
FlexSync: An aspect-oriented approach to Java synchronization

Charles Zhang
Department of Computer Science and Engineering

The Hong Kong University of Science and Technology
charlesz@cse.ust.hk

Abstract

Designers of concurrent programs are faced with many
choices of synchronization mechanisms, among which clear
functional trade-offs exist. Making synchronization cus-
tomizable is highly desirable as different deployment sce-
narios of the same program often prioritize synchronization
choices differently. Unfortunately, such customizations can-
not be accomplished in the conventional non-modular im-
plementation of synchronization. To enable customizability,
we present FlexSync, an aspect oriented synchronization
library, to enable the modular reasoning and the declar-
ative specification of synchronization. Complex Java sys-
tems can simultaneously work with multiple synchroniza-
tion mechanisms without any code changes. The FlexSync
load-time weaver performs deployment time optimizations
and ensures these synchronization mechanisms consistently
interact with each other and with the core system. We eval-
uated FlexSync on commercially used complex Java sys-
tems and observed significant speedups as a result of the
deployment-specific customization.

1 Introduction

In Java programs, synchronization is commonly referred
to as the coordination of multiple threads in accessing
shared program states. As concurrency becomes a com-
mon programming practice in the multi-core era, software
designers are faced with many choices of synchronization
mechanisms such as the use of locks, atomic blocks [7, 8],
and, more recently, software transactional memory [10, 21].
For their distinctive operational differences, clear func-
tional trade-offs exist among these synchronization mech-
anisms. This is problematic for building general-purpose
and reusable Java systems as, in conventional approaches,
synchronization mechanisms are “hardwired” to the appli-
cation logic through the use of library APIs or specialized
language constructs. At the same time, choosing the most
appropriate mechanism is increasingly a decision about how

reusable systems are being integrated in diversified compo-
sition contexts. Let us further elucidate this issue through a
simple example.

Our example examines a general-purpose data structure,
Buffer, used by multiple threads in a concurrent program.
Each thread makes accessor calls to store and to retrieve
data from the buffer, under the constraint that these accessor
calls (get or set) can only proceed when the state of the
Buffer is valid (full or empty). Inconsistency can hap-
pen if, for example, thread A empties the buffer after thread
B verifies that the buffer has data and before it retrieves the
data. We implemented three versions of the Buffer ex-
ample using the following popular synchronization facili-
ties: the Java monitors through the synchronized key-
word (lock), the block-level atomicity support (BA) using
two-phase-locking (2PL) as in [1], and the software trans-
actional memory library(stm) exemplified by dstm2 [10]
(Please refer to Section 2 for more introduction on 2PL-
based BA and dstm2). In Figure 11, we plot against the
number of concurrent threads the time taken by each version
to complete a batch of identical buffer operations . For the
lock version, we count the number of successful operations
and perform a retry if any inconsistency is detected. The
BA and STM versions produce no inconsistencies. One can
easily observe that the lock-based approach has the fastest
response time, whereas the BA implementation is slightly
slower. The performance of the dstm2 version experiences
significant fluctuations. It can be as fast as the BA approach
or 5-6 times slower.

The example shows that the choice of synchronization
mechanism for Buffer is dependent on what matters the
most to the domain of its application. For instance, the
use of locks is preferred if one desires high performance
and is capable of tolerating inconsistencies. The STM ap-
proaches are appealing to domains requiring transactional
semantics on the shared states and not sensitive to the fluc-
tuations of the processing time. If only requiring atom-

1All measurements are collected on a dual-core Linux workstation with
4GB of physical memory. The number of total threads ranges from 10 to
1000. Each point is taken as the shortest time of five runs.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 375

Figure 1. A comparison of response time
among locks, BA and STM

icity, applications would prefer the lock-based atomicity
support, which enlarges critical regions to trade the degree
of concurrency with the consistency of states. Therefore,
the buffer code, if it were to be used as a general-purpose
building lock of other concurrent application, cannot be
hardwired with any particular synchronization mechanism
afore-listed. The practice of client-side locking, such as the
synchronizedMap method of the Collection class,
is effective in treating this problem for types representing
data structures. However, we only use buffer as a problem
illustration. Our work considers complex reusable Java pro-
grams, many are concurrent themselves.

We use the buffer example to illustrate that, because ar-
chitectural compositions are difficult to predict, there are
no clear winners among different synchronization choices
when designing individual participating components. How-
ever, synchronization, once coded, is conventionally a non-
customizable feature because it requires systematic code-
level bindings to either language keywords or library APIs.
This inflexibility can incur as much as 40% performance
overhead, as our case studies of real commercial middle-
ware systems show. This problem will exacerbate drasti-
cally because the degree of reuse and integration will in-
crease dramatically in future software systems [17].

