
Analyzing Critical Process Models through Behavior Model Synthesis

Christophe Damas
1
, Bernard Lambeau

1
, François Roucoux

2
 and Axel van Lamsweerde

1

1
Département d’Ingénierie Informatique

Université catholique de Louvain (UCL)

{damas, blambeau, avl}@info.ucl.ac.be

2
Radiothérapie Expérimentale (IMRE)

Faculté de Médecine (UCL)

francois.roucoux@uclouvain.be

Abstract

Process models capture tasks performed by agents

together with their control flow. Building and

analyzing such models is important but difficult in

certain areas such as safety-critical healthcare

processes. Tool-supported techniques are needed to

find and correct flaws in such processes. On another

hand, event-based formalisms such as Labeled

Transition Systems (LTS) prove effective for analyzing

agent behaviors.

The paper describes a blend of state-based and

event-based techniques for analyzing task models

involving decisions. The input models are specified as

guarded high-level message sequence charts, a

language allowing us to integrate material provided by

stakeholders such as multi-agent scenarios, decision

trees, and flowchart fragments. The input models are

compiled into guarded LTS, where transition guards

on fluents support the integration of state-based and

event-based analysis. The techniques supported by our

tool include model checking against process-specific

properties, invariant generation, and the detection of

incompleteness, unreachability, and undesirable non-

determinism in process decisions. They are based on a

trace semantics of process models, defined in terms of

guarded LTS, which are in turn defined in terms of

pure LTS. The techniques complement our previous

palette for synthesizing behavior models from

scenarios and goals.

The paper also describes our preliminary

experience in analyzing cancer treatment processes

using these techniques.

1. Introduction

For effective software support, real-world processes

should be captured by adequate models [6]. Process

and workflow modeling languages have therefore

flourished, e.g., UML Activity Diagrams [20], BPMN

[21], and Little-Jil [3], to cite a few languages in use.

Building adequate, complete, and consistent

process models is not necessarily an easy task. Flawed

models might not be a big concern in business

workflow systems. They can however have dreadful

consequences in safety-critical areas such as medical

processes. Techniques should therefore be available for

systematically detecting and fixing severe flaws.

Efforts were recently made to adapt verification

technology [1] to process models. Typically, a state

machine model is derived from the input model and

then checked against properties. For example,

structural consistency constraints on UML activity

diagrams can be checked using the NuSMV model

checker [7]. Similar constraints can be verified on

Little-JIL process models [17], after task conversion

into LTS, using LTSA [18]. LTSA was also used for

deadlock analysis and model-checking of workflow

schemas represented in FSP/LTS [14]. In those papers,

decision nodes are not handled. The checked properties

are event-based and refer to events associated with task

performance. They are not process-specific in [7, 17].

The models amenable to formal analysis should

obviously be as close as possible to the material

provided by process stakeholders. Our recent

experience in assembling clinical process fragments

supplied by medical staff led us to the observation that

such stakeholders naturally think in terms of (a)

therapy scenarios involving interacting agents with

multiple exceptions, (b) decision trees, (c) goals and

properties on state variables about patients, and, (d)

sequencing of phases composed of tasks. Our

observations find confirmations in the literature on

medical workflows, e.g., [13, 8, 10].

As we did not find any process language supporting

those features together, we have extended the language

of high-level Message Sequence Charts (hMSC) [12],

satisfying requirements (a) and (d), with guards on

fluents, to meet requirements (b) and (c). Beyond

smaller conceptual distance from stakeholders, our

choice was motivated by the prospect for a clear formal

semantics and the availability of related formal

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 441

techniques [9, 22], including our techniques and toolkit

for synthesizing annotated behavior models from

scenarios and goals [4, 5].

The paper introduces guarded hMSC as a process

modeling language and guarded LTS (g-LTS) as an

intermediate language, used for a variety of analyses,

upwards the LTS language used for model-checking

and animation. The integration of event-based and

state-based specification styles is achieved by letting

guards refer to fluents [9]. The guarded hMSC

language has a formal trace semantics defined in terms

of g-LTS, the latter having a trace semantics defined in

terms of LTS. An algorithm is provided for generating

trace-equivalent g-LTS and LTS models from a

guarded hMSC process model.

The paper then presents tool-supported analysis

techniques applicable to our process models, namely,

model checking against state-based properties from a

goal model; state invariant generation; and guard

analysis. The latter includes checking that the guards

on alternatives at some decision point in a task flow

cover all possibilities (no missing branch), do not

overlap (deterministic decisions), and are all satisfiable

(reachability of subsequent tasks).

Finally, we discuss our experience in applying

those techniques to the analysis of a safety-critical

medical process, the clinical pathway for rectal cancer.

