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Abstract 

 
We present the results of a three year field study of 

the software development process choices made by 
project teams at two leading offshore vendors. In 
particular, we focus on the performance implications 
of project teams that chose to augment structured, 
plan-driven processes to implement the CMM level-5 
Key Process Areas (KPAs) with agile methods.  Our 
analysis of 112 software projects reveals that the 
decision to augment the firm-recommended, plan-
driven approach with improvised, agile methods was 
significantly affected by the extent of client knowledge 
and involvement, the newness of technology, and the 
project size. Furthermore this decision had a 
significant and mostly positive impact on project 
performance indicators such as reuse, rework, defect 
density, and productivity. 
 
1. Introduction 
 

The choice of software development process is 
considered to be a crucial factor in building systems on 
time and with high quality. As a result, there are 
numerous software development process frameworks 
and methodologies available for software teams. The 
comparative strengths and weaknesses of the prevalent 
software development processes have been extensively 
studied in prior research [for e.g., 1, 2, 3, 7, 16, 20, 21]. 
However, there is no one universally applicable or 
unanimous choice of development process. In the face 
of such diversity, software development organizations 
continue to invest heavily in software process 
improvements by standardizing their development 
processes [10]. This standardization, i.e., minimizing 
heterogeneity by adopting one uniform process across 
the firm, has been shown to lead to benefits of 
improved productivity, quality and cycle time [4, 12, 
13, 14].  

Firms that have achieved reasonably high levels of 
process standardization are usually said to be operating 

at high levels of process maturity as exemplified by the 
CMM level-5 [24] and Six-Sigma firms [19]. The two 
institutions used for this study were both assessed at 
CMM level-5. As such, they mandated the use of a 
highly structured, plan-based approach for the 
operationalization of all the CMM Key Process Areas 
(KPAs). Our goal is to investigate the performance 
outcomes of project teams that deviated from this 
mandate by adopting an agile approach to the 
implementation of the CMM KPAs in their projects. 

 While there have been commentaries and 
theoretical arguments from other scholars [7, 8, 9, 11, 
17, 18, 20, 25, 28], this study is a first step in the 
direction to empirically test the “balanced process 
hypothesis” [8], and investigate the performance 
impacts of process diversity, albeit in the narrow 
context of offshore software development. Using data 
collected from 112 software projects from two leading 
offshore software development firms, we empirically 
test the hypothesis if augmenting the standard plan-
driven development processes with agile methods leads 
to superior project performance. Also, through field 
research we uncover the dominant factors specific to 
offshore software development that propelled some 
project teams to choose a non-standard approach to 
their development processes over the standard 
processes recommended by their firms.  
 
2. Research sites: high process maturity 

environments 
 

Consistent with the research goals of this study, 
we sought to observe the development process choices 
at firms that employ rigorous, standardized processes, 
and at the same time provide room for improvisations. 
We obtained permission to conduct our research at 
development centers of two different leading offshore 
software firms that fit our criterion. The development 
centers involved in our study had been assessed to be 
operating at the CMM and People CMM (PCMM) 
level-5, and had won several awards for superior 
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quality management practices.  Thus, this setting 
provided an ideal environment for conducting our 
study on development process choices. 

The CMM specifies a series of actions that a 
company can perform to optimize and streamline its 
internal processes (across all aspects of the company). 
The Level-5 certification is the highest certification 
level and indicates that the company has been assessed 
as having highly optimized processes across 24 Key 
Process Areas (KPA). Companies are free to 
implement these KPAs using any process they want as 
long as they satisfy the goals specified by the CMM. 
Further details about the CMM certification process 
can be found elsewhere [22]. 

Both firms were equivalent in terms of the total 
number of employees (about 25,000) and annual 
revenues (about two billion USD) at the start of this 
study. Both firms have a centralized Software 
Engineering Process Group (SEPG) that is responsible 
for governance of development processes. The SEPG 
teams at both the firms invested heavily in 
standardizing the development processes prevalent at 
the firms. The standard, firm-wide recommended 
processes, at the time of this study, at both firms, were 
highly structured, plan-based approaches for each of 
the KPAs of the CMM. Any non-standard processes 
employed by individual projects needed prior approval 
and were actively monitored by the SEPGs. To 
maintain flexibility, tailoring of the standardized set of 
processes (to use more agile methods for specific 
KPAs for example) was allowed at the individual 
project level. However all process tailoring was closely 
monitored by Software Quality Assurance (SQA) 
personnel who were part of the project team. The SQA 
personnel at both the firms reported directly to the 
SEPG managers and not to the respective project 
managers. We discuss the process choice variation 
across the projects in more detail in Section 3.1.1. 