To modularize synchronization, we designed and eval-
uated FlexSync, including both an aspect-oriented library
and a load-time weaver, to enable the modular reasoning of
synchronization and the code-level separation of its mech-
anisms in reusable Java programs. Since synchronization
is a classic example of crosscutting concerns [12], we are
not the first [15, 5] to attempt a solution in the aspect ori-
ented programming (AOP) paradigm. The essential dif-
ferentiator for our approach is that we fully preserve how
synchronization is conventionally reasoned in design and
only change how it is expressed in code. Our approach is
based on the observation that, conventionally, the expres-

sion of synchronization intentions, i.e., declaring regions
of the program logic that require special synchronization
attention, is an implicit outcome of the direct use of spe-
cific synchronization mechanisms, i.e., library APIs or lan-
guage keywords. If these intentions have explicit and well-
defined program structures, they can be reasoned and ma-
nipulated by meta-programming such as AOP [12] as to
externalize reusable feature interactions between synchro-
nization and the core system. Therefore, the design of
FlexSync library APIs emphasizes on the ease of “picking
out” the intentions where common interaction logic, encap-
sulated by the library, can be automatically applied. The
FlexSync aspect weaver, an extension to the AspectJ as-
pect weaver, use static analysis, such as the control-flow
analysis and the escape analysis, to automatically reason
about the global composition and the interaction of synchro-
nization mechanisms. With FlexSync, the synchronization
code is modular and lives separately from the operational
code. We show that, through FlexSync, sophisticated Java
systems can simultaneously work with multiple synchro-
nization mechanisms of very different genres. The flexibil-
ity and the deployment time optimizations, made possible
by using FlexSync, can significantly improve the perfor-
mance for large complex systems.

We make the following contributions in this paper:
1. We first present the concept of the explicit separation

of intention and mechanism in the context of synchroniza-
tion design. We empirically show that such separation can
be achieved for large-scale and complex Java systems.

2. We present the FlexSync aspect synchronization li-
brary, which encapsulates patterns of interactions between
Java code and the synchronization mechanisms and expose
these patterns through a programming process called “tag-
ging”. We explain how the tagging process can attach
different synchronization mechanisms onto the same code
structure.

3. We present the FlexSync load-time synchronization
weaver which supports the global reasoning of synchroniza-
tion mechanisms in the scenarios of unanticipated compo-
sition of reusable systems.

4. We present a thorough evaluation of FlexSync-
based synchronization implementations, covering the pro-
gramming effort and its functional characteristics. We con-
tribute2 the source of the FlexSync library and the systems
we experiment with for the interested readers to inspect and
to perform further evaluations.

The rest of the paper is organized as follows: Section 2
introduces atomicity and the dstm2 implementation of soft-
ware transactional memory; Section 3 presents the design
methodology embodied in FlexSync. Section 4 evaluates
FlexSync through standard benchmarks and case studies.

2The FlexSync Project. URL:http://www.cse.ust.hk/
˜charlesz/flexsync

376

2 Background
Block-level atomicity
In the presence of multiple threads, the block-level atomic-
ity means a group of program executions, scoped lexically
within a block, is to be carried out serially without the
interference from the inter-leavings of other threads. In
Java systems where objects are dynamically allocated, we
use a two-phase-lock mechanism to acquire the associated
locks of all dynamic objects in the control flow of the
atomic block. These locks are released after the atomic
block exists. Our implementation is based on the cflow
constructs of AspectJ. Please refer to our source release
for the details of the implementation.

Software transactional memory
Software transactional memory (STM) provides runtime in-
frastructures to keep track of the reads and writes to the
shared program states. In STM, a collision can happen
when thread B performs writes on the shared data after they
are read by thread A. Then, the shared states are to be rolled
back and the operation is re-executed. This can cause the
large performance fluctuations because the chance of colli-
sion is subjective to the number of threads and the thread
scheduling that can be non-deterministic. The particular
STM library used in this research, dstm2, makes copies of
the shared states to support rollbacks. This technique is re-
ported to have the fastest runtime performance [10]. STM
offers programmers a simpler concurrency control mecha-
nism compared to the direct use of locks. In our application
of dstm2, we replaced the automatic state copy capability
in the original implementation with a callback method re-
quiring the manual implementations. This is because many
reads or writes in the systems that we have experimented
with are not performed by “setters” and “getters” as re-
quired by the original scheme.

3 FlexSync: the modular and the global rea-
soning of synchronization

Following the definitions in [13], the general design goal
of Flexsync is to first foster the modular reasoning of syn-
chronization by using the FlexSync API to explicitly ex-
press how synchronization mechanisms interact with the
operational logic. In addition, we address the global reason-
ing in the context of unanticipated program compositions,
through the Flexsync loadtime weaver. The rest of the sec-
tion present how we achieve these design goals in detail.

3.1 The separation of intention and mech-
anism

Synchronization is typically programmed as block-level
lexical scopes demarcated by either language keywords,

such as synchronized or atomic, or library calls, such
as the lock/unlock pairs of Lock objects. We say
that these scopes represent the synchronization intentions
of the developers, which identify the code regions requir-
ing special synchronization treatments. Meanwhile, we re-
fer to language keywords or API calls used in the demarca-
tions as the mechanisms, concerning the specific choices of
synchronization facilities. These two concepts are usually
undistinguished in conventional approaches.

In our current design, the separation of intention and
mechanism is achieved by assuming that synchronization
regions are method-like: the data flow in these regions
can be re-expressed following the input/output model of
a function. This is an effective way of making them
structurally explicit. This assumption is certainly true for
synchronized methods. In the case of synchronization
blocks, we performed a study of if these blocks can be
automatically transformed into methods using the Extract
method facility of the Eclipse JDT refactoring library. We
use an AST walker to retrieve the synchronization blocks
and ask the JDT API to return the refactoring status. We
studied four open source programs covering four types of
servers in which concurrency is extensively used: RPC
middleware (ORBacus3), JMS broker (OpenJMS4), web
server (Jigsaw5), and database server (Derby6). In our
study, we encountered three common causes of automatic
refactoring failures: early return (ER), where a return
statement is nested inside the block, multiple variable as-
signment (MV), where multiple local variables are written,
and branch selection (BR), where the block resides in a
branching block of either if or switch. Among these
failures, the ER case can be generically treated with by set-
ting a condition variable to true inside the refactored method
and checking this condition after the method returns. It re-
quires trivial source rewriting and, thus, can be automati-
cally treated.

