
HOLMES: Effective Statistical Debugging via Efficient Path Profiling

Trishul M. Chilimbi
Microsoft Research Redmond

trishulc@microsoft.com

Ben Liblit
University of Wisconsin–Madison

liblit@cs.wisc.edu

Krishna Mehra
Microsoft Research India
v-kmehra@microsoft.com

Aditya V. Nori
Microsoft Research India
adityan@microsoft.com

Kapil Vaswani
Microsoft Research India
kapilv@microsoft.com

Abstract

Statistical debugging aims to automate the process of
isolating bugs by profiling several runs of the program and
using statistical analysis to pinpoint the likely causes of
failure. In this paper, we investigate the impact of using
richer program profiles such as path profiles on the effec-
tiveness of bug isolation. We describe a statistical debug-
ging tool called HOLMES that isolates bugs by finding paths
that correlate with failure. We also present an adaptive ver-
sion of HOLMES that uses iterative, bug-directed profiling
to lower execution time and space overheads. We evalu-
ate HOLMES using programs from the SIR benchmark suite
and some large, real-world applications. Our results indi-
cate that path profiles can help isolate bugs more precisely
by providing more information about the context in which
bugs occur. Moreover, bug-directed profiling can efficiently
isolate bugs with low overheads, providing a scalable and
accurate alternative to sparse random sampling.

1 Introduction

Commercial software ships with undetected bugs despite
the combined best efforts of programmers, sophisticated
bug-detection tools and extensive testing. These software
errors that go undetected can cause crashes that are dis-
ruptive at best and cost money and lives at worst. To fix
the problem, a programmer often has to painstakingly try to
work backwards from the crash to isolate and debug the root
cause of the error. This process is tedious, error-prone and
involves guesswork as typically the only information avail-
able is the stack trace and register values at the point where
the program crashed.

Statistical debugging pioneered by the Cooperative Bug
Isolation project (CBI) [21] aims to streamline and auto-
mate the process of isolating the bug responsible for the

program failure. It achieves this goal by collecting informa-
tion about program execution via predicate profiles (these
are values of certain types of predicates at particular pro-
gram points) from both successful and failing runs of a pro-
gram and applies statistical techniques to pinpoint the likely
cause of the software failure.

Prior work on statistical debugging has not fully inves-
tigated the impact of using richer profiles from user exe-
cutions, such as path profiles [11], on the accuracy of bug
isolation. Paths are a natural candidate for debugging as
they capture more information about program execution be-
havior than point profiles such as predicate profiles. Indeed,
recent research on the effectiveness of compound Boolean
predicates and path information derived from simple atomic
predicates for predicting program failures [17, 10] suggests
that using path profiles for isolating program failures has
merit. In addition to more precise bug isolation, paths of-
fer two other advantages over predicates. While predicates
can pinpoint where the bug occurs in the code, paths can
additionally provide more context on how the buggy code
was exercised which can aid and simplify the task of de-
bugging. Moreover, path profiles are routinely collected in
some systems for profile-guided performance optimization
– in such cases, statistical analysis can be performed at no
additional program instrumentation or change to the soft-
ware build process. While this may seem like a minor point,
large software is often compiled and tested with a brittle
and complex build process that programmers are loath to
change.

Figure 1 illustrates a code fragment derived from
the printtokens2 benchmark of the SIR benchmark
suite [5] that illustrates the potential advantage of path pro-
files over predicate profiles. In this case, the root cause of
the bug is a missing return statement on line 26. Statisti-
cal debugging using program paths localizes the bug to a
path shown in blue and underlined (lines 14, 17, 19, 22-
24, 27, 29, 31, 32, 34-36). A cursory examination of the

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 34

1 token get_token(tp)
2 token_stream tp;
3 {
4 int i=0,j;
5 int id=0;
6 char ch,ch1[2];
7 ch=get_char(tp);
8 ...
9 /* prepare for string */

10 if(ch ==’"’) id=1;
11 ch=get_char(tp);
12
13 /* until meet the end character */
14 while (is token end(id,ch) == FALSE) {
15 buffer[i++]=ch;
16 ch=get_char(tp);
17 }
18
19 ch1[0]=ch;
20
21 /* if end is eof token, put back eof */
22 if(is eof token(ch1)==TRUE) {
23 ch=unget char(ch,tp);
24 if(ch==EOF)unget error(tp);
25 /* BUG - missing return */
26 /* return(buffer); */
27 }
28
29 if(is spec symbol(ch1)==TRUE) {
30 ...
31 }
32
33 /* if end is ", hold second " in buffer */
34 if(id==1) {
35 buffer[i++]=ch;
36 return(buffer);
37 }
38 ...
39 return(buffer);
40 }

Figure 1. Code fragment from the printtokens2
benchmark that has a code missing bug at
line 26.

branches along the path reveals that the variable ch, which
contains the character at the end of the token, must be an
EOF marker (from the branch at line 22). Also note that
along this path, the condition id==1 at line 34 evaluates to
true, which implies that the token is a string delimited by
" (i.e. ch == ") – this is a contradiction. One possible
explanation for this contradiction is that perhaps this path
should have been infeasible and the program was never in-
tended to reach line 35 with ch == EOF. This reasoning
directly leads to the actual root cause. Conventional statisti-
cal debugging using atomic predicates localizes this bug to
the branch at line 34. While this branch is “close” to the root
cause, the branch alone does not provide enough context for
the programmer to find the root cause. More generally, sta-
tistical debugging using atomic predicates cannot localize
subtle, context-sensitive bugs that require reasoning about
multiple correlated predicates. This motivates the necessity
for richer profiles such as paths.

