within reasonable ranges of the
artificially introduced bias. In particular, the model
only breaks down at 1.5 bias or higher – not at regular
1.0 bias levels. This shows that the model is quite
robust to normal data variations.

5.2. Qualitative insights of results

In this section we provide some qualitative
insights on how the adoption of agile methods to
implement some of the CMM KPAs, helped the project
teams to perform better. In addition to project size
related factors, client specific knowledge, client
involvement in the projects, and the design and
technology newness were the other important
considerations that project teams at our research sites
used in deciding whether to adopt agile methods.

5.2.1. Impact of newness. Our observation of the
project teams revealed that the main problem they
faced when given a project involving new clients or
new technology was the inadequacy in the
organizational process templates to address their
specific needs. For example, we noticed that the cost
and effort estimation formulas and guidelines
developed by the in-house SEPG teams were not able
to handle projects that involved heavy use of the
emerging scripting languages and business process
modeling languages. Projects that involved porting and
integrating business applications across multiple
enterprise environments (for example, applications
integrating SAP’s Finance and Control module with
Siebel’s CRM system) also had considerable difficulty
in using the firm recommended estimation tools. The
Mean Error in Estimation (MRE) when using the
firm’s standard estimation templates for the 34 projects
that chose the non-standard approach was more than
50%. (Note that the MRE was calculated by us only
after the respective project closure event to corroborate
our insight).

We noticed that teams faced with such situations
benefitted when they adopted agile planning methods.
For example, some project teams chose a rapid time-
boxing-based planning approach (in-depth task
planning only for very short term activities; tasks in the
longer term planned only in broad strokes). With this
planning method, individual team members faced more
uncertainty over their tasks in the project. However,

overall as a team, they had more opportunities to help
each other and conduct community-based learning
programs. We believe that these community-based
learning interventions during the course of the project
could have contributed to the better performance of
these teams (as observed in the aggregated results). A
detailed analysis on such performance enhancing
learning methods can be found in [23].

5.2.2. Impact of client’s perceptions on control. In
understanding the role of the client’s involvement in
influencing the process choices of teams, we observed
that the client’s perception on control of offshore
software development played a key role. Control refers
to the set of mechanisms designed to manage the
processes and individuals such that the desired
objectives are achieved [15]. At our research sites, we
noticed that the clients who preferred behavioral-
control mechanisms over outcome-based control
mechanisms were more involved with the offshore
team members. Use of behavior-control mechanisms
emphasize the specification of detailed procedures for
tasks and the monitoring of adherence to these
procedures. On the other hand outcome-based control
mechanisms specify only the final goals of the projects
and the monitoring of whether the final project goals
were met. Thus, behavior-controls expect a plan-driven
approach and hence we notice that the project teams
that dealt with clients emphasizing these control
approaches had lesser propensity to choose non-
standard process approaches.

5.3. Putting the model to practice

We believe that the process choice model
developed in this paper can be put to general practice
at most software engineering process groups. The
necessary prerequisites for operationalizing our model
for real world projects are threefold; First, the firm
adopting our model should have historical project
performance and process data that can be used to
estimate our model in the firm’s particular context
(e.g., generate company specific coefficients for the
regression model shown in Section 3.2). Second, there
is a need to diligently track the process variations
implemented at the firm (to determine standard and
non-standard process choices). Finally, detailed data
collection (to obtain the project-specific inputs to the
model), through both surveys and objective data
gathering, is necessary even before a project’s
development activities are initiated. These
requirements suggest that project teams wanting to
adopt the models and methods described in this paper
need to be operating in a reasonably mature process

537

environment where changes and process deviations
happen in a controlled environment.

5.4. Limitations of study

This study has a number of limitations which we list
and discuss in this section.

5.4.1. Domain specificity. First, the empirical context
of the study might limit the generalization of our
results to the types of firms we measured: highly
mature offshore development firms that specialize in
developing custom enterprise business solutions. It is
not clear if these results will apply to other
organizational scenarios. Further, we studied only
software development projects, and our sample did not
include data from other types of software activities
such as maintenance or reengineering.