In Table 1, we report the size of each program, the usage
statistics of synchronization, as well as the results of invok-
ing the Eclipse refactoring APIs. Our observation is that
ER accounts for the majority of the refactoring failures, and
over 97% of synchronization blocks in all of the four pro-
grams can be automatically re-expressed using functions.
The non-automatic blocks require the manual inspection
and the code restructuring. However, they are small in num-
ber. Our study validates our design assumption that syn-
chronization intentions can be enclosed by method bound-
aries.

3ORBacus: URL:http://www.iona.com/orbacus
4OpenJMS. URL:http://openjms.sourceforge.net
5Jigsaw. URL:http://www.w3.org/Jigsaw
6Derby URL:http://db.apache.org/derby/

377

I. Synchronization perspectives of the call graph

II. Call graph tagging with FlexSync

Figure 2. Perspectives and tagging

Program Derby Jigsaw OpenJMS ORBacus
Size 915320 160740 112968 189852

Synchronization usages
Method 294 637 204 466
Block 604 149 400 262
Total 898 786 604 728

Method Extraction Failures
ER 90 11 30 29
MV 18 2 9 3
BR 8 0 6 2
Degree 87.1% 99.7% 92.5% 95.3%
Degree 97.1% 98.3% 97.5% 99.3%
with ER

Table 1. Summary of Server Synchronization
Usage

3.2 The FlexSync synchronization library

Synchronization perspectives

The design of the FlexSync APIs is based on our obser-
vation that the interactions with different synchronization
mechanisms can be projected as different interpretations of

the same call graph. Suppose that Figure 2 (I-A) represents
the call graph of a fictitious Java program. To program the
lock-based approaches, including the atomicity support, we
need to identify class types encapsulating shared program
states as well as the method interfaces that could lead to
data races. This interpretation is illustrated in Figure 2 (I-
B). The use of STM is not generally concerned with the
state sharing and data races. We need to instead identify
transactional executions and the methods that cause reads
or writes to data involved in the transactional executions.
The corresponding representation of the original call graph
as depicted in Figure 2 (I-C).

Synchronization specification

These different interpretations of the calling relationships
are supported by FlexSync through a design process which
we characterize as “tagging”. There are two types of con-
ceptual tags: the role tag operates at the class level for the
declaration of what synchronization facilities to apply; the
action tag operates at the method level for where the facil-
ities are applied. Although we use the callgraph to explain
the tagging process, the use of FlexSync does not require
the knowledge of callgraphs. Role tags and action tags re-
quire only the local reasoning about a particular type. The

378

tags for specific synchronization mechanisms are as fol-
lows:

Lock The tag AutoLckTarget identifies class types
for which the execution of all of its methods are always pro-
tected by locks and, as default, by Java monitors. The tag
LckTarget identifies types that are caller-synchronized.
The methods susceptible to data races are tagged using
Guarded. For the call graph given in Figure 2 (I-A), class
type D is tagged as an AutoLckTarget as calls to all of
its methods are unconditionally synchronized. E, F and G,
are LckTargets, as they are selectively synchronized in the
caller’s lexical context. The tagged version of the call graph
is presented in Figure 2 (II-A).

Block atomicity The tag BAOwner identifies the class
types which the executions of one or more of its methods
are atomic. We identify these methods with the Atomic-
Execution tag. Classes having shared states, in this
case, are identified with the BATarget tag. We use the
AGM (atomic group member) tag on methods defined in
BATargets if, first, they cause reads or writes to shared
states, second, they are in the control flow of Atomic-
Executions. In our example (Figure 2 (II-B)), class D
has an atomic method d1. The control flow of d1 includes
calls to methods e1, f2 and g1. Therefore, these methods
are tagged with AGM and the corresponding class types E,
F and G with AtomTarget. Note that the use of AGM tags
does not require any knowledge of the control flow informa-
tion, and they are semantically identical to Guarded tags
in the Lock scenario. We use a different tag to allow the
FlexSync runtime automatically manage their relationships
with the control flow of the atomic executions.

STM execution The tag Transactional identi-
fies class types of which the states require transactional
support. Their “accessor”7 methods are identified with
AccessorCall8. TXExecution identifies methods
to be executed transactionally. In our example (Fig-
ure 2 (II-C)), AccessorCall identifies accessor meth-
ods c1, e1 and f2. We thus identify types C,E, F as
Transactional and the transactional method d1 as
TXExecution.

Implementation of tags

In FlexSync, the tagging process is translated into the pro-
grammatic mappings of Java interfaces and the AspectJ ab-
stract pointcuts to the corresponding elements of Java
programs. In the AspectJ nomenclature, the mapping of
role tags is accomplished declaratively through the inter-
type declarations(ITD) and the actions tags through “con-

7Quotation here to entail that, in practice, not all methods that read or
write the state of the object would lexically start with “set” or “get”.