We describe the design and implementation of a statis-
tical debugging tool called HOLMES that uses path profiles

instead of predicate profiles to perform bug isolation. In
the spirit of traditional statistical debugging, HOLMES first
instruments the program in order to perform path profil-
ing [11, 25]. Next, the program is run and path profiles
from successful and failing program runs are used to iden-
tify and rank a subset of paths that are good predictors of the
program failure. We show that HOLMES is more effective
at isolating bugs as well as explaining them than predicate-
based statistical debugging techniques.

Since statistical debugging relies on statistical tech-
niques to isolate the cause of software failures, it benefits
from profiles obtained by way of a large number of user
executions. To encourage user adoption, the monitoring
overhead needs to be sufficiently low and not impact the
user experience while running the instrumented program
version. Previously published statistical debugging tech-
niques [20, 21, 10] addressed this by using a combination of
sparse random sampling and collecting predicates counters
that summarize how often an application predicate was true
or false in the user execution. These studies have found that
sampling has little effect on the accuracy of bug isolation
given a large number of user executions and an appropriate
statistical analysis.

While the runtime overhead of instrumentation is im-
portant in most cases, the space overhead of instrumen-
tation may also be important in some cases. Sampling
schemes based on code-duplication exacerbate this problem
by roughly doubling the size of the executable [9, 16]. With
such space overheads it is not practical to deliver executa-
bles instrumented for statistical debugging, for large appli-
cations, such as operating systems, which ship to many end
users on fixed size media such as DVDs. The following
quote from a distinguished Microsoft engineer highlights
this issue: “We did the math of going to a second DVD
for [Windows] Vista. Basically a second DVD doubles the
costs, because you not only need two pieces of media, you
also need a slightly more expensive case [23]”.

HOLMES employs an alternative approach to sampling
that addresses both time and space overheads through iter-
ative and adaptive bug-directed profiling that relies on the
observation that often, only small portions of a program are
relevant to a given bug. In this approach, a program runs
without any instrumentation until it starts generating bug
reports due to failures. A desirable consequence of this ap-
proach is that bug-free programs do not incur any profiling
overheads. Once HOLMES collects a sufficient number of
bug reports, it combines these reports with information from
static analysis of the program to identify portions of the pro-
gram that are most likely to contain the root causes of bugs
observed in the field. Within these portions of the code, it
identifies a set of functions, branches and paths that should
be profiled in subsequent runs. HOLMES instruments the
program to profile these selected parts and re-deploys the

35

instrumented program in the field in order to collect profiles
and bug reports from subsequent runs of the program. Af-
ter a sufficient number of bug reports and profiles have been
collected, HOLMES uses statistical analysis to identify paths
that are strong predictors of the reported failures. Based on
the score assigned to these predictors, HOLMES may either
decide that the root causes of reported bugs have been found
and report it to the developer, or expand the search by pro-
filing other parts of the program starting from the reported
weak predictors and continuing to collect more detailed pro-
files from subsequent runs of the re-instrumented program.
HOLMES repeats this process of analyzing existing profiles
and extending the search until the root cause is found.

The iterative, bug-directed profiling approach relies on
a mechanism that can instrument and redeploy parts of the
program in the field. Most existing operating systems al-
ready support this feature [6]. HOLMES is naturally suited
for server-side applications, where parts of code can be dy-
namically updated in place.

In summary, this paper makes the following contribu-
tions.

• We describe the design and implementation of a sta-
tistical debugging tool called HOLMES that uses path
profiles from successful and failing program runs to
isolate the root cause of program errors and provide
contextual information that can aid in debugging the
error (Section 3.1).
• We also present an adaptive version of HOLMES

that uses an iterative, bug-directed profiling to isolate
the causes of program failures with extremely low-
overheads. The low overheads permit the collection of
full profiles, allowing HOLMES to isolate bugs from a
much smaller number program runs. Furthermore, bug
free programs do not incur any profiling overheads in
this mode (Section 3.2).
• Finally, we evaluate the non-adaptive and adaptive ver-

sions of HOLMES using programs from the SIR bench-
mark suite [5] and some large real-world applications.
Our results indicate that path profiles provide more
precise bug isolation and iterative, adaptive profiling
can effectively isolate bugs with low overhead without
requiring sampling (Section 5).

2 Background

In this section, we give a short overview of statistical
debugging and path profiling to facilitate the exposition of
the ideas in this paper.

2.1 Statistical Debugging

Statistical debugging collects information about program
execution from both successful and failing runs of a pro-

gram and applies statistical techniques to pinpoint the likely
cause of the software failure [21]. First, a program is instru-
mented to collect data about the values of certain types of
predicates at particular program points. There are three cat-
egories of predicates tracked:

1. Branches: For every conditional, two predicates indi-
cating whether the true or false branch was taken are
tracked.

2. Returns: At each scalar-returning function call site,
six predicates indicating whether the return value is <
0, ≤ 0, > 0, ≥ 0, = 0, or 6= 0 are tracked.