5.4.2. Binary coding of process choices. In this paper,
we limited our treatment of process choices to a binary
decision – standard and non-standard process. In
particular, as long as a particular project changed any
of the firm mandated implementation mechanism for
the 24 CMM KPAs, we considered it a non-standard
process. We did this to primarily build a simple,
parsimonious empirical model to capture the causal
effects of process deviations on performance. This
approach allows us to focus on the validity and
viability of the broader phenomena of interest: whether
augmenting structured, plan-based methods with agile
processes can lead to positive outcomes. This approach
is still useful for managers to determine the effects of
one process choice over another. We are working on
techniques to remove the binary limitation in our
model – allowing us to handle a much richer set of
process choices.

5.4.3. Non-unified process model. In this paper, we
presented a model that examined values for the six
process performance indicators based on the chosen
development process. However, these values still have
to be manually interpreted before a final decision
regarding the viability of the chosen process can be
made. Hence, to obtain best results, project managers
will have to understand the relationships between the
five performance indicators when using this model.

We are currently developing methods that can
automatically combine the five performance indicators,
accounting for the individual risks and tradeoffs, using
a theoretically sound formulation, and output a single
clear indication of whether the selected process is
beneficial or otherwise. These automatic methods
would, in particular, allow the model to be easily used

by all project teams in a company – with no regard for
their technical competency or management
capabilities.

5.4.4. Limitation of vendor focus. Accounting for the
individual risks and tradeoffs faced by a project team
beyond the development environment factors included
in our model necessitate a client-vendor dyadic study.
We could not get the approvals to collect individual
customer data in detail and hence could not perform
the required dyadic study. We thus limited this paper to
analyzing process choice impacts using influencing
factors drawn solely from the vendor’s development
environment.

7. Conclusion

In this paper, we analyzed process deviations in a
highly structured, plan-driven offshore development
environment to empirically test the “balanced process”
hypothesis, i.e., if augmenting plan-driven
development processes with agile methods lead to
superior project performance outcomes. We first
discovered, through our field research, the key factors
that influence process choice decisions in offshore
software development. We then developed a propensity
score based empirical model to analyze the causal
linkages between process choices and five key project
performance outcomes. Our results show that
augmenting the highly structured plan-driven processes
employed in offshore software firms with agile
practices can lead to superior performance outcomes.
This study also shows that it is possible for software
managers to decide a-priori on the development
process choice that is most likely to achieve relatively
better performance for their projects.

We are working on better understanding the
individual risks and tradeoffs that each process
deviation brings to the fore by conducting a detailed
field test of our model at the two firms. This will allow
us to understand a) how to combine various
performance indicators to obtain process choice
decisions, and b) the effort of specific process choices
on specific projects/KPAs. To accomplish this, we are
taking a longitudinal study approach by observing the
long term effects of the process choices made by the
teams at these firms.

8. References

[1] I. Aaen, J. Arent, L. Mathiassen, and O.
Ngwenyama, "A conceptual map of software
process improvement," Scandinavian journal of
information systems, vol. 12, pp. 123-146, 2001.

538

[2] P. Abrahamsson, J. Warsta, M. T. Siponen, and
J. Ronkainen, "New directions on agile
methods: a comparative analysis," in 25th
International Conference on Software
Engineering, Portland, OR, 2003, pp. 244-254.

[3] P. J. Ågerfalk and B. Fitzgerald, "Flexible and
distributed software processes: old petunias in
new bowls?: Introduction," Communications of
the ACM, vol. 49, pp. 26-34, 2006.

[4] M. Agrawal and K. Chari, "Software effort,
quality, and cycle time: a study of CMM level 5
projects," IEEE Transactions on software
engineering, vol. 33, pp. 145-156, 2007.

[5] S. O. Becker and M. Caliendo, "Sensitivity
analysis for average treatment effects," The
Stata Journal, vol. 7, pp. 71-83, 2007.

[6] D. A. Belsley, E. Kuh, and R. E. Welsch,
Regression Diagnostics: Identifying influential
data and sources of collinearity. New York:
John Wiley & Sons, 1980.