8The actual FlexSync APIs distinguish between read tags and write
tags. We use a general name, AccessorCall, for the conciseness of the
presentation.

cretizing” the abstract pointcuts. Both techniques are com-
monly used in aspect library implementations [11, 9, 23].
Using the tags as the conceptual references, the FlexSync
library encapsulates the reusable interaction logic for each
mechanisms, which is explained as follows:

Lock 1. Protect the executions of the Guarded meth-
ods of the AutoLckTargets by the monitor of the corre-
sponding AutoLckTarget instances. 2. Protect the call
sites of the Guarded methods by the monitor of the callee
instances of LckOwner.

Atomicity: 1. If a AGM is within the control flow of the
AtomicExecution of the BAOwner, acquire the mon-
itor lock of its corresponding BATarget and register the
lock with the BAOwner (acquiring phase). 2. When a
AtomicExecution completes, release the monitor locks
of all BATargets registered with the BAOwner (releasing
phase).

STM: 1. As Transactional instances initialize, set
up their per-instance duplicates, as required by dstm2, to
allow state rollbacks. 2. At the call sites of accessors,
signal the dstm2 runtime to verify if the on-going trans-
action can proceed or must be aborted. 3. Repeat the TX
execution of the TXOwner until the transaction suc-
cessfully commits.

We emphasize the fact that the interaction logic can be
well hidden behind our “tag” abstractions and implemented
through AspectJ. This is a salient property of modular rea-
soning as pointed out in [13]. We will not bore the readers
here with the implementation details and encourage the in-
terested readers to download9 a copy of the library for fur-
ther references.

We now come back to the Buffer example presented
in Section 1. The Buffer class contains four methods:
setData, getData, isFull, and isEmpty. These
methods are invoked by the doWork method of the class
BufferUser. Before invoking the accessor methods, the
method isFull or isEmpty is called to check the state
of the buffer. The state is validated again inside the acces-
sor methods for consistency checking. Figure 3 presents
the AspectJ implementation of the three supported synchro-
nization mechanisms through the FlexSync APIs. The use
of the FlexSync tags are underlined. Despite its simplic-
ity, we want to demonstrate the high degree of declara-
tiveness in the implementation of synchronization enabled
by FlexSync. As our evaluation in Section 4 shows, this
property still holds for complex Java server systems. The
implementation of the copyTo method is, however, non-
declarative and enforced by the AspectJ compiler in the case
of the STM support.

9FlexSync. URL: http://www.cse.ust.hk/˜charlesz/
sync

379

Limitations

To use FlexSync, refactoring is still needed to transform
blocks into methods. We are currently working on an au-
tomated solution to make the process transparent. The
wait/notify semantics are also to be treated case by
case, as they often intertwine with the application logic. We
provide a replacement of wait by releasing the object lock
in the case of BA and using an “abort→re-execution” se-
quence in the case of STM. The use of wait, however,
will break the atomicity guarantees of BA in general as its
Java semantic mandates the release of the monitor lock. In
addition, the FlexSync-adaption of the dstm2 library re-
quires FlexSync users to manually specify how program
states are duplicated. From our experience, this manual pro-
cess can be tedious. Our on-going work is trying to provide
simplification solutions. Finally, our lock implementation
does not handle the use of library-based locks, such as the
ReentrantLock in the Java 5 library, that do not neces-
sarily conform to the same lock/unlock interface and, hence,
require new library code to be created. However, the dom-
inating majority of lock uses in the Java programs that we
have studied do not use library locks.

3.3 Global reasoning of tags

The design of synchronization using FlexSync allows
a program to work with multiple synchronization mecha-
nisms through configuration. However, when we integrate
these programs to build complex systems, we must ensure
the consistent and optimized interactions of locally speci-
fied synchronization mechanisms from the global perspec-
tive. In FlexSync, the global reasoning is carried out at
the start-up time of Java programs by the FlexSync aspect
weaver. Before the first class is loaded for execution, the
weaver, as an extended AspectJ bytecode weaver, carries
out static analysis over the bytecode of the entire system to
check for inconsistencies and optimization opportunities. It
also carries out load-time weaving to specifically treat re-
flective loading, a common way of Java composition. We
now present these capabilities in detail.

Lock optimization

A synchronization mechanism is redundant if a type uses
lock-based tags is never shared among threads in a par-
ticular compositional scenario. Such scenarios are often
difficult to anticipate from the perspectives of individual
programs. The FlexSync load-time weaver first leverage
the techniques of escape analysis [19, 4] to detect, on the
per-composition basis, the sharing status for every “tagged”
type. Conventional escape analysis techniques reason about
object instances. Our approach is more conservative as we
define that a type escapes if any of its instances escape. Our

Figure 3. Implementing synchronization with
FlexSync

implementation is based on the Indus project10, which is
an enhanced version of the equivalence-class-based analy-
sis [19, 18]. The escape analysis goes through all classes
seen on the Java class path, and the results are stored in a
hash table maintained by the FlexSync weaver to decided
whether the weaving is necessary, if a lock-based synchro-
nization mechanism is to be used.

We claim no significant extensions to the Indus escape
analysis algorithm other than the treatment of reflective
class loading. The reflective class loading is referred to
as instantiating a class by its lexical name through the
Class.forName Java API combined with a type cast. In
this case, we simply look up all subtypes of the type used
in the type cast and store the results in the mapping table of
the weaver. The weaver will have the concrete information

10Indus project. URL:http://indus.projects.cis.ksu.
edu/

380

after the actual subtype is loaded.