3. Scalar-pairs: At each scalar assignment x = . . .,
identify each same-typed in-scope variable yi and each
constant expression cj . For each yi and each cj , six
predicates on the new value of x: <, ≤ , > , ≥, =, 6=
are tracked.

This information is then aggregated across multiple runs
of a program in the form of feedback reports. The feed-
back report for a particular program execution is formed as
a bit-vector, with two bits for each predicate (observed and
true), and one final bit representing success or failure. In
the next step, the predicates are assigned numeric scores to
identify the best predictor from the set of predicates. For
details on the scoring process, see Liblit et al [21]. It is
assumed that this predictor corresponds to one important
bug, though other bugs may remain. This top predictor is
recorded, and then all feedback reports where it was true are
removed from consideration under the assumption that fix-
ing the corresponding bug will change the behavior of runs
in which the predictor originally appeared. The scores are
recalculated for all remaining predicates in the remaining
sets of runs. The next best predictor among the remaining
reports is then identified, recorded, and removed in the same
manner. This iterative process terminates either when no
undiagnosed failed runs remain, or when no more failure-
predictor predicates can be found. This process of iterative
elimination maps each predictor to a set of failing program
runs. The output of the analysis is a list of predicates with
the highest scores at the end of the elimination algorithm.

In order to make this approach tractable, the monitoring
overhead needs to be low and not impact user experience
while running the instrumented program version. Statisti-
cal debugging techniques [20, 21, 10] address this by way
of sparse random sampling and establish that sampling has
little effect on the accuracy of bug isolation given a large
number of user executions and appropriate statistical analy-
sis.

36

2.2 Path Profiling

Path profiles are succinct and pragmatic abstractions of
a program’s dynamic control-flow behavior. Program path
histories often serve as a valuable debugging aid by reveal-
ing the instruction sequence executed in the lead up to inter-
esting program points. The efficient path profiling scheme
proposed by Ball and Larus [11] forms the basis of most
path profilers. Note that the paths considered here are intra-
procedural and acyclic path segments in the control flow
graph of the program. In the rest of this paper, we refer to
these intra-procedural and acyclic path segments as paths.
Several compiler optimizations perform better when trade-
offs are driven by accurate path profiles [8]. Program paths
are also a more credible way of measuring coverage of a test
suite [14]. In this paper we examine how paths can be used
profitably for the purpose of statistical debugging in a cost
effective way.

3 HOLMES: Statistical Debugging Using Path
Profiling

In this section we describe HOLMES, a statistical debug-
ging tool that uses path profiles. HOLMES comes in two
flavors.

• Non-adaptive debugging. In this version, HOLMES
performs statistical debugging as described in Liblit et
al [21] using paths instead of custom predicates.

• Adaptive debugging. To reduce execution time and
space overheads, HOLMES can also perform statistical
debugging using iterative, bug directed path profiling.

We will now describe the ideas underlying each of these
approaches.

3.1 Non-Adaptive Debugging

For non-adaptive debugging, HOLMES implements Li-
blit et al.’s scalable statistical debugging algorithm using
path profiles in place of predicate profiles. The program
is instrumented so that path profiles are collected during ex-
ecution and this information is aggregated across multiple
runs through feedback reports. Conceptually, the feedback
report for a single program execution is a bit-vector with
two bits for every path: one bit that indicates whether the
path was observed and the other bit that indicates whether
the path was executed in that run. The feedback report also
contains one bit that represents the success or failure of the
execution. A path is said to have been observed when the
node that corresponds to the start of the path is visited but
the path is not necessarily executed.

In the next step, paths are assigned numeric scores to
identify the best predictor of failure from the set of paths.
We adapt the scoring process detailed in Liblit et al [21] to
work with paths as follows. Predictors are scored based on
sensitivity (accounts for many failed runs) and specificity
(does not mis-predict failure in a successful run). These
scores are balanced using a numeric importance score com-
puted as follows. The events corresponding to a path p from
all the runs can be aggregated into four values: (1) So(p):
the number of successful runs in which the path p was ob-
served (2) Fo(p): the number of failed runs in which the
path p was observed (3) Se(p): the number of successful
runs in which the path p was executed, and (4) Fe(p): the
number of failed runs in which the path p was executed.
Using these values, three scores of bug relevance are calcu-
lated.

Sensitivity(p) =
log |Fe(p)|

log |F |
(1)

Context(p) =
Fo(p)

So(p) + Fo(p)
(2)

Increase(p) =
Fe(p)

Se(p) + Fe(p)
− Context(p) (3)

where F is the total number of failing runs. The harmonic
mean of Sensitivity and Increase identifies predicates that
are both highly sensitive and highly specific [21]:

Importance(p) =
2

1
Sensitivity(p) + 1

Increase(p)

(4)

The Importance score is calculated for each path, and the
top results are selected and presented to the programmer as
potential root causes.

