
Model Evolution by Run-Time Parameter Adaptation

Ilenia Epifani
Politecnico di Milano

Dipartimento di Matematica
Piazza L. da Vinci, 32
20133 Milano, Italy

ilenia.epifani@polimi.it

Carlo Ghezzi, Raffaela Mirandola,
and Giordano Tamburrelli

Politecnico di Milano
DeepSE Group at DEI
Piazza L. da Vinci, 32
20133 Milano, Italy

(ghezzi|mirandola|tamburrelli)@elet.polimi.it

Abstract

Models can help software engineers to reason about
design-time decisions before implementing a system. This
paper focuses on models that deal with non-functional prop-
erties, such as reliability and performance. To build such
models, one must rely on numerical estimates of various pa-
rameters provided by domain experts or extracted by other
similar systems. Unfortunately, estimates are seldom cor-
rect. In addition, in dynamic environments, the value of pa-
rameters may change over time. We discuss an approach
that addresses these issues by keeping models alive at run
time and feeding a Bayesian estimator with data collected
from the running system, which produces updated param-
eters. The updated model provides an increasingly bet-
ter representation of the system. By analyzing the updated
model at run time, it is possible to detect or predict if a de-
sired property is, or will be, violated by the running imple-
mentation. Requirement violations may trigger automatic
reconfigurations or recovery actions aimed at guarantee-
ing the desired goals. We illustrate a working framework
supporting our methodology and apply it to an example in
which a Web service orchestrated composition is modeled
through a Discrete Time Markov Chain. Numerical simula-
tions show the effectiveness of the approach.

1. Introduction

Software engineers use models to reason about systems
by abstracting from details. Models are especially useful
in the design stage to drive architectural decisions that may
affect the overall quality of the final systems. By reasoning
on models, engineers may anticipate flaws that would other-
wise percolate through the development process and lead to
later costly corrective maintenance activities. Many mod-

eling approaches have been proposed, and several of them
are currently used in practice. They may differ —among
others— in the kind of properties they help reason about
and in the level of precision or formality of the results one
may obtain through them.

In this paper, we focus on models that may be used to
reason about non-functional properties of the software-to-
be. Furthermore, we deal with models that may be used
for automatic verification of certain desired properties. In
particular, we focus on properties such as reliability and
performance, and on modeling approaches based on Dis-
crete Time Markov Chains (DTMCs) and on Queuing Net-
works (QNs), which can be verified by using a probabilis-
tic model checker (e.g., PRISM, [22, 24]) or the suite JMT
for QN modeling and workload analysis (e.g., [7, 8]). The
key problem of models is accuracy. Intuitively, a model
is accurate if the information the designer may extract by
reasoning on it provides the right amount of detail and pre-
cision. In the case of non-functional requirements, mod-
els are heavily dependent on parameters that must be pro-
vided a-priori by domain experts or are extracted by other
similar systems. For example, in modeling performance of
a composite Web service that is built by orchestrating ex-
isting services, one needs to rely on estimates or on pub-
lished data on quality of service (QoS) of the components,
such as performance parameters. Unfortunately, estimates
are seldom correct. In addition, many current large dis-
tributed systems change over time. For example, service-
oriented architectures (SOAs) or pervasive systems are in-
creasingly built as dynamically adaptable and evolvable ag-
gregates of components that may change at run time. As a
consequence, design-time assumptions, even if initially ac-
curate, may later change after the system is deployed and
even while it is running. We claim that, to deal with these
issues, models must be kept alive at run time, and must
be continuously refined to achieve increasingly better accu-
racy, by updating the relevant parameters. A priori parame-

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 111

ters may be updated by observing the real data at run time
and through some strategy for estimate refinement which
generates a posteriori values. We propose a Bayesian ap-
proach to address this problem.

This paper contributes to two related relevant problems.
First, it lays the foundations for an iterative model-driven
development, which aims at verifying that an implementa-
tion satisfies non-functional requirements. If the resulting
running system behaves differently from the assumptions
made at design time, the feedback to the model shows why it
does not satisfy the requirements. This may lead to a further
development iteration or, ideally, to self-repearing actions
that may automatically generate an implementation, accord-
ing to an autonomic computing [17] approach. Second, it
provides a Bayesian technique to re-estimate probabilities,
which can be applied to different formal models (such as
DTMCs or QNs). In particular, a running example is used
to illustrate the approach in the context of reliability mod-
eling via DTMC [20]. The proposed run-time methodology
and a prototype tool supporting it define the KAMI frame-
work which is the main contribution of this paper. KAMI
stands for Keep Alive Models with Implementations.

The remainder of the paper is organized as follows: Sec-
tion 2 provides an extended description of the proposed ap-
proach. Section 3 describes an example we used to validate
our approach and motivates its choice. Section 4 illustrates
a model for our example based on DTMCs, which supports
reasoning about reliability properties. Section 5 describes
the KAMI approach for model evolution by run-time adap-
tation. Section 6 describes the KAMI support tool. Section
7 illustrates the simulations performed through KAMI on
our example and reports the numerical results we obtained.
Section 8 discusses related works. Section 9 concludes the
paper describing the current limitations of our approach and
future work.

2. The KAMI Approach

We observed that models are helpful in software design,
because they allow system designers to integrate their pre-
vious experience, documentation, and measurements into
models that can be analyzed to diagnose problems and ex-
plore competing alternatives. In particular, models support
verification of compliance between different design choices
and requirements. Different models are usually provided to
reason about different quality attributes and, in particular,
analyze functional and non-functional requirements. For
example, models for non-functional properties can be used
to predict and validate software performance or reliability,
as shown in [5] and [2]. Our proposal focuses on this cate-
gory of models, which includes queueing networks, Markov
chains, Bayesian networks etc.