Consistency checking

Two synchronization mechanisms can be inconsistent if, for
instance, a type tagged with BATarget is not in the control
flow of any atomic blocks, which causes incorrect holding
of locks, or, a TXTarget is also tagged separately with
LckTarget, which violates the assumption in STM of no
direct use of locks. To prohibit erroneous usage of tags,
FlexSync uses consistency rules presented in Table 211 as
set predicates. These rules enforces the following usages
of tags: 1. If a type is declared to use many mechanisms,
a default choice needs to be specified; 2. The support of
atomic or transaction behaviors (“targets”) cannot be spec-
ified without the matching atomic or transactional execu-
tions (“owners”) (rule 2); 3. A type cannot be mapped to
more than one “owner” or “target” roles in any composi-
tion scenarios (rule 3 and 4); 4. As a current implemen-
tation limitation, no nested atomic regions and transactions
are permitted (from rule 5 and 6); 5. No explicit use of locks
for objects that are in the control flow of STM-based ones
(rule 1).

To perform the consistency checking, we build a simple
control-flow graph consisting of only the tagged types from
the analysis information collected by the escape analysis of
the Indus framework. Since the number of nodes in these
graphs is generally small (in the order of hundreds), a sim-
ple depth-first graph traversal can accomplish the checking
of the rules very quickly. We leave the guarantee of the
completeness and the soundness of these rules to our fu-
ture research. We currently rely on FlexSync to perform
runtime checks in case our weaver fails to detect usage in-
consistencies.

4 Evaluation

The assessment of FlexSync consists of two studies,
one related to the programming effort of using FlexSync
in modularizing synchronization, and the other to the func-
tional characteristics of FlexSync. The target systems of
study is specjbb200512, a popular benchmark for transac-
tional enterprise Java applications, OpenJMS13, an open
source implementation of the JMS 1.1 specification, and
ORBacus14, an open source commercial implementation
of the CORBA 2.4 specification. To experiment with soft-
ware compositions, we switched the RPC engine of Open-

11Note that the control flow definition(cflow) is the conservative
control flow computed statically from the bytecode where all possible
branches of the call flow are explored

12Specjbb. URL: http://www.spec.org/jbb2005/
13OpenJMS URL: http://openjms.sourceforge.net
14http://www.iona.com/orbacus

JMS from Java RMI to ORBacus. This is a fully functional
replacement as verified by the Sonic JMS benchmark15.

4.1 Programming with FlexSync

In this evaluation, we want to first find out if FlexSync
is capable of supporting synchronization in commercially
used complex systems. We also want to study the pro-
gramming characteristics of implementing synchronization
in FlexSync APIs. We first remove the monitor-based syn-
chronization from the original implementations. We then
perform necessary refactorings to enclose synchronization
blocks within method definitions. We use FlexSync to
support the locking, block-level atomicity, and the dstm2-
based STM. We cannot use STM on ORBacus because
ORBacus involves network I/O operations which cannot
have rollback semantics. This is a typical limitation of STM
in general. The OpenJMS server poses the same limita-
tions, however, since we use ORBacus as its remote pro-
cedure call (RPC) engine, the non-RPC part of the Open-
JMS can have STM-compatible behaviors. This is part of
our composition case study which will be presented shortly.

The total size of the FlexSync library is less than 60KB
of Java bytecode. The sizes of specjbb2005, ORBacus
and OpenJMS are listed tn Table 1. In Table 3, we quan-
tify four aspects of the FlexSync-based implementation for
each of the studied system: number of modules, i.e., class
types, where synchronization is implemented in the orig-
inal application (orig); the number of modules, i.e., as-
pects, for the FlexSync-based implementation (flex); the to-
tal size, in lines of code (LOC), of declarative(dec) and non-
declarative(ND) portion in the FlexSync user code; and the
non-declarative portion of STM implementation(ND′). We
define the declarative degree, α, as the ratio between the
declarative code and the total size of synchronization imple-
mentation. α′ is computed without the STM code. Here we
treat the STM as a special case because its non-declarative
code almost exclusively involves the state duplications, i.e.,
copying class variables. We are working on automating this
process.

The FlexSync-based approach fully exhibits the bene-
fit of the aspect oriented approach as, the synchronization
implementations is not only the much modular (9 mod-
ules in FlexSync vs. 37 modules in the original imple-
mentations), the task of programming is also simpler for
two reasons: 1. the coding effort is largely declarative in
nature, meaning interactions patterns are widely used; 2.
the “owner/target” relationship, which is latent and spread-
out in conventional implementations, is explicit and local
in FlexSync-based approaches, allowing easier reasoning

15Sonic JMS Benchmark. URL:http://www.sonicsoftware.
com/products/sonicmq/performance_benchmarking/
index.ssp

381

Definitions Consistency rules
1. τ : the type variable. T : the set of all types. 1. |tag(τ)| > 1 ∧ pref(τ) := ∅
2. tag(τ): the set of tags on τ 2. cflow(τ) ∩ owners := ∅ ∧ pref(τ) ∈ {TXTarget, BATarget}
3. pref(τ) : tag indicated by design as the preferred tag of τ 3. |tag(τ)| >= 2 ∧ tag(τ) ⊆ owners
4. cflow(τ): the set of tags in control flows above τ 4. |tag(τ)| >= 2 ∧ tag(τ) ⊆ targets
5. cover(τi) := {tag(τk)|τk 6= τi, cflow(τk) ∪ tag(τk) 5. cover(τ) := {BAOwner} ∧ pref(τ) ∩ {BATarget} = ∅
≡ cflow(τi)} 6. cover(τ) := {TXOwner} ∧ pref(τ) ∩ {TXTarget} = ∅

7.targets := {BATarget, TXTarget, LockTarget, 7. cflow(τ) ∩ {TXOwner, TXTarget} 6= ∅ ∧ tag(τ) ∩ {LckTarget,
AutoLockTarget} BATarget, AutoLckTarget} 6= ∅
8.owners := {BAOwner, TXOwner}

Table 2. Consistency checking rules

and modification. The declarative degree of ORBacus is
low due to the treatments of wait/notify semantics, a
limitation we discussed previously.