3.2 Adaptive Debugging

Low runtime overheads are critical when programs
are deployed in production environments where even a
marginal slowdown in execution time or increase in mem-
ory consumption is unacceptable. Previous approaches for
statistical debugging use sparse random sampling to re-
duce the overheads of collecting predicate profiles. When
random sampling is enabled, predicates are evaluated and
recorded intermittently. To compensate for the potential
loss in accuracy due to random sampling, statistical debug-
ging relies on a large number of both failing and successful
runs of the program to build a representative profile. In ad-
dition, the sampling scheme used by Liblit et al. relies on a
code duplication-based instrumentation scheme that effec-
tively doubles the size of the program executable. Such a
large increase in code size may not be acceptable in some
situations.

To address these concerns, we propose an iterative, bug-
directed version of HOLMES that relies on the observation

37

Figure 2. The HOLMES framework.

that in large programs, often only a small fraction of the
code is relevant to a given bug. Figure 2 illustrates the
HOLMES framework. The main components of this frame-
work are: (a) bug report and profile collection, (b) static
program analysis, (c) statistical analysis, and (d) selective
instrumentation and deployment of instrumented code. We
now discuss these components briefly and describe one im-
plementation of this framework in the next section.

Initially, HOLMES monitors the uninstrumented program
for failures and collects a set of bug reports, which contain
a stack trace and partial state of the program at the point
of failure. Once a sufficient number of bug reports have
been collected, HOLMES’s static analysis component uses
these bug reports to identify parts of code that more likely
to contain the root causes of the bugs. These portions of
code are then instrumented to collect detailed profiles and
redeployed in the field. Note that by focusing the instru-
mentation on portions of code relevant to the bug, HOLMES
avoids the need for sparse random sampling.

Next, HOLMES analyzes the partial profiles using the
statistical analysis described in Section 3.1. The analy-
sis computes a statistical model of the program’s outcome.
The model consists of a set of bug predictors, each asso-
ciated with the Importance score. If the model identifies
sufficiently strong bug predictors and explains all failures,
HOLMES reports these predictors and terminates the itera-
tive process. However, if the resulting model is inconclusive
(perhaps because parts of code containing the root cause
were not profiled), HOLMES expands its search by using
static analysis and the model to identity other parts of code

that closely interact with the weak predictors. This iterative
process continues until strong predictors are obtained and
all failures have been explained.

Often, software maintenance necessitates a scheme like
HOLMES, especially when the bug occurs only on client
machines and cannot be reproduced on test machines. In
such scenarios, developers routinely selectively replace
client binaries with instrumented versions in order to col-
lect more information about the problem. However, in most
cases, this is done manually and can be extremely tedious.
HOLMES automates this iterative process of collecting and
analyzing relevant profiles, letting developers focus on the
more important task of fixing bugs.

4 HOLMES Implementation

We now describe an implementation of the HOLMES
adaptive debugging framework that uses path profiles. Our
implementation consists of two phases. In the bootstrap-
ping phase, HOLMES is bootstrapped using bug reports
from the field. This phase is followed by an iterative phase,
which, in turn, consists of one or more data collection, sta-
tistical analysis, static analysis and redeployment phases.
Note that the non-adaptive version of HOLMES corresponds
to a single instance of the iterative phase with full profiling.

4.1 Bootstrapping Holmes

In order to bootstrap the process of finding the root
cause, HOLMES exploits the common knowledge that often,

38

the root cause of bugs can be found in functions present on
the stack trace at the point of failure. Based on this assump-
tion, HOLMES processes bug reports to compute a set S of
functions that appear in one or more stack traces. All func-
tions in this set are candidates for instrumentation. How-
ever, to control the number of functions in this set, HOLMES
computes an effective score Θ(f) for each function f ∈ S
that is defined as follows.

Θ(f) =
n∑

i=1

1
∆i(f)

(5)

where n is the number of bug reports and ∆i(f) is the num-
ber of functions that lie between the function f and the func-
tion containing the location of failure in the stack trace of
bug report i. Intuitively, Θ(f) is high for functions that ap-
pear often on the stack trace and/or appear close to the loca-
tion of failure. HOLMES selects the top k functions from the
set S based on this score for profiling in the next iteration)
where k is a user-defined threshold that can be used to con-
trol the overheads of profiling). In case there are no stack
traces, we bootstrap HOLMES using full branch profiles.

4.2 Iterative Profiling

We will now describe the details of each sub-phase in
HOLMES’s iterative profiling phase.

(a) Data Collection: In this phase, HOLMES deploys
the instrumented version of the program and collects bug
reports and profiles, if any, from all executions of this
program. In contrast to CBI [21], HOLMES does not use
temporal sampling and all instrumented functions are fully
profiled. In spite of this, the profiling overheads are still
low as the function selection phase ensures that only a
small number of functions are instrumented.

(b) Statistical Analysis: After the bug reports and profiles
are obtained, HOLMES uses its statistical analysis to
analyze profiles for all runs since its previous iteration.
The analysis returns a set of bug predictors, their scores,
the set of failing runs each predictor explains and a set
of unexplained failures. HOLMES classifies a predictor
as strong if the predictor’s score exceeds a user-defined
threshold and weak otherwise. All strong predictors are
marked as potential root causes and reported to the devel-
oper. If all failing runs are explained by strong predictors,
HOLMES reinitializes the iterative process by deploying
an uninstrumented version of the program, after which it
needs to be bootstrapped again. On the other hand, weak
predictors, if any, are passed to the function selection phase
(described next) which uses them to identify the set of
functions to be profiled in the next iteration.