Models for non-functional properties are characterized

by and depend on numerical parameters. Let us consider,
for example, a component based system modeled through a
QN [9] for performance analyses. Specifying a QN requires
several parameters: (1) customer interarrival time distribu-
tion (CITD), (2) service time distribution (STD), and (3)
routing probabilities (RP), which are usually unknown at
design time. Consequently, software engineers rely on es-
timates of these parameters provided by domain experts or
extracted by previous versions of the system under design.
However, there is no guarantee that these values are correct
or still hold in the environment in which the system will
be deployed. As stated before, system designers validate
a model against desired requirements and drive the imple-
mentation following the model structure. If the parameters
do not correspond to reality, the software will not exhibit the
predicted performance, leading to unsatisfactory behaviors
or failures.

Run-time adaptation of non-functional properties comes
into play solving this issue. Since predicted system behav-
iors could differ from the actual one, or they may change
over time because of changes in the environment, we claim
that models for non-functional requirements should coexist
with the implementation at run time. It is thus possible to
feed models with run-time data to update their internal pa-
rameters. Consequently, modified models provide increas-
ingly more accurate descriptions and allow us to automat-
ically check the desired requirements while the system is
running. At this stage, our approach can only deal with
model evolution by continuous estimation of its numeri-
cal parameters. The parameters we can estimate through
our method represent the actual values of the relevant non-
functional characteristics of the system under design (e.g.,
reliability of an external component) and of the usage pro-
file (e.g., customer interarrival time distribution). Future
work will address the important open problem of automat-
ing additional more complex modifications to the model,
such as structural changes.

The advantages of this methodology (KAMI) are
twofold. First, updated models better capture real system
behaviors. Second, updated models evolve at run time fol-
lowing the changes in the environment. In both cases when
a model shows that a given requirement is violated, it is pos-
sible to react by triggering reconfigurations. Moreover, the
more data we collect from the running instances of the sys-
tem, the more precise our models will be. Indeed, model
parameters will eventually converge to real values charac-
terizing the modeled system as we will show in the se-
quel. Conceptually, KAMI establishes a feedback control
loop between models and implementation. At design time,
models are developed to verify non-functional requirements
and drive the implementation. At run time, the real system
provides data exploited as feedbacks that may update the
model, increasing its correspondence with reality and our

112

confidence in it. It is important to notice that, in KAMI, it is
not strictly necessary to model the whole system, but only
the sub-parts that are considered as critical.

Modeling

Initial
Estimates

Implementation

Bayesian
Estimation

Refined Estimates

Runtime
Data

QoS
Requirements

Figure 1. Methodology Scheme

A crucial factor of KAMI is the mechanism adopted to
transform run-time data extracted by running instances of
the implemented system into estimates of model parame-
ters. KAMI performs this task by exploiting Bayesian Es-
timation Theory [6]. An informal explanation that justifies
this approach is given in Section 5.1.

Summing up, let us consider again the example of a com-
ponent based system modeled with a QN. When the system
has been completely developed, tested, and deployed it is
possible to collect data from its running instances. We can
measure, for example, the customer interarrival time (CIT)
and through the Bayesian estimation we can estimate its dis-
tribution (CITD). Consequently, the QN model is updated
and checked at run time against the desired requirements.

3. A Running Example

This section illustrates a running example, which deals
with Web-service compositions, used in this paper to illus-
trate the KAMI approach. Web-service compositions (and
SOAs in general [28]) make an excellent case for the need
of keeping models alive at run time. A Web-service compo-
sition is an orchestration of Web services aimed at building
a new service by exploiting a set of existing ones. The or-
chestration is performed through a workflow language, such
as BPEL [1, 10], a de-facto standard. BPEL instances co-
ordinate services that are typically managed by external or-
ganizations, other than the owner of the service composi-
tion. This distributed ownership implies that the final func-
tional and non-functional properties of the composed ser-
vice rely on behaviors of third-party partners that influence
the obtained results. At design time, a model can be used

to guarantee that the QoS of a composite service satisfies
the requirements, based on the hypothesized QoS of each
composed external service. However, design-time verifica-
tion does not suffice. The declared QoS of composed ser-
vices may turn out not to be met in practice. In addition,
because of the decentralized nature of services and of mul-
tiple ownership, external services may undergo independent
and unanticipated changes, which may lead to violating the
global QoS requirements.

The running example we use in the paper is based on a
case study, illustrated in [3], which deals with a distributed
system for medical assistance. The application, called Tele-
Assistance (TA), consists in a BPEL process for remote
assistance of patients. Figure 2 illustrates the application,
in which a server runs the TA composite service. The de-
scription is provided graphically. A summary of BPEL con-
structs and the graphical notation we use to describe them
are summarized in the Appendix.

The process starts as soon as a Patient (PA) enables the
home device supplied by TA, which sends a message to
the process’ receive activity startAssistance. Then, it en-
ters an infinite loop: every iteration is a pick activity that
suspends the execution and waits for one of the following
three messages: (1) vitalParamsMsg, (2) pButtonMsg, or
(3) stopMsg. The first message contains the patient’s vital
parameters that are forwarded by the BPEL process to the
Medical Laboratory service (LAB) by invoking the opera-
tion analyzeData. The LAB is in charge of analyzing the
data and replies by sending a result value stored in a vari-
able analysisResult. A field of the variable contains a value
that can be: changeDrug, changeDoses or sendAlarm. The
latter message triggers the intervention of a First-Aid Squad
(FAS) composed of doctors, nurses, and paramedics, whose
task is to visit the patient at home in case of emergency. To
alert the squad, the TA process invokes the operation alarm
of the FAS. The message pButtonMsg caused by pressing
a panic button also generates an alarm sent to the FAS. Fi-
nally, the message stopMsg indicates that the patient may
decide to cancel the TA service.