App Orig flex dec ND ND′ α α′

specjbb 9 3 130 178 168 42% 93%
ORBacus 5 2 50 69 36 42% 60%
OpenJMS 23 3 313 159 109 66% 86%
Total 37 8 493 406 312 55% 84%

Table 3. Static assessment of FlexSync imple-
mentations

4.2 Functional characteristics of FlexSync

Performance of FlexSync

To assess the performance of FlexSync, we use the
specjbb2005 benchmark as an example of stand-alone
Java applications. To introduce transactional behaviors
in specjbb, we label the group of class types represent-
ing business transactions as TXOwner or BAOwner. We
label all types declaring synchronized methods with
TXTarget or BATarget, respectively. In Figure 4, we
plot the benchmark score16, bops (business operations per
second), against the number of threads.

Our first observation from Figure 4 is that, for the lock
version, the FlexSync approach does not incur significant
runtime overhead (about 5%). This is generally true in all
our experiments as will be shown shortly. The general per-
formance profile of specjbb2005 is the same as our mo-
tivating buffer example that the lock-based approach gives
the best performance (highest score), followed by BA, then
by STM. The difference is that the BA score is at about
30% of that of the lock-based, and the STM version is about
20%-25% of the BA version. The reason for this dramatic

16All experiments are conducted on a 4-core Intel CPU running 2.6
Linux kernels using the JRockit R27 64-bit JVM. Each data point is an
average of 3 identical runs, measured after warm-up periods.

Figure 4. specjbb2005 FlexSync performance

slowdown is that each specjbb2005 test involves a large
amount of synchronized data operations. As verified by our
runtime profiling, in the BA version, over 20% of the CPU
time is spent on lock contention which seriously limit the
concurrency of the system. For the STM version, over 50%
of the time is spent on backing up the data by the dstm2
runtime. The memory requirement for executing STM on
specjbb ranges from 1 to 40 times larger as compared to
the original version.

This experiment supports our motivation that each syn-
chronization mechanism has its unique strengths and weak-
nesses. Clear trade-offs exist among properties such as cor-
rectness, safety, and performance. The FlexSync approach
gives the customization options to the users of Java pro-
grams and let them decide which properties should take the
precedence in their application domain.

Case studies of compositions

In this study, we use OpenJMS as an example of com-
plex program composed from reusable systems and capable
of supporting multiple architectural configurations. Open-
JMS uses the remote procedure call (RPC) as its trans-

382

Figure 5. Combinatorial synchronization

port level mechanism, which is supported by ORBacus,
a general purpose RPC middleware. To support the trans-
actional and atomic operations, we mark types contains
synchronized methods as TXTarget or BATarget,
and we make the starting point of RPC invocations in OR-
Bacus and of the message dispatching in OpenJMS as
where the transactional or the atomic executions start.

In the first case study, we first gain a general perspective
of the combinatorial complexity by quantifying all possi-
ble choices of synchronization mechanisms in the case of
OpenJMS/ORBacus system. To obtain these points, we
measure the response time for the JMS server in receiving a
fixed number of messages into a set of message queues. We
define degree of sharing as the average number of clients
sharing each message queue. We achieve this by generating
the client/queue association before each test and hardwiring
the client/queue relationships during the run. We tested 7
possible configurations, reported in Figure 5. We make the
following observations: 1. the lock version of FlexSync ap-
proach does not incur the performance overhead compared
to the original version; 2. multiple synchronization mech-
anisms can coexist in providing JMS services; 3. the re-
sponses involving STM, although oscillating significantly,
are faster than the lock-based versions, which is contra-
dictory to our previous studies; 4. the versions involving
BA have the worst performance compared to other versions.
The surprising results about STM is due to the fact that, as
each transactional operation results from a round of client-
server communication, the state duplication in OpenJMS
is far less frequent compared to that of specjbb2005 and
our buffer example. In the case of BA, the use of 2PL sig-
nificantly limits the concurrent degree of the system, which
proves that the degree of liveness is vital to the performance
of server-type systems

Our second case study illustrates the scenarios of the
unanticipated compositions and how the FlexSync-based

synchronization understands these cases and achieves per-
formance gains. The canonical concurrency policy used
by the OpenJMS/ORBacus system is that each connected
client is assigned a dedicated thread on the server side. Data
structures storing the RPC targets and the message queues
are shared among these threads.

Scenario one: Queue dedication If the physical capac-
ity allows, the server side can dedicate a separate messag-
ing stack for each OpenJMS client simply by publishing
each queue with a unique RPC address. This set-up alone
can improve the processing throughput from 7% to 25% by
our measurements. This is unanticipated scenario that can
be achieved purely through deployment configurations. In
such configurations, since there are no shared states, we can
simply instruct the FlexSync weaver not to weave any syn-
chronization mechanisms to achieve further speed-ups.