(c) Function Selection: This phase takes as input a set of
weak predictors and outputs a set of functions that should
be considered for instrumentation in the next iteration. By
definition, a weak predictor is one that is exercised in some
failing runs but also exercised in some successful runs.
There are two possibilities that HOLMES needs to be taken
into account.

Interactions. Weak predictors often point to parts of code
that may contain other stronger predictor. This is because
a weak predictor may interact with other parts of the pro-
gram via control and/or data dependencies, caller/callee re-
lationships etc. Often, some of these interactions are more
strongly correlated with failure than the predictor itself. We
illustrate this scenario using an example that we encoun-
tered when analyzing a function from the replace bench-
mark.

Figure 4.1 shows a function subline in the replace
benchmark (v3). This function contains a bug on line 9
due to a missing conditional. After bootstrapping, HOLMES
identifies and profiles a function patsize (shown in fig-
ure) and finds that one of the paths through patsize is a
weak bug predictor. An analysis of this function reveals
that this weak path predictor interacts with the function
amatch through a callee-caller relationship at line 51. Fur-
thermore, one of the paths in amatch is a stronger bug
predictor because it calls patsize in a restricted context
(when pat[j] == CLOSURE). Similarly, we find that
this path in amatch interacts with the function subline
via a caller-callee relationship and the function subline
contains an even stronger predictor, which also happens to
be the root cause.

HOLMES uses static analysis to identify interactions or
coupling [7, 13] between weak predictors and other parts of
code. Since static analysis is conservative, it is possible that
we may find a large fraction of the program interacting with
the predictor and profiling all such interacting functions
may be expensive. HOLMES addresses this problem by
quantifying the degree of interaction between a predictor
and a function using a custom code coupling measure,
which simply counts the number of pairs of (data or
control) dependent instructions between the predictor and
any given function, including dependencies due to function
arguments. HOLMES ranks functions based on the degree
of coupling and again, selects the top k functions, where k
is a user-defined threshold.

Strengthening weak predictors. Often, weak predictors can
be strengthened by profiling the function containing the
weak predictor using richer profiles. Consider a scenario in
which a bug manifests occasionally when a specific branch
in the program is traversed. However, the bug manifests
almost always when one specific path through this branch

39

1 void subline(lin, pat, sub)
2 {
3 char *lin, *pat, *sub;
4 int i, lastm, m;
5 lastm = -1;
6 i = 0;
7 while ((lin[i] != ENDSTR))
8 {
9 m = amatch(lin, i, pat, 0);

10 /* BUG missing condition */
11 if ((m >= 0) /*&&(lastm!=m)*/){
12 putsub(lin, i, m, sub);
13 lastm = m;
14 }
15 if ((m == -1) || (m == i)) {
16 ...
17 }
18 }
19 }

20 int patsize(pat, n)
21 {
22 char* pat;
23 int n;
24 int size;
25 if (!in_pat_set(pat[n])) {
26 ...
27 }
28 else
29 switch (pat[n])
30 {
31 ...
32 case CLOSURE:
33 size = CLOSURE;
34 break ;
35 ...
36 }
37 return size;
38 }

39 int amatch(lin, offset, pat, j)
40 {
41 char* lin;
42 int offset;
43 char* pat;
44 int j;
45 int i, k;
46 bool result, done;
47
48 done = false;
49 while ((!done) && (pat[j] != ENDSTR))
50 if ((pat[j] == CLOSURE)) {
51 j = j + patsize(pat, j);
52 i = offset;
53 while ((!done) && (lin[i] != ENDSTR)) {
54 result = omatch(lin, &i, pat, j);
55 if (!result)
56 ...
57 }
58 ...
59 }
60 ...
61 }

(a) (b) (c)

Figure 3. (a) Buggy version of the function subline in the replace benchmark. (b) Function
patsize where Holmes finds a weak path predictor in the first iteration. (c) Function amatch where
Holmes finds a weak path predictor in the second iteration.

is traversed. In such a scenario, if we used branch profiles
and profiled the function containing the branch, HOLMES
would have found a weak branch predictor. Instead, if we
used path profiles, HOLMES would find a stronger path pre-
dictor. Similarly, if an atomic predicate appears as a weak
predictor, a stronger predictor may be obtained if we used
compound predicates [10]. Therefore, when a weak pre-
dictor is found in a function, HOLMES marks the function
for more detailed profiling in the next iteration. Our current
implementation of HOLMES only considers branches and
paths for the purposes of profiling.

5 Experimental Evaluation

We conducted experiments to evaluate two aspects of
our approach. First, we evaluate the effect of different
profiling techniques on the accuracy of statistical debug-
ging. In the second set of experiments, we evaluate the
effectiveness of HOLMES in isolating bugs, both in terms
of accuracy and runtime overheads.