4. Reliability Modeling via DTMCs

Different models may be used to reason about different
non-functional properties of a software architecture. All
such models require that certain parameters characterizing
the final running system should be specified. Although
the KAMI methodology and its prototype implementation
apply to any probabilistic non-functional quality attribute,
hereafter we focus on reliability [21, 20] and on models
based on DTMCs. KAMI also supports performance analy-
sis via QNs. Run-time adaptation of QN parameters can be
performed by applying the same statistical machinery we il-
lustrate for DTMCs. The next section introduces DTMCs.

113

PA
(home device)

FAS

LAB

TA ProcessstartAssistance

analyzeData

vitalParamsMsg pButtonMSg

Alarm

stopMsg

AlarmchangeDrugchangeDoses

OnMessage OnMessage OnMessage

Figure 2. TA BPEL Process

Then we illustrate how one can model reliability aspects of
the running example. Finally, we present a Bayesian tech-
nique for estimating DTMC numerical parameters by ana-
lyzing run-time data.

4.1. An Introduction to DTMCs

DTMCs are usually adopted to model system reliabil-
ity [19]. They are stochastic processes with the Markov
property defined as state-transition systems augmented with
probabilities. States represent possible configurations of the
system. Transitions among states occur at discrete time and
the probability of making transitions is given by discrete
probability distributions. Formally, a sequence of random
variables X0, X1, . . . is a DTMC with tuple (S, sinit, M, L)
if probabilities satisfies the following constraints:

P (X0 = sinit) = 1

and

P (Xn+1 = s′|Xn = s, X1, . . . , Xn−1) =
= P (Xn+1 = s′|Xn = s) = ms,s′ ,

(1)

where

• S is a finite set of states: S = {1, . . . , k};

• sinit ∈ S is the initial state;

• M : S × S → [0, 1] is a transition probability matrix;
its element ms,s′ represents the probability of passing
from state s to state s’ and

∑
s′∈S ms,s′ = 1;

• L : S → 2AP is a function labelling states with atomic
propositions.

Markov property (1) means that the probability of choosing
the transition from state s to s’ is independent of the past
transitions. Moreover, if we observed a path X1, . . . , Xn of
a DTMC of length n, the likelihood function is:

P (X1 = s1, . . . , Xn = sn) =

= ms1,s2ms2,s3msn−1,sn =
∏

i,j∈S

m
Ni,j

i,j

where Ni,j denotes the number of transitions between states
i, j. A complete description of DTMCs is beyond the scope
of this paper and can be found in [26]. When software engi-
neers adopt DTMCs to model system reliability they must
specify the set of states S and the transition probability ma-
trix M. Its probability values are numerical parameters and
represent, for example, the failure probabilities of the sys-
tem components. The modeling activity implies the choice
of values for the probability matrix and engineers rely on an
initial estimate M(0) = {m(0)

s,s′}s,s′∈S called prior transi-
tion probability matrix. As we will describe in Section 5.1,
M(0) represents initial knowledge of an engineer and drives
the initial design and system implementation.

4.2. Modeling the Example

In our running example we are interested in assessing
the reliability of the process implementing the TA appli-
cation. Following our approach, the designer is in charge

114

of: (1) deciding the structure of the model, (2) character-
izing the model with appropriate parameters that represent
his/her current knowledge about the system, (3) checking
whether the model satisfies the desired requirements (and
possibly changing design choices based on the outcome of
the check), and (4) implementing the final BPEL process.

We adopted a DTMC to model reliability of our exam-
ple. Figure 3 illustrates the result of our modeling activity
(the prior transition probability matrix M(0) can be easily
derived from the figure). The model represents the structure
of the TA process and assigns probabilities to branches and
failure probabilities to service invocations. Our approach
relies on initial estimates for reliability values that come
from domain experts or extracted by previous or similar
version of the system under design. In this example, we
adopted numerical values chosen for illustrative purposes.
Real-world medical applications would require lower fail-
ure probabilities. We assume that the system designer is

a

0.1

b

d

0.6
vitalParamsMsg

c

stopMsg

h1

0.3 l

m

0.41

0.45

g1 o
1

0.04

0.02

0.01

f

Exit
1

1

0.99

0.98

Init

0.02

n

FailedAlarm
1

p
1

q 1

FailedChangeDrug

FailedChangeDose

changeDrug

FailedAnlysis

0.12

i

FAS

0.96
1

pButtonMsg

analyzeData

e

1

notifyPA

alarm

changeDoses

Figure 3. TeleAssistance DTMC Model

interested in verifying the following requirements:

• R1: The probability P1 that no failures ever occurred
is greater then = 0.7

• R2: If a changeDrug or a changeDoses has occurred
the probability P2 that the next message received by
the TA generates an alarm which fails (i.e., the FAS is
not notified) is less then 0.015

• R3: Assuming that alarms generated by pButtonMsg
have low priority while alarms generated by analyze-
Data have high priority, it is required that the proba-
bility P3 that a high priority alarm fails (i.e., it is not
notified to the FAS) is less then 0.012

The requirements can be proven to hold for the compos-
ite service. For example, by using the DTMC probabilistic

model checker PRISM [22, 24], we obtained: P1=0.741,
P2=0.014, P3=0.0048.

5. KAMI at Work for DTMCs

In this section we describe the statistical machinery for
our proposed Bayesian estimation of DTMCs’ parameters,
which is supported by KAMI. We also show how the esti-
mation may lead to discovery or prediction of failures.