Through an analysis of the weekly reports 
submitted by the SQA personnel in charge of 
individual projects, we observed the incidents of non-
compliance to standardized development processes. 
While the individual SQA personnel were authorized 
to intervene and correct deviations due to human errors 
and lethargy, voluntary and systemic deviations had to 
be discussed at the organizational level SEPG 
meetings. It was through our participation in these 
internal, non-compliance meetings that we discovered 
that some managers wanted to augment the heavily 
structured, documentation oriented, plan-based 
processes widely prevalent at the firms with agile 
processes.  

In particular, several project teams were using 
agile processes to operationalize the CMM KPAs 
instead of the standardized process templates 

recommended by the SEPG. Since these deviations did 
not affect the overall strategic mandate of the firms, 
which was to be a “CMM level-5” company, the top 
management at our research sites did not see such non-
standard process choices as an immediate threat. 
However, they were curious to understand the 
implications and performance outcomes of these non-
compliances in the long run. This coincided well with 
our research interest, and hence our research goals 
struck a chord with the interests and motives of the 
executives at our research sites. 

Thus, we set out to answer the following open 
empirical questions at our research sites:  

1. Are there specific conditions that encourage the 
shift from standardized processes to non-standard 
software development processes? 

2. Do the non-standard approaches that mixed plan-
based processes with agile methods lead to 
significant improvements in eventual project 
performance? 

 
3. Modeling the causal links: process choice 

and performance 
 

The first empirical research question raised in the 
study deliberates the reasons for the adoption of non-
standard development processes that augment plan-
based approaches with agile practices, and the second 
question seeks to analyze the causal effects due to the 
adoption of non-standard development processes. 
However the research setting in this study does not 
facilitate experimentation – recall that we are only 
observing real world projects that are being consumed 
by real customers who pay for the software application. 
Hence experimentation, especially induced by external 
researchers, is not feasible. In the absence of 
experimental data, we use observational data collected 
through our field research. We then employ a 
propensity score stratification analysis method to infer 
the causal relationships raised by our research 
questions. This method has been utilized by 
researchers from other fields to investigate causal 
effects using observational data [33]. We 
operationalized our research method in the following 
steps: 

  
Step-1: Through interviews, discussions, non-intrusive 

observations, and surveys we identify the 
possible list of factors that drive the adoption of 
the non-standard process implementations at our 
research sites.  

Step-2: After collecting data on the variables identified 
in step 1 and statistically verifying them, we 
estimate the probability of a project team 
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adopting a non-standard process. This is called 
the propensity score for a project. 

Step-3: We separate the sample of our projects into 
“treated” (the projects that adopted non-standard 
processes) and “controls” (the projects that 
selected the standard processes). Using the 
propensity scores calculated in step 2, we 
“match” the individual projects in the “treated” 
sample with similar projects in the “controls” 
sample.  

Step-4: By statistically comparing the performance 
outcomes of the “treated” projects with the 
matched projects from the “controls” group (i.e., 
projects with similar propensity score have a 
similar probability of adopting a non-standard 
process), we draw inferences on the 
performance impacts of the process choice. 

 
3.1. Observational data collection 
 

Our data collection effort was spread across a 
three year time period. In this period, we followed 112 
software projects from start to finish, and gathered 
detailed data on the software processes and project 
performance of each of these projects. For the first 
eleven months of the data collection period, one of the 
authors was present in the field and observed project 
activities on a day-to-day basis using a non-intrusive 
approach. For the rest of the three year data collection 
period, we conducted separate weekly teleconferences 
with a volunteer from each firm’s SEPG department. 
These volunteers helped us collect regular process and 
performance data for each of the projects that were 
being studied. The volunteers were neutral observers 
and were not affiliated with any of the projects in our 
sample.  Out of the 112 projects, 34 project teams 
employed non-standard process. 