Benchmarks and setup. We performed experiments using
two sets of benchmark applications (Table 1). We picked
6 benchmarks from the Software Infrastructure Repository
(SIR) [5]. These are the only SIR benchmarks we could
compile using the Microsoft Phoenix compiler [4]. Each
SIR benchmark contains several buggy versions and each
of these versions contains a single bug. We also considered
four large, real world applications, gcc [3], apache
portable library (apr) [1], two versions of a binary translator
being developed internally in Microsoft (translate.v1
and translate.v2) and the EDG C++ compiler. We use

the test suites provided with these applications to generate
the set of successful and failing runs. We evaluate the
adaptive profiling mechanism by re-running the test suite in
each iteration. This methodology mirrors our assumption
that a deployed application is likely to generate reasonably
similar profiles until changes are made or the bugs are
fixed. We performed our experiments on a system with the
Intel Pentium Core 2 Duo CPU (1.6Ghz) and 3 GB of RAM
running Windows Vista. While measuring overheads, we
estimate the execution time of a benchmark by running the
benchmark 5 times, ignoring the first run and computing
the average of the other 4 runs.

Profiling tools. We used the Microsoft Phoenix compiler
framework (July 2007 SDK) [4] to develop profiling tools
that can instrument C/C++ programs to generate branch
and path profiles. For predicate profiles, we rely on the
instrumentation tool that accompanies CBI. This tool
supports four different predicate instrumentation strate-
gies namely scalar pairs, return variables, floating point
operations and branches. We enabled all these strategies
for our experiments. We were unable to evaluate the
effectiveness of CBI over the 4 large applications because
the current implementation of the instrumentation tool does
not support these benchmarks.

Edges, Paths or Predicates? In Section 3, we hypothe-
sized that bug isolation would benefit if path profiles are
available. To test this hypothesis, we used branch and path
profiles to drive HOLMES and predicate profiles (profiles
of predicates from the family described in Section 2.1) to
drive CBI. To ensure a fair comparison, we do not use sam-

40

Benchmark Version Description LOC # tests
printtokens v1-v10 Lexical analyzer 726 4000
printtokens2 v1-v10 Lexical analyzer 570 4000
replace v1-v10 Performs pattern matching and substitution 564 4000
space v1-v10 An interpretor for an array definition language 6199 4000
schedule v1-v10 Priority scheduler 412 2650
totinfo v1-v10 Computes statistics for input data 565 1052
gcc 2.95.3 GNU C compiler 222196 812
apache 2.02 Web server 85661 269
translate 1 Binary to source translator 51987 133
translate 2 Binary to source translator 56604 260
EDG compiler - C++ compiler front end 466342 186

Table 1. Description of benchmarks used in our experiments.

Figure 4. Average importance scores assigned to bug predictors for various profiling schemes. High
scores are better.

pling for CBI. For each benchmark-profile pair, HOLMES
and CBI output a set of bug predictors along with their im-
portance scores (Section 3.1).

Figure 4 shows the importance scores for predictors ob-
tained using branch, path and predicate profiles. These
scores are averages across all versions of the same bench-
mark. The figure shows that predictors based on branch pro-
files have the lowest scores across most benchmarks. We in-
vestigated these scores further using bug thermometers [21]
for both branch and path profiles (Figure 5). The thermome-
ters show that for several benchmarks (like apache and
translate.v1), the statistical analysis does not find any
statistically significant bug predictors using branch profiles.
On the other benchmarks, the top ranked bug predictors
based on branch profiles either occur too often in success-
ful runs (indicated by the long white portion at the end of
the thermometer) or have low increase. On the other hand,
the analysis using path profiles finds strong bug predictors
(with high increase) for almost all benchmarks. The only
exception is gcc, where branch profiles do as well as path
profiles. These findings suggest that branches alone may

not have sufficient discriminatory power to explain failures.
Perhaps one reason why branch profiles are not as ef-

fective is that large applications often go through rigorous
test passes before they are released and it is not unusual for
these tests passes to cover a reasonable fraction of the pro-
gram’s branches. Hence, if some of the branches were the
root cause of bugs, such bugs are likely to be detected dur-
ing internal testing.

The comparison between path and predicate based pre-
dictors is more interesting. On average, bug predictors ob-
tained using path profiles outscore predictors obtained using
predicate profiles in 4 of the 6 SIR benchmarks. However,
the lack of a clear winner suggests that relying on one pro-
filing scheme may not suffice and statistical debugging tools
should adapt and use multiple profiling techniques.

Although the scores assigned by statistical debugging es-
timate the quality of bug predictors, the real measure of a
predictor’s effectiveness is the amount of programmer effort
required to go from the predictor to the actual root cause.
In general, quantifying programmer’s effort to find the root
cause starting with a given predictor is hard. However,

41

Figure 5. Bug thermometers used to visualize information about predictors. The figure shows the
average context, the increase, the confidence in increase and the number of times the predictor is
executed in successful runs for branch and path predictors.

Figure 6. The distribution of the number of
bugs localized vs. % code examined for three
types of profiles.

researchers have proposed metrics that estimate program-
mer effort and can be measured automatically. Reineris et
al. [24] propose a metric based on the program dependence
graph that can be used to estimate a programmer’s effort.
This metric is defined as the number of nodes in the pro-
gram’s dependence graph traversed during a BFS search
from one of the nodes corresponding to the predictor to a
node that corresponds to the root cause. Based on this met-
ric, we can compute for each predictor, the fraction of the
program that a programmer would have to traverse to get to

the root cause from the predictor. This metric T is defined
as T = Nbfs

Npdg
× 100, where Nbfs represents the distance

from the root cause and Npdg is the total number of nodes
in the program dependence graph. We computed this metric
using CODESURFER [2] and use this metric to evaluate the
quality of predictors generated using three types of profiles.
We conducted this experiment only for the SIR benchmarks
since the actual root causes in the other benchmarks are not
known.