5.1. Parameter Estimation for DTMCs

Let us consider a system modeled through a DTMC H.
The focus of run-time adaptation is to exploit a statistical
technique that estimates the matrix M of H , given run-time
data and prior transitions {m(0)

s,s′}s,s′ . Through run-time
monitoring, we assume that information about the occur-
rence of every transition from state i to state j is available
as en event trace. Run-time monitoring is beyond the scope
this paper; the approach described in [4] can be used for
this purpose. Let d be the number of running instances
of the system modeled through d statistically independent
DTMCs, all starting from a common initial state sinit. For
every h = 1, . . . , d, the hth instance executes the transition
from state i to state j N

(h)
i,j times.

In a Bayesian perspective the transition matrix M is a
random matrix and the statistical problem of updating each
ms,s′ , using run-time data, corresponds to updating the
prior distribution of M (depending on {m(0)

s,s′}s,s′) by com-
puting a posterior conditional probability of M, given the
run-time data:

P (ms,s′ |N (h)
i,j , m

(0)
i,j , i, j ∈ S, 0 ≤ h ≤ d) .

Then the posterior distribution leads to an new estimate of
M. Hence, the Bayesian solution of updating M requires
a statistical model (Likelihood Function) and a prior distri-
bution of M. It yields a posterior distribution from which
we derived an updated transition matrix through an updat-
ing rule. A complete description of the mathematical steps
involved in this process is beyond the scope of this paper.
So, we confine our-selves to a very brief overview and refer
the reader to [25, 32] for more details.

The likelihood function of collected data is

P (X(1)
1 = s

(1)
1 , . . . , X(d)

nd
= s(d)

nd
) =

d∏
h=1

k∏
i,j=1

m
N

(h)
i,j

i,j

Regarding the prior distribution of M, we assume sta-
tistical independence among the rows of M and model each
row (mi,1, . . . ,mi,k) with a Dirichlet Distribution1. In gen-
eral, a Dirichlet distribution Dir(a1, . . . , ak), with parame-
ters a1, . . . , ak all positive, is a joint distribution for a vector

1The choice of the Dirichlet distribution is justified by [12], which

115

Y1, . . . , Yk such that
∑k

i=1 Yi = 1 and whose joint density
evaluated in y1, . . . , yk is

Γ(c)∏k
j=1 Γ(aj)

ya1−1
1 · · · yak−1

k , c =
k∑

j=1

aj

The jth component Yj has mean E(Yj) = aj/c and vari-
ance Var(Yj) = aj(c − aj)/[c2(c + 1)]. The parameter
c is called total mass of the Dirichlet distribution and is a
precision parameter that regulates the concentration of each
Yj around its mean value since the variance varies inversely
with c (see Section 3.1 in [18] for an full description). We
model the prior distribution of the ith row of M as a Dirich-
let vector, with parameters c

(0)
i m

(0)
i,1 , · · · , c(0)

i m
(0)
i,k−1 so that

the total mass is c
(0)
i :

(mi,1, . . . ,mi,k) ∼ Dir(c(0)
i m

(0)
i,1 , · · · , c(0)

i m
(0)
i,k−1).

The meaning of c
(0)
i in our context and the criteria to choose

it will be described later. By applying Bayes rule:

Posterior ∝ Prior × Likelihood

we obtain that a posteriori the transition matrix M is a
product of independent Dirichlet rows with the following
updated parameters:

c
(Ni)
i = c

(0)
i + Ni

m
(Ni)
i,j = m

(0)
i,j +

d∑
h=1

N
(h)
i,j

where: Ni =
∑d

h=1

∑k
j=1 N

(h)
i,j .

Finally, we summarize the posterior distribution in a simple
way, using the posterior means of {mi,j}i,j :

m
(Ni)
i,j =

c
(0)
i

c
(0)
i + Ni

×m
(0)
i,j +

Ni

c
(0)
i + Ni

×
∑d

h=1 N
(h)
i,j

Ni
(2)

Formula (2) is the updating rule which produces the new
estimates. It is the weighted sum of two terms. The for-
mer is related to our initial estimate m

(0)
i,j and represents

our a priori knowledge. The latter term depends on run-
time data and expresses the knowledge we extract from data
collected from running instances. Parameters {c(0)

i }i are
called smoothing parameters: they quantify our confidence
in a priori knowledge with respect to run-time data. A high
value of c

(0)
i means high confidence on a priori knowledge

and in (2) the contribution of the data to the estimate is

proves that, in a multinomial model, the prediction of a future event (in
our case mi,j) is linear in the number of past occurrences (in our case

N
(h)
i,j) if and only if the prior distribution is Dirichlet.

small. Vice-versa a low value of c
(0)
i represents low con-

fidence on a priori values and the run-time data are domi-
nant. Notice that for c

(0)
i ' 0, the estimate m

(Ni)
i,j in For-

mula (2) reduces to the classical Maximum Likelihood Esti-
mator (MLE):

∑
h N

(h)
i,j /

∑
h N

(h)
i .

5.2. Failure Detection and Prediction

In our approach, we can distinguish between failure de-
tection and failure prediction. A failure is detected if the
user of the system experiences a deviation from the ex-
pected behavior described by a requirement. For example,
let us consider the TA application in Figure 2 and let us fo-
cus on requirement R3. A failure of R3 can be detected only
by considering the number of failed high priority alarms
whose notification to the FAS fails over the total number
of high priority alarms. On the other hand, a failure is pre-
dicted if the model is able assess that a requirement is vio-
lated even if the actual events involved in the violation did
not occur yet. The distinction between detection and predic-
tion is crucial and provides further justification for keeping
models alive at run time, as shown the following example.