We obtained the data required for this study 
through interviews, surveys as well as from the internal 
process databases maintained by the quality division of 
each firm. As part of the CMM process, each project 
was required to accurately and consistently report the 
data used for this paper. We randomly sampled 
portions of the data at regular intervals to check for 
accuracy and consistency (either directly when we 
were onsite or through the help of the volunteers). In 
addition, the data for all the 112 projects used in our 
study was audited, and verified as correct, by the 
quality control group of each firm. Furthermore, except 
for the data from the 34 projects that followed non-
standard software development processes, all data used 
in this study was audited by external agents as part of 
the regular CMM level-5 compliance checks. We are 
thus confident that the data used in this paper is 

reliable and of high quality and that we have a rich 
understanding of the context in which these software 
projects were executed.  

In the rest of the section, we describe the 
individual variables used for this analysis. These 
variables were intentionally chosen with an aim to 
practically deploy the methodology developed in this 
study in real projects.  
 
3.1.1. Development process choice variable. When a 
new software project is initiated, the project manager, 
along with the development team, can choose to follow 
the standard development process that is prevalent in 
the firm or follow a new or non-standard development 
process for the project. As mentioned earlier, at both 
our research sites the standard company approved 
process for implementing each of the CMM level-5 
KPAs was a highly structured plan-based approach.   

Project teams that choose to follow non-standard 
development processes had to seek permission from 
the central Software Engineering Process Group 
(SEPG). At the time of our data collection, 34 projects 
had been formally approved to use non-standard 
processes to implement the CMM level-5 KPAs for 
their projects. All of the non-standard processes used 
were agile methods – some projects used versions of 
agile RUP while others used versions of XP or 
SCRUM.  

Each of these 34 projects used different process 
choices across different KPAs (i.e., none of the 34 
projects used similar processes across all 24 KPAs 
compared to every other project). Hence, to obtain 
statistically significant results, we grouped all the 34 
projects that used a non-standard process for at least a 
KPA together. By doing this, we are still able to 
meaningfully quantify the performance impact of 
choosing at least one non-standard process for the 
project. The variable ‘Development Process Choice’ is 
thus a binary variable that specifies the development 
process that was used. The non-standard development 
process is assigned the value of 1 and the standard, 
firm-recommended development process is assigned 
the value of 0.  

We plan to collect more data about projects using 
non-standard processes in the near future and then use 
the larger data set to tease out the effects of particular 
process choices on particular KPAs in future research. 
 
3.1.2. Performance outcome variables. For this work, 
we use five different performance indicators to 
quantify the goodness of the software development 
process chosen. These performance indicators were: 
 

1)  Development productivity: Development 
productivity is defined as the ratio of software 
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code size in KLOC to the total development effort 
in person-hours.  

2)  Defect Density: Defect density is defined as the 
number of unique problems, per KLOC, that 
were reported, before project signoff, by 
customers during the acceptance tests and 
production trials. It is calculated as follows:  

 
3) Reuse: Reuse in this study is measured as the 

amount of project code, measured as a percentage 
of the total project code size, which was obtained 
from the central generic code libraries maintained 
by the two data collection sites.  Reused modules 
and objects were easy to find and count as every 
project we studied explicitly tagged reused code 
with unique identification. This was to make it 
easy to find and replace generic code where 
necessary. 

4) Rework: It is measured as the percentage of total 
actual project hours spent on fixing bugs reported 
by customers during acceptance tests and during 
the warranty period.  

5) Project Management Effort: This variable is 
measured as the percentage of total actual project 
hours spent on project management activities. This 
data was retrieved from the internal time sheets of 
the project manager.  

 
3.1.3. Client specific knowledge. Client specific 
knowledge was measured through a project manager 
survey before the start of the project. The survey had 
the following six items measured on a 7-point scale (1 
indicated no knowledge at all while 7 indicated 
complete knowledge): 
 
1. How well do you know the project objectives of the client? 
2. How well do you know the business processes of the 

client? 
3. How well do you know the business rules of the client? 
4. How well do you know the IT infrastructure of the client? 
5. How well do you know the IT norms and standards 

followed by the client? 
6. How well do you know the interoperability constraints of 

the client’s IT infrastructure? 
  

These survey items were adapted from prior 
information systems and management studies [26, 27]. 
The average score of the six survey items provided the 
score for the ‘client specific knowledge’ variable.  
 
3.1.4. Extent of client involvement. This variable is 
the estimated percentage of time (relative to the total 
project time) that the client would spend with the 
development team. This information was extracted 

from the contractual agreement documents signed by 
the client and the offshore vendor at the start of the 
project.  
 
3.1.5. Design and technology newness. The design 
and technology newness variable measures how 
familiar the project team is with the technology and 
design concepts needed for a new project. This variable 
was measured through a survey that was administered 
before the start of each project. We reused the survey 
questionnaire previously used by Takeishi [26] to 
measure design and technology newness. 