[7] B. Boehm, "Get ready for agile methods, with
care," IEEE Computer, vol. 35, pp. 64-69, 2002.

[8] B. Boehm and D. Port, "Balancing Discipline
and Flexibility with the Spiral Model and
MBASE," CrossTalk, vol. Dec 2001, pp. 23-28,
2001.

[9] A. Cockburn, "Selecting a project's
methodology," IEEE Software, vol. 17, pp. 64-
71, 2000.

[10] B. Curtis, "The global pursuit of process
maturity," IEEE Software, vol. 17, pp. 76-78,
2000.

[11] M. Deck, "Managing process diversity while
improving your practices," IEEE Software, vol.
18, pp. 21-27, 2001.

[12] D. E. Harter, M. S. Krishnan, and S. A.
Slaughter, "Effects of process maturity on
quality, cycle time, and effort in software
product development," Management Science,
vol. 46, pp. 451-466, April 2000 2000.

[13] D. E. Harter and S. A. Slaughter, "Quality
Improvement and Infrastructure Activity Costs
in Software Development: A Longitudinal
Analysis," Management Science, vol. 49, pp.
784-800, June 2003 2003.

[14] J. Herbsleb, D. Zubrow, D. Goldenson, W.
Hayes, and M. Paulk, "Software quality and the
capability maturity model," Communications of
the ACM, vol. 40, pp. 30-40, June 1997 1997.

[15] L. Kirsch, S. V, D.-G. Ko, and R. L. Purvis,
"Controlling information systems development
projects: the view from the client," Management
Science, vol. 48, pp. 484-498, 2002.

[16] D. H. Kitson and S. M. Masters, "An analysis of
SEI software process assessment results: 1987-

1991," in 15th International Conference on
Software Engineering, Baltimore, MD, 1993,
pp. 68-77.

[17] M. Lindvall and I. Rus, "Process diversity in
software development," IEEE Software, vol. 17,
pp. 14-18, 2000.

[18] M. Lycett, R. D. Macredie, C. Patel, and R. J.
Paul, " Migrating agile methods to standardized
development practice," IEEE Computer, vol.
36, pp. 79-85, 2003.

[19] P. S. Pande, R. S. Neuman, and R. R.
Cavanagh, The six sigma way: How GE,
Motorola, and other top companies are honing
their performance: McGraw-Hill Professional,
2007.

[20] M. C. Paulk, "Extreme programming from a
CMM perspective," IEEE Software, vol. 18, pp.
19-26, Nov 2001 2001.

[21] M. C. Paulk, "How ISO 9001 compares with the
CMM," IEEE Software, vol. 12, pp. 74-83, Jan
1995 1995.

[22] M. C. Paulk, B. Curtis, M. B. Chrissis, and C.
V. Weber, "Capability Maturity Model," IEEE
Software, vol. 10, pp. 18-22, 1993.

[23] N. Ramasubbu, S. Mithas, M. S. Krishnan, and
C. Kemerer, "Work dispersion, process-based
learning, and offshore software development
performance," MIS Quarterly, vol. 32, p. in
press, 2007.

[24] D. J. Reifer, "Profiles of Level 5 CMMI
Organizations," Journal of defense software
engineering, vol. 2007, p.
http://www.stsc.hill.af.mil/crosstalk/2007/01/07
01Reifer.html, 2007.

[25] D. J. Reifer, "XP and the CMM," IEEE
Software, vol. 20, pp. 14-15, 2003.

[26] A. Takeishi, "Knowledge partitioning in the
interfirm division of labor: The case of
automotive product development,"
Organization Science, vol. 13, pp. 321-338,
May-June 2002 2002.

[27] A. Tiwana, "Knowledge partitioning in
outsourced software development: A field
study," in International conference on
information systems, Seattle, 2003.

[28] L. Williams and A. Cockburn, "Agile software
development: it's about feedback and change,"
IEEE Computer, vol. 36, pp. 39-43, 2003.

539

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