Consider a trace t of 20 run-time data x1, x2 . . . x20 each
representing an alarm invocation, and suppose that x5, x15,
and x20 represent invocations that fail. A violation of R3
is detected if and only if all invocations have high priority.
Being active at run time, KAMI detects the failure. In fact
consider the DTMC in Figure 3 and assume c

(0)
i = 10 for

every row in M(0). After observing trace t KAMI computes
the following model updates:

mg,n = 0.04× 10
20 + 10

+
3

20 + 10
=

3.4
30
' 0.113

Thus, KAMI detects that the probability associated with
transition from state g to state n was underestimated at de-
sign time. By using the updated estimate 0.113 instead of
0.04, the probability of the path from state h to g to n would
be P = 0.12× 0.113 = 0.014, which is greater then 0.012,
thus violating R3. In this case KAMI detects the failure
after it actually occurred, since the event that caused the de-
tection is instead perceived by the user as a deviation from a
requirement. After detecting the failure, KAMI activates the
exception associated with the violated requirement which
can only performs after-the-fact recovery actions.

KAMI can also predict failures. For example, the same
trace t would lead KAMI to predict a failure of R3 even
if all alarms in the trace are low priority and therefore no
failure has been detected yet. In fact, the updated estimate
mg,n provides the same value no matter what the priority of
alarms invocations are. The Bayesian approach, embedded
in KAMI, exploits failures of low priority alarms to update
the probability of transition from state g to state n, which

116

is implicitly involved in requirement R3. By extending the
trace t the updated estimate will eventually converge to the
real failure rate which was unknown at design time.

6. KAMI: a Framework for Run-Time Model
Adaptation

This section illustrates our ongoing implementation of
KAMI. KAMI is a plugin-based software composed of: (1)
Model Plugins, (2) System Models, (3) Input Plugins. The
plugin-based architecture can support the necessary exten-
sions that will be later introduced to enrich the environment.

System Models are text files describing the models on
which KAMI operates. These files contain: (1) model
descriptions with numerical parameters that KAMI is in
charge of updating, (2) the requirements the user is inter-
ested in, and (3) a set of exceptions to be raised when a
requirement is violated. For example, such file can con-
tain a description of a QN and several requirements (e.g.,
a threshold on average residence time or on average queue
length) with their associated exceptions aimed at managing
the violations.

Model Plugins provide to KAMI the ability to handle
different and new models, by interpreting model files and
their requirements. Moreover they are in charge of analyz-
ing models with respect to requirements. If a model vio-
lates a requirement, the corresponding exception specified
in the system model is raised. The current version of KAMI
comes with two pre-installed plugins, which can manage
DTMCs and QNs. The former exploits the probabilistic
model checker PRISM [22, 24] to verify reliability require-
ments. The latter is based on JMT, an open source suite for
QN modeling and workload analysis [7, 8].

Finally, Input Plugins provide to KAMI the ability to
connect models with the run-time world in which the im-
plemented system is running. The running system feeds
the model with monitored data. For example, in the case
of DTMCs, it provides information about the occurrence of
transitions among states. The purpose of the plugin is to
handle different input formats and protocols for run-time
data (e.g, socket, RMI, etc.).

Software engineers are in charge of modeling their sys-
tems and deploying the models in KAMI. Every model plu-
gin defines the syntax they have to comply with. Once a
model is deployed, KAMI automatically starts updating it
with data provided by the running systems. Since KAMI
supports run-time adaptation for multiple models and sys-
tems concurrently, data are tuples < s,m, p, d > where s
identifies the originating running system, m identifies the
target model, p identifies the estimated parameter (in the
case of a DTMC the transition probability), and d is the col-
lected run-rime value. Input plugins are in charge of trans-
forming run-time data in this tuple format. This mecha-

nism supports the integration of existing monitoring tools
to extract data form running instances of systems, because
one simply needs to develop an input plugin that transforms
run-time data as required by KAMI. Moreover, input plug-
ins introduce a decoupling layer between KAMI and run-
ning systems which allows integration and correlation of
distributed and heterogeneous data collected from the en-
vironment. The output of our framework is a new set of
models corresponding to the updated versions of deployed
system models that result from Bayesian estimation. These
updated models are analyzed continuously by model plug-
ins to verify requirements. When a violation is detected,
KAMI raises the associated exception, logs the event, and
calls the appropriate exception handler. In the current ver-
sion of our framework, it consists of user-defined Java code.
This way a system modeler can attach to exceptions prede-
fined reactions that trigger alarms or perform reconfigura-
tions which close the control loop between the model and
the implementation.

KAMI

Model Plugins

DTMC

Queueing
Network

Markov Decision
Process

ImplementationImplementationImplementationImplementationImplementation

System Models

DTMC A

DTMC B

Input Plugins
Socket RMI

Updated Models
DTMC A DTMC B

........

Qeueing
Network A

........

Figure 4. KAMI Architecture

7. Simulations and Numerical Results

This section describes how the KAMI approach has been
evaluated through simulations. Of the experiments we
made, here we focus on the TA example of Figure 2 and
specifically on checking requirement R3. Let us initially as-
sume that, at design time, the model contains a wrong guess
of the value of the probability that an alarm fails (transi-
tion form state g to n in Figure 3 with probability 0.04).

117

Let us also assume that the actual probability is instead
0.15, which would lead to a requirement violation since
the probability of the path from state h to g to n would be
P = 0.12× 0.15 = 0.018, which is greater then 0.012.