 To measure the design newness, the technical lead 
of each project (not the project manager) was asked to 
answer the following question: “For this project that 
you are starting out, please rate the design newness 
involved using the following 5-point scale.” The five 
provided answers were: 

 
1. No modification of design involved. 
2. Some modification (changes were less than 30%) of 

design that had been already developed at your 
company. 

3. A medium scale modification (30–60%) of design that 
had already been developed at your company. 

4. A major modification (more than 60-80%) of design 
that had already been developed at your company. 

5. Radically different design that is new to your 
company. 
  
To measure the technical newness, the technical 

lead was asked the following question:  “For the design 
choice you have made for this project, please rate the 
technology used to implement the design using the 
following 5-point scale”. The 5-point scale went from 
(1) I am very familiar with the technology to (5) a 
completely new and unfamiliar technology. After 
verifying (through factor analysis) that the individual 
scores for the two-sub items contributed to a common 
construct, we averaged the scores of the two sub-items 
to obtain the overall score for design and technology 
newness.  
 
3.1.6. Estimated project effort. Estimated project 
effort is the total person-hours estimated for the 
project. We obtained this, at the start of the project, 
from the project manager’s project planning and 
estimation charts.   
 
3.1.7. Allocated team size. Team size is the headcount 
of the number of persons allocated for the project at the 
start of the project.  
 
3.1.8. Estimated code size. Estimated code size is the 
estimated KLOC of the project. This was measured, at 

Defects Density =
Defects

Code Size ( KLOC)
Defects Density =

Defects

Code Size ( KLOC)
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the start of the project, from the project planning and 
estimation charts of the project manager.   
 
3.1.9. Data without any variance. We collected the 
professional work experience of the team members, the 
professional work experience of the project managers 
and the attrition rate of employees in the projects from 
the human resource department of the firms. However, 
these variables demonstrated no significant variance 
across the projects and we thus did not utilize them in 
our empirical analysis.  

The average professional work experience of the 
team members in our sample was 36 months, the 
average professional work experience of the project 
managers in our sample was 108 months and the 
average attrition rate in the project sample was 6.2%. 
We believe that the high maturity of PCMM practices 
and industry best practice human resource policies 
implemented at the firms could be one reason for the 
lack of significant variance of these parameters in our 
sample.  
 
3.2. Propensity score from the empirical data 
 

After we collected our data, we developed the 
empirical formulations to calculate the propensity 
scores (i.e., the probability of a project team adopting a 
non-standard software process) needed to validate our 
model. Equation 1 presents our final regression model 
with the coefficients and an error term. 

 
Development 
process 
Choice  

= α0 + α 1* (client specific knowledge) + 
α2* (extent of client involvement)+ α3 * 
(design and technology newness) + α4*  
(estimated project effort) + α5* 
(allocated team size) + α6* (estimated 
code size) + ε1 …....(Eq. 1)                                          

 
4. Results of analysis 
 

In this section, we present the results of our 
propensity score analysis. We first show the validity of 
our model (using historical data – in this case, the data 
from all 112 projects) and then use the model to show 
the performance implications of using a non-standard 
process. 
 
4.1. Results: validation of model 
 

In this section we provide validation results for our 
propensity score model. We used the logistic 
regression method to estimate the coefficients of 
Equation 1 as the dependant variable (development 
process choice) is a binary variable. The summary 
statistics of the variables that were used to estimate the 

regression coefficients are presented in Table 2 and the 
regression results are presented in Table 1.  

Overall, the results of our regression analysis 
indicate that our empirical specification for 
determining the probability of a particular project 
adopting a non-standard development process is valid. 
The model Chi-Squared statistic value is significant at 
1% level, indicating that our model is statistically 
valid. Unlike linear regressions, the coefficients 
obtained from logistic regression are difficult to 
interpret directly. This is because the values of the 
coefficients indicate the extent to which a unit increase 
in each of the corresponding input variables would 
increase the log odds of the dependent variable 
(development process choice). To make it easier to 
visualize the true relationships between the input 
variables and the dependent variable, we plotted the 
following five graphs: for each of the five significant 
input variables (allocated team size did not have a 
significant effect on the results), we kept the other 
variables at their mean levels (shown in Table 2), and 
plotted that variable against the probability that the 
variable would result in choosing the non-standard 
development process choice. These graphs are shown 
in Figures 1 to 5.  