Figure 6 illustrates the distribution of distances from the
root cause vs. the fraction of bugs localized using each of
the three profiling schemes. In this graph, a point (x, y)
can be interpreted as“for x bugs, the programmer had to
traverse less than or equal to y% of the program to find
the root cause”. As expected, branch profiles provide no
value during the debugging process. Predictors obtained
using path profiles are generally closer to the actual root
cause than predictors obtained using branch or predicate
profiles. For example, a programmer can root cause 24 of
the 45 bugs using path-based predictors and 14 bugs using
predicate-based predictors by examining < 10% of the
code. On the whole, using paths as potential root causes
tends to increases the accuracy of statistical debugging.
This observation, coupled with the fact that paths can be
profiled efficiently even in very large programs, suggests
that path profiles are a natural profiling mechanism for
scalable statistical debugging.

Adaptive debugging. As aforementioned, HOLMES’s bug
directed profiling technique iteratively instruments parts of

42

Benchmark Path profiling HOLMES1 HOLMES2 HOLMES3

print tokens 0.679 / 100.0% 0.423 / 100.0% 0.423 / 100.0% 0.423 / 100.0%
replace 0.570 / 98.9% 0.270 / 96.3% 0.529 / 98.2% 0.529 / 98.2%
gcc 0.679 / 66.6% 0.576 / 66.6% 0.679 / 66.6% 0.679 / 66.6%
translate.v1 0.534 / 58.3% 0.236 / 66.6% 0.471 / 25.0% 0.534 / 58.3%
translate.v2 0.825 / 93.3% 0.472 / 26.6% 0.891 / 80.0% 0.891 / 80.0%
edg 0.648 / 98.0% 0.651 / 97.0% 0.637 / 96.1% 0.656 / 96.1%

Table 2. Importance scores and percentage of failures explained for the first 3 iterations of HOLMES.
Scores are averages across all versions in case of the SIR benchmarks. Bold text indicates the
iteration where HOLMES reaches a fixed point.

Execution time overheads (%)

Benchmark Branch profiling Path profiling HOLMES1 HOLMES2 HOLMES3

gcc 75.3 181.3 2.614 9.647 NA
translate.v1 3.449 4.747 0.256 2.135 3.449
translate.v2 8.770 2.787 0.842 0.008 0.386

Space overheads (%)

Benchmark Branch profiling Path profiling HOLMES1 HOLMES2 HOLMES3

gcc 84.079 170.213 7.303 46.520 NA
translate.v1 25.215 41.127 4.144 2.971 21.602
translate.v2 25.099 43.232 3.147 1.833 0.790
apache 35.620 43.440 3.010 NA NA
edg 168.063 374.686 240.398 251.440 247.016

Table 3. Execution time and space overheads for branch profiling, path profiling, and all HOLMES
iterations.

code that are most likely to be relevant to a bug until
HOLMES a sufficiently strong root cause is found. Our cur-
rent implementation of HOLMES supports both branch and
path profiling. HOLMES selects the type of profiling using
the following policy. After bootstrapping, HOLMES uses
selective path profiling in subsequent iterations. HOLMES
terminates the iterative process if it finds a predictor with
a score > 0.8. During each iteration, HOLMES ranks func-
tions using the coupling measure and selects the top 5 for in-
strumentation. If the same predictors are seen in successive
iterations, HOLMES switches to full branch profiles, identi-
fies weak branch predictors and instruments functions that
are coupled with these predictors using path profiling.

First, we measured the quality of predictors (represented
by the importance score) obtained in successive iterations
of HOLMES (Table 2). We find that in the first iteration,
HOLMES generates weaker predictors that explain a small
fraction of failures. In most cases, HOLMES is able to lo-
calize the bug with the same accuracy as path profiles in 2-3
iterations. HOLMES is unable to localize bugs in apache
and space because the failing runs in these benchmarks do
not generate stack traces.

Table 3 shows the runtime overheads for each iterations
of HOLMES. We do not report execution time overheads for
apache and the EDG compiler because the test suite has
a large number of very short tests and the execution time

of the test suite is dominated by the test harness. We find
that the slowdown observed in each iteration of HOLMES is
negligible because HOLMES only profiles a small fraction
of code in each iteration, whereas full path profiling can
potentially slow down the program by a factor of 2. We also
find that HOLMES reduces the results code size significantly
in most of the benchmarks.

6 Related Work

The problem of explaining software failures has gener-
ated considerable interest and research ideas in recent times.
Various solutions to this problem have been proposed and
these include static, dynamic and statistical analyzes of pro-
grams as well as their combinations. Ball, Naik and Raja-
mani [12] use a software model checker to generate error
traces as well correct traces of programs and compute the
differences in these traces to detect and localize defects in
Windows device drivers. Delta-debugging of programs [15]
identifies state differences between failing and passing runs
of a program to detect causes in the program state that lead
to a failure. This information is combined with “cause tran-
sitions” to isolate statements in the program that are poten-
tial causes for failure. Since this technique relies on collect-
ing state information while the program runs, the process of
isolating the root cause for a failure could potentially have

43

high runtime overheads. Jones et al. [18, 19] propose tech-
niques that rank statements in a program based on their oc-
currence in failing and passing runs of the program. This
ranking is subsequently used along with program visualiza-
tion methods to aid the programmer in locating the state-
ments that are root causes for failure in an application. In
contrast, we show that paths are a more expressive and ef-
fective way of isolating program failures.