The goal of simulation is to assess how the Bayesian es-
timate of the probability of the transition evolves over time,
as more data are collected from the field. We achieve this
goal by generating run-time data representing alarm invo-
cations that follows a Bernoulli distribution with parameter
p = 0.15 (failure probability). The results of simulations
are shown in Figure 5. The figure represents the average
estimate for the probability of transition form g to n (i.e.,
mg,n) over 1000 simulations which use smoothing parame-
ters c

(0)
i = 10. The horizontal axis represents the run-time

data for the alarm invocations (i.e., Ng). The vertical axis
represents the estimation value mg,n, which starts from the
prior value (i.e., 0.04) and gradually converges to the ac-
tual probability (i.e., 0.15). It is interesting to observe that
a value of the probability equal to 0.1 is the threshold that
indicates the violation for R3 2 and the Figure 5 shows that
a requirement violation occurs with less then 20 run-time
data analyzed by KAMI.

Figure 5. Average Estimate

Two natural questions arise from the previous simula-
tions and require further investigations:

• we chose the value 10 for smoothing parameters in our
simulations. How do different values for the parameter
influence the results?

• we assumed that the probability to estimate is con-
stant. What happens if the target environment changes
in its operating conditions and therefore this probabil-
ity evolves over time?

The next two sub-sections briefly address these issues.

2In fact the probability of the path from state g to h to n is 0.12 ×
mg,n < 0.012, which implies mg,n < 0.1.

7.1. Choosing the Smoothing Parameter

The effect of different choices for the values of the
smoothing parameters can be measured through the estima-
tion error (E) computed as:

E =
| estimated paramter-real parameter |

real parameter

We focus again on requirement R3. We assume, however,
different values for the initially guessed probability (i.e.,
0.3) and the real probability (i.e., 0.7) to put ourselves in
a more extreme case, with a higher distance between the
guessed and the real value than in the case of Figure 5.
The parameter c(0) represents the system designer’s con-
fidence respect with a model parameter. The higher is the
confidence, the larger c(0) must be. Figure 6(a) shows E
for different choices of the smoothing parameter. It shows
that lower values of c(0) imply a slightly faster convergence.
However, in these cases E initially shows a less smooth con-
vergence because of the strong dependence on initial run-
time data. These fluctuations could lead to false positives in
requirement verification (especially in the case of run-time
data with high variance). Conversely, a larger value of c(0)

shows that E converges slowly but with a smoother approx-
imation.

Summing up, in all our simulations estimates converge
to real values of probabilities, but the speed of convergence
depends on several factors. We investigated here the influ-
ence of smoothing parameters. Other simulations, which
could not be reported here for space reasons, also show a
dependence on the variance of run-time data.

7.2. Dynamic Environments

Let us consider a situation in which the target envi-
ronment changes in its operating conditions and therefore
the probability of failure of alarm notification evolves over
time. In particular assume, in our example, that initially the
probability of failure is equal to 0.7 and the prior guess is
equal to 0.3. Further assume that a sudden a change in the
running environment shifts the value of the probability to
0.3 (i.e. the initial guess). Figure 6(b) shows the results
obtained with c

(0)
i = 100. The figure shows how the es-

timation error constantly decreases until there is a peak in
the estimation error exactly when our simulation starts gen-
erating data from the new value 0.3. As soon as enough
new run-time data are collected the estimation error starts
decreasing again since the estimated parameter begins to
converge to the new probability characterizing the new sit-
uation.

118

(a) Estimation Error with Different Smoothing Values

(b) Estimation Error in a Dynamic Environment

Figure 6. Estimation Errors

8. Related Work

Many techniques and methodologies support predictions
or analyses of non-functional properties. Basically, two ex-
isting approaches are possible: (1) measurement and (2)
modeling. The former is based on direct measurement of the
desired requirement of an existing implementation through
the use of dedicated tools (e.g., profiler, tracer, etc.). For
example JMeter [23] performs profiling of Java applica-
tions aimed at identifying bottlenecks. Another example
is Load Runner [15], which was conceived to perform load
testing for scalability analyses. Data extracted help in iden-
tifying critical parts of the system that require a refinement
to achieve the desired non-functional behavior. Direct mea-
surements become increasingly harder as the complexity of
the system get higher; for example, in the case of large dis-
tributed systems. Modeling comes into play to solve limita-
tions of direct measurements because it may abstract away
from the intricacies of systems. Moreover, a model may be
built before a measurable system exists in reality. However,
pure modeling of non-functional properties suffers from the
defects illustrated in Section 1. As a consequence measure-
ments and modeling are rather complementary than alterna-
tive techniques.

Concerning the application field of our example, many
existing research efforts focus on modeling service compo-
sitions. However most of them focus only on functional

properties. For example, [16] and [27] describe approaches
which aim at verifying and validating service compositions
by means of workflow analysis through model checking.
However their approach does not explicitly take into ac-
count non-functional properties and it does not exploit run-
time data to refine models. Similarly, [14] describes an
approach for verifying service compositions starting from
UML descriptions and then transforming them into a spe-
cific representation that allows validation with respect to
concurrency properties. A similar approach is described in
[13], which shows how to verify BPEL processes in case
of resource constraints, with respect to safety and liveness
properties.

The work in [4] focuses on monitoring and derives run-
time data that are analyzed to perform verification through
an assertion language. This approach is not based on an
explicit model and does not support verification of non-
functional properties. Further work from the same authors
[3] defines a modeling approach for service compositions
and an assertion language whose evaluation also extends to
run time. The language, called ALBERT, can be used to
specify both functional and simple (non probabilistic) non-
functional properties. ALBERT assertions are verified for
BPEL workflows at design time via model checking, and
turned into dynamically evaluated assertions at run time,
a feature that is essential to support evolution in dynamic
environments. The approach described by [29] supports
on-line monitoring of service level agreements (SLAs) in
a web-service environment. A language (SLAng) is intro-
duced to specify quality of service, which includes non-
functional attributes, such as timeliness, reliability, and
throughput. This approach is close to ours because a model,
based on timed-automata, operates while messages are ex-
changed at run time. The main difference is in our focus on
probabilistic properties and run-time model adaptation.