 From our empirical results, we observe that larger 
projects (in terms of development effort and code size) 
(Figure 4 and 5) as well as project teams that had a 
larger extent of client-specific knowledge (Figure 1) 
demonstrated a lower probability to adopt the non-
standard development processes. This result seems to 
be reflective of the risk minimizing strategies of the 
project teams when they are faced with large projects 
and with familiar clients. We also observe that the 
projects using completely new technology and design 
(Figure 2) were more likely to use the non-standard 
development process. This empirical result indicates 
that the project teams at our research sites responded to 
external risks such as dealing with newer technology 
and design by adopting more agile processes. 

In addition, our empirical results show that when 
clients were involved to a larger extent with the project 
teams (Figure 3), they were less likely to adopt agile 
development processes. This result is surprising given 
that the agile process manifesto emphasizes customer 
centricity. When we analyzed this result further, 
through discussions with managers and executives at 
our research sites, we learnt that larger client 
involvement in offshore (and outsourced) software 
development might also mean that the clients wanted 
more control. When viewed from the project control 
and monitoring perspective, our empirical results make 
intuitive sense as plan-based methods are a natural 
choice when the emphasis is on detailed documentation 
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to help monitoring and auditing. We further discuss 
this in Section 5.  

Probability-values are shown in parentheses; results significant at 5% 
are indicated by **; results significant at 1% are indicated by ***. 
Other values, which are not in bold, are not statistically significant. 
The model chi-squared statistic indicates that the goodness-of-fit of 
our model is high. We use a two-tailed hypothesis test for deriving 
all the p-values (i.e., we did not assume any positive or negative 
direction of the result while testing). 

Table 1. Regression Results 

 
Figure 1. Effect of Client Specific Knowledge 
 

 
Figure 2. Effect of Design and Technology Newness 

 
Figure 3. Effect of the Extent of Client Involvement 

Figure 4. Effect of the Planned Project Effort 

 
Figure 5. Effect of Estimated Code Size 

 
 Finally, our empirical results show that the best 

predictors of process choice, in terms of probability of 
choice being made, are the design and technology 
newness metric  (Figure 2), the planned project effort 
(Figure 4), and the client specific knowledge metric 
(Figure 1). The other two indicators (estimated code 
size (Figure 5) and extent of client involvement metric 
(Figure 3)) have much smaller but still statistically 
significant effects. 
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4.2. Results: process choice matters 
 

Following the statistical validation of the 
propensity score calculation model, we estimated the 
probability of adoption of non-standard development 
processes for all the projects in our sample. Then we 
stratified our project sample in to 1) a treated sample 
which consisted of the projects that adopted the non-
standard development processes and 2) a control 
sample that consisted of the projects that adopted the 
firm recommended standard plan-driven development 
processes. We then proceeded to test the hypothesis if 
the performance outcomes of the projects in the treated 
sample were different from those in the control sample.  

The first step in this analysis was to identify 
projects that are equivalent to each other, except for 
their process choice decision. This matching step is 
important because, as mentioned before, our data is 
collected from field research and not through 
experiments. We did not have full control over all 
experimental parameters and thus cannot be 
completely sure that the choice of development process 
was not being impacted by unknown variables. As 
such, a simple mean difference test between the two 
samples could yield biased results as there may have 
been hidden influences affecting the choice of process.  

To account for this possible non-random 
influence, we utilize our validated empirical model of 
process choice to calculate a propensity score (a 
measure of how close things “match”) for each project. 
Using these propensity scores and a set of matching 
algorithms (Kernel matching, nearest neighbor 

matching, stratification matching, difference-in-
difference method) we match each project in our 
sample to its nearest equivalent. We then place all 
projects in equivalent sets based on their propensity 
scores, and then compare the performance indicators of 
projects in the same set that have different software 
development choices. By doing this matching step, we 
are able to compare equivalent projects (across the six 
input variables) and minimize the influence of 
unobserved variables similar to a controlled lab 
experiment.  

Table 3 shows the results of comparing the 
performance indicators of projects within each set that 
have different development process choices.  