Scenario two: Event-driven RPC The RPC engine can
make use of the reactor-based [20] event-driven concur-
rency models for its capability of handling problems such
as C10k17. Since such models typically make no use of
threads, the RPC engine serially dispatches requests, ren-
dering the thread-safety property of the upper layer mes-
saging mechanism in OpenJMS redundant. Again, this is
a per-deployment scenario hard to be anticipated by the de-
sign of OpenJMS. This scenario can be created by using
the CAL-based ORBacus implementation from our ear-
lier research [23]. The FlexSync weaver scans through the
bytecode image of the entire system and is able to detect
that all shared states of the messaging layer does not escape
from the executing thread of the reactor. Therefore, no syn-
chronization mechanisms are applied as the result.

In Figure 6, we compare the following configurations:
the canonical concurrency model (shared original), origi-
nal OpenJMS configured to run dedicated queues (dedi-
cated original), original OpenJMS using reactor (shared
reactor), dedicated queue using reactor (dedicated reac-
tor), and the afore-mentioned two optimized versions us-
ing FlexSync (dedicated flex and dedicated reactor flex).
Our measurements first justify the validity of the case
study where queue dedications and the use the reactor
can produce speedups from approximately 7% to 25% at
500 clients. In queue dedication scenarios, the FlexSync-
optimized version produces 23% speedups compared to the
original version. For the use of the single-threaded reac-
tor, the FlexSyncversion produces 25% speedups. The
largest speedup, considering all configurations, is around
40%. These measurements prove the functional advantage
of FlexSync-based synchronization implementations.

17The C10K problem. http://www.kegel.com/c10k.html

383

Figure 6. Performance optimization

5 Related Work

As a very active research area, research projects in
the context of lock, atomicity and software transactional
memory are beyond enumeration. We focus on presenting
research addressing the programming aspect of synchro-
nization challenges. We first covers the aspect oriented
approaches to synchronization. We then present the
research work on the synthetic approaches for conventional
programming languages. We conclude with the discussion
on various new language proposals.

AOP implementations Lopes and Lieberherr [15] pre-
sented one of the earliest AOP treatments of synchroniza-
tion using adaptive programming [14]. In their approach,
the structure of a program and its behavior, including the
lock-based synchronization, are expressed in separate mod-
ules. Code generation is required to produce the final ex-
ecutable system. As a pioneering work, they focused on
illustrating a benefit of AOP-based synchronization imple-
mentation as compared to the conventional approach. Our
work is built on these insights and going one step further in
considering how different synchronization mechanisms can
coexist, be customized, and interact with the core program
consistently in complex Java systems.

SyncGen [5] focuses on generating synchronization
implementation from high-level specifications. These
specifications (aspects) are invariant formulae, which are
translated into byte-code instructions that are inserted into
(weaving) the demarcation points of the synchronized
region. Compared to our approach, aside from the lock-
only approach, SyncGen introduce a new programming
paradigm of specifying synchronization in high-level logic
formulae. Our approach relies on FlexSync APIs to
re-express the synchronization intention, therefore, does

not fundamentally deviate from how the synchronization
design is reasoned conventionally.

Lock synthesis Emmi et al [6] presented an automatic
technique that takes a program annotated with atomic
sections and produces a lock assignment for global vari-
ables that provides atomicity and deadlock free guarantees.
Their work provides evidence that synchronization can be
reasoned independently if we can know the programmers’
intentions, in their case, through annotations. Research
such as [4, 2] eliminates unnecessary lock placements
through static analysis techniques. Our work directly
leverages these results in performing selective aspect
weaving.

Language approach There have been a proliferation of
new language proposals, such as [16, 8, 22, 3] and many
others, that provide new language design and the seman-
tic guarantees to help programmers in writing safe, correct,
and performant synchronization code. Rewriting complex
applications with new languages is not always straightfor-
ward. The majority of the language proposals, being fo-
cusing on specific synchronization mechanisms, also inherit
their limitations. We believe that the capability of cus-
tomization is still a desired property for systems written in
these new languages.

6 Conclusion

In the multi-core era, concurrency plays critical roles in
improving software efficiency. The synchronization mech-
anisms of reusable Java systems are challenging to build
because each of these mechanisms has unique strengths
and weaknesses which are sensitive to specific usage re-
quirements. In conventional approaches, synchronization
is reasoned locally within the designed application and in a
non-modular way. As a result, applications pay significant
performance costs due to the mismatch between the non-
flexibility of the systems and the diversity of deployment
scenarios.

We have presented FlexSync, an aspect oriented syn-
chronization library, to alleviate this problem by physi-
cally decoupling the synchronization implementation from
the operational logic of Java systems. This is based on
our observation that the design intention of synchroniza-
tion and the specific choice of synchronization mechanisms
can be explicitly separated and, in practice, most of the
intentions can be represented by function-like structures.
The FlexSync API fosters the modular reasoning of syn-
chronization by essentially enabling programmers to give
different interpretations of the same program structure ac-
cording to the different synchronization semantics. The
FlexSync library encapsulates reusable logic about how

384

synchronization mechanisms and the operational logic in-
teract. The FlexSync loadtime weaver performs the global
reasoning of synchronization by applying the system-wide
deployment-time analysis to achieve consistency and opti-
mization.