Our work is closely related to recent advances in statis-
tical bug isolation implemented in the CBI project [20, 21]
and [22]. CBI analyzes bug reports collected from deployed
software in order to isolate root causes for failures in the
software. Specifically, the program is instrumented to col-
lect information about values of certain types of predicates
at various program points and this information is passed on
to a statistical engine in order to compute predicates that are
highly correlated with failures. We use path profiles that (a)
capture richer information about program executions than
basic predicate profiles and, (b) can be computed at lower
runtime and space overheads. Recent work on using com-
pound Boolean predicates for predicting program failures
in CBI [10] shows improvement in the effectiveness of bug
isolation and indeed, paths are an instance of compound
predicates. Jiang and Su [17] also layer a path learning al-
gorithm on top of CBI in order to provide more context and
information about the nature of a bug. In addition to show-
ing the usefulness of paths in statistical debugging, we also
show how iterative and adaptive bug-directed profiling pro-
vides a low overhead alternative to sampling.

7 Conclusions

We have implemented a statistical debugging tool called
HOLMES that uses paths in place of predicates to perform
bug isolation. We have also demonstrated an iterative and
adaptive version of HOLMES that can effectively isolate
bugs with low time and space overheads without resorting to
sampling. Our results show that path profiles provide more
precise and effective bug isolation as well simplify the task
of debugging for real world applications.

References

[1] The Apache Software Foundation. http://www.apache.org.
[2] Codesurfer. http://www.grammatech.com/products/codesurfer/.
[3] GCC: The GNU Compiler Collection. http://gcc.gnu.org.
[4] Phoenix. http://research.microsoft.com/Phoenix.
[5] SIR: Software-artifact Infrastructure Repository.

http://sir.unl.edu/portal/index.html.
[6] Windows update. http://windowsupdate.microsoft.com.
[7] E. B. Allen, T. M. Khoshgoftaar, and Y. Chen. Measuring

coupling and cohesion of software modules: an information-
theory approach. In METRICS: Symposium on Software
Metrics, pages 124–134, 2001.

[8] G. Ammons and J. R. Larus. Improving data-flow analysis
with path profile. In PLDI: Programming Language Design
and Implementation, pages 72–84, 1998.

[9] M. Arnold and B. Ryder. A framework for reducing the cost
of instrumented code. In PLDI: Programming Language
Design and Implementation, pages 168–179, 2001.

[10] P. Arumuga Nainar, T. Chen, J. Rosin, and B. Liblit. Sta-
tistical debugging using compound Boolean predicates. In
ISSTA: International Symposium on Software Testing and
Analysis, pages 5–15, 2007.

[11] T. Ball and J. R. Larus. Efficient path profiling. In MICRO:
International Symposium on Microarchitecture, pages 46–
57, 1996.

[12] T. Ball, M. Naik, and S. K. Rajamani. From symptom
to cause: localizing errors in counterexample traces. In
POPL: Principles of Programming Languages, pages 97–
105, 2003.

[13] A. Beszedes, T. Gergely, S. Farago, T. Gyimothy, and F. Fis-
cher. The dynamic function coupling metric and its use in
software evolution. In Conference on Software Maintenance
and Reengineering (CSMR), pages 103–112, 2007.

[14] T. M. Chilimbi, A. V. Nori, and K. Vaswani. Quantifying the
effectiveness of testing via efficient residual path profiling.
In FSE: Foundations of Software Engineering, pages 545–
548, 2007.

[15] H. Cleve and A. Zeller. Locating causes of program fail-
ures. In ICSE: International Conference on Software Engi-
neering, pages 342–351, 2005.

[16] M. Hirzel and T. M. Chilimbi. Bursty tracing: A framework
for low overhead temporal profiling. In FDDO: Workshop
on Feedback-Directed and Dynamic Optimization, 2001.

[17] L. Jiang and Z. Su. Context-aware statistical debugging:
From bug predictors to faulty control flow paths. In ASE ’08:
Automated Software Engineering, pages 184–193, 2007.

[18] J. A. Jones and M. J. Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. In ASE ’05:
Automated Software Engineering, pages 273–282, 2005.

[19] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In ICSE ’02: Inter-
national Conference on Software Engineering, pages 467–
477, 2002.

[20] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug
isolation via remote program sampling. In PLDI: Program-
ming Language Design and Implementation, pages 141–
154, 2003.

[21] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In PLDI: Programming
Language Design and Implementation, pages 15–26, 2005.

[22] C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff. Sober: Sta-
tistical model-based bug localization. In FSE: Foundations
of Software Engineering, 2005.

[23] M. C. M. Fortin, Distinguished Engineer. Personal commu-
nication. 2007.

[24] M. Renieris and S. Reiss. Fault localization with nearest
neighbor queries, 2003.

[25] K. Vaswani, A. V. Nori, and T. M. Chilimbi. Preferential
path profiling: compactly numbering interesting paths. In
POPL ’07: Principles of Programming Languages, pages
351–362, 2007.

44

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