  

Performance 
Variable 

Treated 
Sample 
Value 

Matched, 
controls 
Sample 
Value 

Difference P-Value 

Productivity 101.234 27.846 73.388 0.057* 

Defect 
Density 0.007 0.002 0.006 0.003** 

Rework 1.224 5.290 -4.066 0.003** 

Reuse 22.857 6.000 16.857 0.014** 

Project 
Management 

Effort 11.982 4.964 7.017 0.178 

Results significant at 5% are indicated by *; results significant at 1% 
are indicated by **. Other values, which are not in bold, are not 
statistically significant. We use a two-tailed hypothesis test (i.e., we 
did not assume any positive or negative direction of the result while 
testing).  Higher scores are better for Productivity and Reuse with 
the opposite being true for Defect Density and Rework. The unit for 
each of these variables is the same as shown in Table 2.   

Table 3. Effect of Non-standard Process Choice 
 

Variable Unit Mean Std. Dev. Min Max 

Model Input Variables 

Client specific knowledge Unit-less measure. (7 is best, 1 is worst) 4.36 1.96 1 7 

Extent of client involvement % of total project hrs 22.68 18.75 0 100 
Design and technology 

newness Unit-less measure. (5 is best, 1 is worst) 2.58 1.28 1 5 

Estimated project effort  
Person-hours 4864.24 4970.68 17 27231 

Allocated team size No. project personnel 11.51 7.49 2 36 

Estimated code size KLOC 169.74 404.99 0.37 3200 

Process Performance Indicators 

Productivity KLOC / total project hours 213.04 1470.93 0.16 12923.42 

Defect Density Total Delivered Errors / KLOC 0.01 0.02 0.00 0.18 

Rework % of total project hrs 10.00 7.00 0.00 27 

Reuse % of total project KLOC 22.31 27.13 0.00 100 

Project Management Effort % of total project hrs 10.08 9.83 0.14 55.44 

Table 2. Summary Statistics of the Variables Used in the Analysis 
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Our results from this analysis indicate that projects 
that adopted a non-standard development processes, by 
augmenting plan-driven processes with agile methods, 
performed significantly better than their counterparts 
(treatment = 1 is non-standard development process 
choice) in terms of improved productivity, and higher 
reuse levels. However, we do see a minor increase in 
the defect density levels in the projects that chose the 
non-standard development processes. At the same 
time, we also notice that the required effort to fix these 
errors, as captured by the rework performance variable, 
significantly reduced. We did not notice any significant 
differences between the samples in terms of project 
management effort spent on the projects.  

These results are significant as they show that, 
even in high process-maturity environments, deviating 
from the established processes can result in significant, 
non-trivial project performance improvements. Project 
managers could thus use this model, at the start of the 
project, to decide if changing some of the processes 
used for the KPAs would result in better project 
performance. Currently, our model only tells a 
manager whether using a non-standard process would 
result in performance improvements over the standard 
process. In the future, we plan to augment our model to 
provide specific process choices (i.e., use a particular 
process for a particular KPA).  
 
4.2. Results: summary 
 

Overall, our empirical analysis supported the 
“balanced process” hypothesis that augmenting plan-
driven processes with agile methods can lead to 
improved performance. Also, we showed that five of 
the six input variables have significant effects on the 
project’s performance. These five input variables, 
which can be measured at the start of a project, can be 
reliably used to predict the development process choice 
(standard plan-driven or non-standard agile) that 
should be used by a starting software project. Finally, 
these results serve as a rigorous empirical support for 
prior theoretical arguments advanced by other scholars 
[for e.g., 7, 9, 17]. 
 
5. Discussion 
 

In this section, we discuss the robustness and the 
limitations of this study as well as provide some 
intuitive explanations for some of the observed effects. 
 
5.1. Robustness of model 
 

We checked the robustness of our empirical model 
and coefficients in the following ways: first, we 

clustered our data according to the firm the samples 
came from and obtained robust variance estimations 
for the coefficients of the propensity score model. 
Next, we performed checks for multi-collinearity and 
the effects of outliers before finalizing the results [6]. 
All these checks indicated that our final model and 
coefficients were robust. We conducted additional 
checks and sensitivity analyses to ensure the 
robustness of the propensity scores and treatment effect 
results shown in Table 3. First, we ensured that in each 
matching category of projects, the mean propensity 
score was not different between the treated and control 
samples. Secondly, while analyzing the treatment 
effects, we compared our results by employing 
different matching algorithms (kernel matching, 
nearest neighbor, stratification). Our results did not 
significantly vary according to the matching algorithm 
we used.  