Our proposal guarantees both the benefits provided by
approaches based on measurement and those based on mod-
eling. Models are kept alive at run time and, through mea-
surements, they can become progressively more accurate.
Only few other similar approaches are described in the lit-
erature. In particular, [33] describes a methodology for esti-
mation of model parameters through Kalman filtering. This
work is based on a continuous monitoring that provides
run-time data feeding a Kalman filter, aimed at updating
the performance model. This approach differs from ours
since it does not allow the encoding of initial knowledge
that we provide through the smoothing parameter. More-
over, it does not explicitly support dynamic environments.
Conversely, the approach is general with respect to the per-
formance model, while in our proposal a specific statistical
machinery has to be defined for every supported model and
developed in KAMI through plugins.

The work in [30] developed a CTMC formulation of

119

composite services to predict performance and reliability
bottlenecks by applying a sensitivity analysis technique. Al-
though this work focuses on design time, we plan to include
in our approach CTMCs for run time analyses.

A recent work [11] presents a framework for component
reliability prediction whose objective is to construct and
solve a stochastic reliability model allowing software archi-
tects to explore competing architectural designs. Specifi-
cally, the authors tackle the definition of reliability models
at architectural level and the problems related to parameter
estimation. The problem of correct parameter estimation
is also discussed in [20, 31], where shortcomings of exist-
ing approaches are identified and possible solutions are pro-
posed.

Concerning our Bayesian estimation technique, at the
best of our knowledge, we do not know any existing ap-
proach that exploits this statistical technique to solve the
problems presented in this paper. In [32], for example, a
similar statistical approach was adopted in predicting word
sequences for speech recognition and automatic transla-
tions. Moreover in [32] it is possible to find a complete
description of the statistical concepts that we adopted in
run-time adaption.

9. Conclusion and Future Work

In this paper we presented the KAMI approach to model
evolution by run-time adaptation. Our proposal exploits
Bayesian estimators which produce updated model parame-
ters. The updated models provide an increasingly better rep-
resentation of the system that allows continuous automatic
verification of requirements at run time. Models updated at
run time support failure detection and prediction, and may
contribute to achieving self-adaptive autonomic systems.

Our contribution is twofold. We provided the statisti-
cal machinery to perform run-time adaptation of DTMCs.
We also provided a working framework supporting the
methodology. Our future work will consist of refining the
KAMI approach investigating its scalability in real-world
distributed applications. We plan to enrich the ongoing
implementation by enlarging the set of supported models
(e.g., Continuous Markov Chains, Markov Decision Pro-
cesses, etc.) and defining a language aimed at managing
multi-model consistency. We will also conduct further sim-
ulation campaigns to shed light on issues like the mutual
effects of the choice of different values for smoothing pa-
rameters, and the distance between guessed and real val-
ues of parameters, and the variance in run-time data. Cur-
rently our approach modifies models through the estimation
of their numerical parameters and we do not take into ac-
count structural changes. We plan to investigate this issue
in the future and to support it in KAMI. In addition, we plan
to investigate the reaction phase in the control loop, which

Table 1. BPEL Graphical Notation

Activity Shape Activity Shape Activity Shape

receive wait pick

invoke terminate flow

reply sequence fault han-
dler

!

assign switch event han-
dler

throw
!

while compensation
handler

is presently not supported. Our final goal is to support soft-
ware engineers during all the development process to obtain
evolvable and dependable systems in which models coexist
with implementations to achieve run-time adaptability.

10. Appendix

BPEL, Business Process Execution Language, is an
XML-based workflow language conceived for the defini-
tion and the execution of service compositions. Table 1
shows the graphical notation adopted in this paper to repre-
sent BPEL constructs. BPEL processes comprise variables,
with different visibility levels, and the workflow logic ex-
pressed as a composition of elementary activities. Activi-
ties comprise tasks like: Receive, Invoke, and Reply that are
related to the interaction with other services. Moreover it
is possible to perform assignments (Assign), throwing ex-
ceptions (Throw), pausing (Wait) or stopping the process
(Terminate). Branch, loop, while, sequence and switch con-
straints manage the control flow of BPEL processes. The
pick construct is peculiar to the domain of concurrent and
distributed systems, and waits for the first out of several in-
coming messages, or timer alarms to occur, to execute the
activities associated with such an event. Each scope may
contain the definition of the several handlers: (1) an Event
Handler that reacts to an event by executing a specific activ-
ity, (2) a Fault Handler catches faults in the local scope, and
(3) a Compensation Handler aimed at restoring the effects
of a previously unsuccessful transaction. For a complete
description of BPEL language see [1, 10].

Acknowledgments

This research has been partially funded by the European
Commission, Programme IDEAS-ERC, Project 227977-
SMScom. We thank the anonymous reviewers and Lars
Grunske for their helpful comments on an earlier version.

120

References

[1] A. Alves, A. Arkin, S. Askary, B. Bloch, F. Curbera,
Y. Goland, N. Kartha, Sterling, D. König, V. Mehta,
S. Thatte, D. van der Rijn, P. Yendluri, and A. Yiu. Web
services business process execution language version 2.0.
OASIS Committee Draft, May 2006.

[2] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni.
Model-based performance prediction in software develop-
ment: A survey. IEEE Transactions on Software Engineer-
ing, 30(5):295–310, 2004.

[3] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spole-
tini. Validation of web service compositions. IET Software,
1(6):219–232, December 2007.