We evaluated FlexSync with commercially used com-
plex Java concurrent systems, and FlexSync is capable of
supporting the functionalities of these systems. We quantify
both the programming effort and the functional characteris-
tics of FlexSync-based implementations. We found that
programming synchronization in FlexSync is commonly
declarative and specification-like. The FlexSync approach
in general does not incur significant runtime overhead. In
addition, systems using FlexSync also has the capability
of making customization choices regarding domain-specific
or deployment-specific requirements. We showed that, the
FlexSyncapproach does not significant incur runtime over-
head and can produce speed ups as much as 40% in various
deployment-time configurations.

As future work, we aim to make programming with
FlexSync a lot easier by focus on the automation of in-
tention refactoring and state duplication. We also plan to
study the synergistic effects among customizable concur-
rency models [23] and synchronization mechanisms. Our
long term research goal is to significantly increase the cus-
tomization capability of complex systems.

Acknowledgements

We thank all the anonymous reviewers for providing in-
sightful comments, suggestions, and feedbacks. These re-
views have significantly helped us improving this paper.

References

[1] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R.
Murphy, Bratin Saha, and Tatiana Shpeisman. Compiler and run-
time support for efficient software transactional memory. In PLDI,
pages 26–37, New York, NY, USA, 2006. ACM.

[2] Jonathan Aldrich, Craig Chambers, Emin Gun Sirer, and Susan Eg-
gers. Static analyses for eliminating unnecessary synchronization
from java programs. In SAS, page pages, 1999.

[3] David F. Bacon, Robert E. Strom, and Ashis Tarafdar. Guava: a
dialect of java without data races. In OOPSLA, pages 382–400, New
York, NY, USA, 2000. ACM.

[4] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C.
Sreedhar, and Samuel P. Midkiff. Stack allocation and synchroniza-
tion optimizations for java using escape analysis. ACM TOPLAS,
25(6):876–910, 2003.

[5] Xianghua Deng, Matthew B. Dwyer, John Hatcliff, and Masaaki
Mizuno. Invariant-based specification, synthesis, and verification of
synchronization in concurrent programs. In ICSE, pages 442–452.
ACM Press, 2002.

[6] Michael Emmi, Jeffrey S. Fischer, Ranjit Jhala, and Rupak Majum-
dar. Lock allocation. In POPL, pages 291–296, New York, NY, USA,
2007. ACM.

[7] Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. In POPL, pages 256–
267, New York, NY, USA, 2004. ACM.

[8] Cormac Flanagan and Shaz Qadeer. A type and effect system for
atomicity. In PLDI, pages 338–349, New York, NY, USA, 2003.
ACM.

[9] Jan Hannemann and Gregor Kiczales. Design Pattern Implementa-
tion in Java and AspectJ. In ACM OOPSLA, pages 161–173. ACM
Press, 2002.

[10] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible
framework for implementing software transactional memory. In
OOPSLA, pages 253–262, New York, NY, USA, 2006. ACM.

[11] Elizabeth A. Kendall. Role model designs and implementations with
aspect-oriented programming. In ACM OOPSLA, pages 353–369.
ACM Press, 1999.

[12] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In Mehmet Akşit and Satoshi Matsuoka, edi-
tors, ECOOP, volume 1241, pages 220–242, Berlin, Heidelberg, and
New York, 1997. Springer-Verlag.

[13] Gregor Kiczales and Mira Mezini. Aspect-oriented programming
and modular reasoning. In ICSE, pages 49–58, New York, NY, USA,
2005. ACM.

[14] Karl Lieberherr, Doug Orleans, and Johan Ovlinger. Aspect ori-
ented programming with adaptive methods. In Communications of
the ACM, volume 10. ACM, 2001.

[15] Cristina Videira Lopes and Karl J. Lieberherr. Abstracting process-
to-function relations in concurrency object-oriented applications. In
ECOOP, pages 81–99, London, UK, 1994. Springer-Verlag.

[16] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Au-
tolocker: synchronization inference for atomic sections. In POPL,
pages 346–358, New York, NY, USA, 2006. ACM.

[17] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,
T. Longstaff, R. Kazman, M. Klein, D. Schmidt, K. Sullivan, and
K. Wallnau. Ultra-Large-Scale Systems: The Software Challenge of
the Future. Software Engineering Institute, 2006.

[18] Venkatesh Prasad Ranganath and John Hatcliff. Pruning interference
and ready dependences for slicing concurrent java programs. In CC,
pages 39–56. Springer, 2004.

[19] Erik Ruf. Effective synchronization removal for java. In PLDI, pages
208–218, New York, NY, USA, 2000. ACM.

[20] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture Patterns for
Concurrent and Networked Objects, volume 2 of Software Design
Patterns. John Wiley & Sons, Ltd, 1 edition, 1999.

[21] Nir Shavit and Dan Touitou. Software transactional memory. In
PODC, pages 204–213, New York, NY, USA, 1995. ACM.

[22] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchro-
nization constraints with data in an object-oriented language. In
POPL, pages 334–345, New York, NY, USA, 2006. ACM.

[23] Charles Zhang and Hans-Arno Jacobsen. Externalizing Java Server
Concurrency with CAL. In ECOOP, pages 362–386. Lecture Notes
in Computer Science 5142. Springer, 2008.

385

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Author