Breakdown point indicates that the significance level is > 0.1 
Table 4. Sensitivity of Treatment Effects 

 
Finally, we checked the sensitivity of our results 

using the Rosenbaum bounds method [5], the results of 
which are presented in Table 4. In this sensitivity 
testing method, the probability (log odds) of 
differential assignment due to unobserved factors 
(Gamma) is repeatedly varied to increase the bias 
introduced in our empirical model. The increased bias 

Gamma 

Upper-
bound 

significance 
level 

Lower 
bound 

significance 
level 

Model 
break down 

point 

Productivity 

1 (typical bias) 0.057 0.057  

1.5 (moderate 
bias) 0.149 0.014 Break 

down point 
2 (High bias) 0.246 0.004  

Rework 

1 (typical bias) 0.003 3 
No 

Breakdown 
1.5 (moderate 

bias) 0.00 0.014 

2 (High bias) 0.000 0.03 
Re-use 

1 (typical bias) 0.014 0.014 
No 

Breakdown 
1.5 (moderate 

bias) 0.040 0.002 

2 (High bias) 0.090 0.000 

Defect Density 

1 (typical bias) 0.023 0.023  

1.5 (moderate 
bias) 0.072 0.004  

2 (High bias) 0.131 0.009 Break 
down point 
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eventually breaks down our model and the treatment 
effects completely vanish (i.e., the upper-bound 
significance level becomes > 0.1). The sensitivity 
analyses of our model, shown in Table 4, indicate that 
the model developed in this study is robust and does 
not breakdown within reasonable ranges of the 
artificially introduced bias. In particular, the model 
only breaks down at 1.5 bias or higher – not at regular 
1.0 bias levels. This shows that the model is quite 
robust to normal data variations. 
 
 
5.2. Qualitative insights of results 
 

In this section we provide some qualitative 
insights on how the adoption of agile methods to 
implement some of the CMM KPAs, helped the project 
teams to perform better. In addition to project size 
related factors, client specific knowledge, client 
involvement in the projects, and the design and 
technology newness were the other important 
considerations that project teams at our research sites 
used in deciding whether to adopt agile methods.  
 
5.2.1. Impact of newness. Our observation of the 
project teams revealed that the main problem they 
faced when given a project involving new clients or 
new technology was the inadequacy in the 
organizational process templates to address their 
specific needs. For example, we noticed that the cost 
and effort estimation formulas and guidelines 
developed by the in-house SEPG teams were not able 
to handle projects that involved heavy use of the 
emerging scripting languages and business process 
modeling languages. Projects that involved porting and 
integrating business applications across multiple 
enterprise environments (for example, applications 
integrating SAP’s Finance and Control module with 
Siebel’s CRM system) also had considerable difficulty 
in using the firm recommended estimation tools. The 
Mean Error in Estimation (MRE) when using the 
firm’s standard estimation templates for the 34 projects 
that chose the non-standard approach was more than 
50%. (Note that the MRE was calculated by us only 
after the respective project closure event to corroborate 
our insight).     

We noticed that teams faced with such situations 
benefitted when they adopted agile planning methods. 
For example, some project teams chose a rapid time-
boxing-based planning approach (in-depth task 
planning only for very short term activities; tasks in the 
longer term planned only in broad strokes). With this 
planning method, individual team members faced more 
uncertainty over their tasks in the project. However, 

overall as a team, they had more opportunities to help 
each other and conduct community-based learning 
programs. We believe that these community-based 
learning interventions during the course of the project 
could have contributed to the better performance of 
these teams (as observed in the aggregated results). A 
detailed analysis on such performance enhancing 
learning methods can be found in [23].  

 
5.2.2. Impact of client’s perceptions on control. In 
understanding the role of the client’s involvement in 
influencing the process choices of teams, we observed 
that the client’s perception on control of offshore 
software development played a key role. Control refers 
to the set of mechanisms designed to manage the 
processes and individuals such that the desired 
objectives are achieved [15]. At our research sites, we 
noticed that the clients who preferred behavioral-
control mechanisms over outcome-based control 
mechanisms were more involved with the offshore 
team members. Use of behavior-control mechanisms 
emphasize the specification of detailed procedures for 
tasks and the monitoring of adherence to these 
procedures. On the other hand outcome-based control 
mechanisms specify only the final goals of the projects 
and the monitoring of whether the final project goals 
were met. Thus, behavior-controls expect a plan-driven 
approach and hence we notice that the project teams 
that dealt with clients emphasizing these control 
approaches had lesser propensity to choose non-
standard process approaches.  
 