[4] L. Baresi and S. Guinea. Towards Dynamic Monitoring of
WS-BPEL Processes. Proceedings of the 3rd International
Conference on Service Oriented Computing, 2005.

[5] S. Becker, H. Koziolek, and R. Reussner. Model-based per-
formance prediction with the palladio component model. In
WOSP ’07: Proceedings of the 6th International Workshop
on Software and Performance, pages 54–65, New York, NY,
USA, 2007. ACM.

[6] J. O. Berger. Statistical Decision Theory and Bayesian Anal-
ysis. Springer, 2 edition, 1985.

[7] M. Bertoli, G. Casale, and G. Serazzi. The jmt simulator
for performance evaluation of non-product-form queueing
networks. In Annual Simulation Symposium, pages 3–10,
Norfolk,VA, US, 2007. IEEE Computer Society.

[8] M. Bertoli, G. Casale, and G. Serazzi. An overview of
the jmt queueing network simulator. Technical Report TR
2007.2, Politecnico di Milano - DEI, 2007.

[9] G. Bolch, S. Greiner, H. de Meer, and K. Trivedi. Queueing
networks and Markov chains: modeling and performance
evaluation with computer science applications. Wiley-
Interscience New York, NY, USA, 1998.

[10] BPEL. http://www.oasis-open.org/.
[11] L. Cheung, R. Roshandel, N. Medvidovic, and L. Gol-

ubchik. Early prediction of software component reliability.
In 30th International Conference on Software Engineering
(ICSE 2008), Leipzig, Germany, May 10-18, 2008, pages
111–120. ACM, 2008.

[12] P. Diaconis and D. Ylvisaker. Conjugate priors for exponen-
tial families. Ann. Statist, 7(2):269–281, 1979.

[13] H. Foster, W. Emmerich, J. Kramer, J. Magee, D. Rosen-
blum, and S. Uchitel. Model checking service compositions
under resource constraints. In ESEC-FSE ’07: Proceedings
of the the 6th joint meeting of the European software engi-
neering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 225–234,
New York, NY, USA, 2007. ACM.

[14] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of web service compositions. Automated Soft-
ware Engineering, 0:152, 2003.

[15] C. Fraser and D. Hanson. Mercury LoadRunner Monitor
Reference. Mercury Interactive, 2004.

[16] X. Fu, T. Bultan, and J. Su. Analysis of interacting bpel web
services. In WWW ’04: Proceedings of the 13th interna-
tional conference on World Wide Web, pages 621–630, New
York, NY, USA, 2004. ACM.

[17] A. Ganek and T. Corbi. The dawning of the autonomic com-
puting era. IBM Systems Journal, 42(1):5–18, 2003.

[18] J. K. Ghosh and R. V. Ramamoorthi. Bayesian Nonparamet-
rics. Springer, 2003.

[19] S. Gokhale and K. Trivedi. Structure-Based Software Re-
liability Prediction. Proc. of Fifth Intl. Conference on Ad-
vanced Computing (ADCOMP97), pages 447–452, 1997.

[20] S. S. Gokhale. Architecture-based software reliability anal-
ysis: Overview and limitations. IEEE Trans. Dependable
Sec. Comput., 4(1):32–40, 2007.

[21] D. Hamlet, D. Mason, and D. Woit. Theory of software re-
liability based on components. In ICSE ’01: Proceedings of
the 23rd International Conference on Software Engineering,
pages 361–370, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[22] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker.
PRISM: A tool for automatic verification of probabilistic
systems. Proc. 12th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS06), 3920:441–444, 2006.

[23] JMeter. http://jakarta.apache.org/jmeter/.
[24] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 2.0: a

tool for probabilistic model checking. Quantitative Evalua-
tion of Systems, 2004. QEST 2004. Proceedings. First Inter-
national Conference on the, pages 322–323, 2004.

[25] D. MacKay and L. Peto. A hierarchical Dirichlet language
model. Natural Language Engineering, 1(3):1–19, 1995.

[26] S. Meyn and R. Tweedie. Markov chains and stochastic sta-
bility. Springer-Verlag London, 1993.

[27] S. Nakajima. Model-checking verification for reliable web
service. OOPSLA 2002 Workshop on Object-Oriented Web
Services, Seattle, Washington, 2002.

[28] M. Papazoglou and D. Georgakopoulos. Service-Oriented
Computing. Communications of the ACM, 46(10):25–28,
2003.

[29] F. Raimondi, J. Skene, L. Chen, and W. Emmerich. Efficient
Monitoring of Web Service SLAs. UCL, Dept. of Computer
Science. Research Note RN/07/01. Gower St, London WC1E
6BT, UK, 2007, to appear at FSE 2008.

[30] N. Sato and K. S. Trivedi. Stochastic modeling of composite
web services for closed-form analysis of their performance
and reliability bottlenecks. In ICSOC ’07: Proceedings of
the 5th international conference on Service-Oriented Com-
puting, pages 107–118, Berlin, Heidelberg, 2007. Springer-
Verlag.

[31] C. U. Smith and L. G. Williams. Performance solutions:
a practical guide to creating responsive, scalable software.
Addison Wesley Longman Publishing Co., Inc., Redwood
City, CA, USA, 2002.

[32] C. C. Strelioff, J. P. Crutchfield, and A. W. Hübler. In-
ferring markov chains: Bayesian estimation, model com-
parison, entropy rate, and out-of-class modeling. Physical
Review E (Statistical, Nonlinear, and Soft Matter Physics),
76(1), 2007.

[33] T. Zheng, M. Woodside, and M. Litoiu. Performance model
estimation and tracking using optimal filters. IEEE Trans-
actions on Software Engineering, 34(3):391–406, 2008.

121

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Carlo Ghezzi