5.3. Putting the model to practice 
 

We believe that the process choice model 
developed in this paper can be put to general practice 
at most software engineering process groups. The 
necessary prerequisites for operationalizing our model 
for real world projects are threefold; First, the firm 
adopting our model should have historical project 
performance and process data that can be used to 
estimate our model in the firm’s particular context 
(e.g., generate company specific coefficients for the 
regression model shown in Section 3.2). Second, there 
is a need to diligently track the process variations 
implemented at the firm (to determine standard and 
non-standard process choices). Finally, detailed data 
collection (to obtain the project-specific inputs to the 
model), through both surveys and objective data 
gathering, is necessary even before a project’s 
development activities are initiated. These 
requirements suggest that project teams wanting to 
adopt the models and methods described in this paper 
need to be operating in a reasonably mature process 
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environment where changes and process deviations 
happen in a controlled environment.  
 
5.4. Limitations of study 
 
This study has a number of limitations which we list 
and discuss in this section. 
 
5.4.1. Domain specificity. First, the empirical context 
of the study might limit the generalization of our 
results to the types of firms we measured: highly 
mature offshore development firms that specialize in 
developing custom enterprise business solutions. It is 
not clear if these results will apply to other 
organizational scenarios. Further, we studied only 
software development projects, and our sample did not 
include data from other types of software activities 
such as maintenance or reengineering.  
 
5.4.2. Binary coding of process choices. In this paper, 
we limited our treatment of process choices to a binary 
decision – standard and non-standard process. In 
particular, as long as a particular project changed any 
of the firm mandated implementation mechanism for 
the 24 CMM KPAs, we considered it a non-standard 
process. We did this to primarily build a simple, 
parsimonious empirical model to capture the causal 
effects of process deviations on performance. This 
approach allows us to focus on the validity and 
viability of the broader phenomena of interest: whether 
augmenting structured, plan-based methods with agile 
processes can lead to positive outcomes. This approach 
is still useful for managers to determine the effects of 
one process choice over another. We are working on 
techniques to remove the binary limitation in our 
model – allowing us to handle a much richer set of 
process choices. 
 
5.4.3. Non-unified process model. In this paper, we 
presented a model that examined values for the six 
process performance indicators based on the chosen 
development process. However, these values still have 
to be manually interpreted before a final decision 
regarding the viability of the chosen process can be 
made. Hence, to obtain best results, project managers 
will have to understand the relationships between the 
five performance indicators when using this model. 

We are currently developing methods that can 
automatically combine the five performance indicators, 
accounting for the individual risks and tradeoffs, using 
a theoretically sound formulation, and output a single 
clear indication of whether the selected process is 
beneficial or otherwise. These automatic methods 
would, in particular, allow the model to be easily used 

by all project teams in a company – with no regard for 
their technical competency or management 
capabilities.  
 
5.4.4. Limitation of vendor focus. Accounting for the 
individual risks and tradeoffs faced by a project team 
beyond the development environment factors included 
in our model necessitate a client-vendor dyadic study. 
We could not get the approvals to collect individual 
customer data in detail and hence could not perform 
the required dyadic study. We thus limited this paper to 
analyzing process choice impacts using influencing 
factors drawn solely from the vendor’s development 
environment.  
 
7. Conclusion 
 

In this paper, we analyzed process deviations in a 
highly structured, plan-driven offshore development 
environment to empirically test the “balanced process” 
hypothesis, i.e., if augmenting plan-driven 
development processes with agile methods lead to 
superior project performance outcomes. We first 
discovered, through our field research, the key factors 
that influence process choice decisions in offshore 
software development. We then developed a propensity 
score based empirical model to analyze the causal 
linkages between process choices and five key project 
performance outcomes. Our results show that 
augmenting the highly structured plan-driven processes 
employed in offshore software firms with agile 
practices can lead to superior performance outcomes. 
This study also shows that it is possible for software 
managers to decide a-priori on the development 
process choice that is most likely to achieve relatively 
better performance for their projects.   

We are working on better understanding the 
individual risks and tradeoffs that each process 
deviation brings to the fore by conducting a detailed 
field test of our model at the two firms. This will allow 
us to understand a) how to combine various 
performance indicators to obtain process choice 
decisions, and b) the effort of specific process choices 
on specific projects/KPAs. To accomplish this, we are 
taking a longitudinal study approach by observing the 
long term effects of the process choices made by the 
teams at these firms.  
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