The paper is organized as follows. Section 2

provides some necessary background on scenario

specifications, LTS, and fluents. Section 3 introduces

guarded hMSCs for process modeling whereas Section

4 defines the trace semantics of this language in terms

of g-LTS. Section 5 describes our algorithm for

generating the set of event traces admitted by a g-LTS,

yielding the equivalent LTS. Section 6 describes the

analyses we can perform on process models in guarded

hMSC. Section 7 shows our approach in action for

clinical pathway analysis.

2. Background

This section introduces some necessary rudiments

on MSCs, hMSCs, LTS, and fluents.

2.1 High-level message sequence charts

Message sequence charts (MSCs) are commonly

used for capturing multi-agent scenarios [12]. A MSC

is composed of vertical timelines associated with agent

instances and horizontal arrows representing

interactions among them. Agents are active

components of a system; they define the system’s

scope and control system behaviors. A timeline label

declares the class of the corresponding agent instance.

An arrow label indicates some interaction event among

the source and target agent instances; the event is

synchronously controlled by the source and monitored

by the target.

Fig. 1 shows a MSC scenario of users searching for

papers on the web to ask for download. The system is

composed of three agents: a user, a website server, and

a database agent. (For clarity of presentation, our

running example is kept simple and non-medical.)

High-level MSCs (hMSCs) are directed graphs

where each node is a MSC or a finer-grained hMSC.

Edges indicate the acceptable ordering among

scenarios. They allow for scenario sequencing,

repetition, and reuse. We can break up a complex

scenario into manageable parts and specify how the

latter relate.

2.2 Labeled transition systems

A labeled transition system (LTS) is an automaton

defined by a structure (Q,Σ,δ,q0), where Q is a finite set

of states, Σ is a set of event labels, δ ⊆ Q×Σ×Q is a
labeled transition relation, and q0 is an initial state [18].

A system is behaviorally modeled by a parallel

composition of LTS models – one for each agent. The

LTS being composed behave asynchronously but

synchronize on shared events.

A LTS trace is a sequence of events <e0,…,en>

accepted by the LTS from its initial state (ei ∈ Σ).
The semantics of MSCs and hMSCs is defined in

terms of LTS and parallel composition [22]. A MSC

timeline defines a finite LTS trace capturing the

behavior of the corresponding agent instance. The

semantics of an entire MSC is similarly defined as a

trace of the system LTS; MSCs yield traces of this

LTS.

2.3 Fluents

A fluent Fl is a proposition defined by a set IFl of

initiating events, a set TFl of terminating events, and an

initial value InitiallyFl that can be true or false [9]. The

sets of initiating and terminating events must be

disjoint. A fluent definition takes the form:

fluent Fl = < IFl, TFl > initially InitiallyFl

For example, we can define a fluent LOGGED to

capture whether a user is logged:

fluent LOGGED = <login, logout> initially false

Figure 1: MSC scenario for paperRequest task

442

This fluent states that a user is logged (resp. not

logged) after a login (resp. logout) event occurs and

until a logout (resp. login) event occurs, and is initially

not logged.

Given a set of fluent Φ and a LTS trace <e0,…,en>, a

state can be defined after every event in the trace. This

state is characterized by the value of every fluent at

this point in the trace. In such fluent value assignment,

a fluent gets true (resp. false) if either of the following

conditions holds:

• the fluent is initially true (resp. false) and no

terminating (resp. initiating) event has occurred;

• some initiating (resp. terminating) event has

occurred with no terminating (resp. initiating)

event occurring since then.

Process goals and properties can be defined in

Fluent Linear Temporal Logic (FLTL), a LTL variant

where atomic propositions are fluents. The FLTL

assertions use standard operators for temporal

referencing such as: � (at the next smallest time unit),

� (some time in the future), � (always in the future),

U (always in the future until), W (always in the future

unless), → (implies in the current state), ⇒ (always

implies) [19, 15]. For example, the goal “the user

should be logged to download a paper” is formalized

as:

LoggedToDownload: � (� DOWNLOAD → LOGGED)

where DOWNLOAD is a fluent becoming true after the

event download and false after any other event in the

alphabet.

3. Process models as guarded hMSC

A guarded hMSC is a directed graph where each

node is a MSC, a decision node, or a finer-grained

guarded hMSC.

For example, the paperRequest box of the hMSC in

Fig. 2 is the MSC shown in Fig. 1. (To keep our

running example simple, the MSC nodes in the sequel

will consist of a single event having the MSC name.)

Guarded hMSCs may capture parallel processes and

decisions. Parallelism arises from MSC nodes. A

decision node states specific conditions for the tasks

along outgoing branches to be performed. A guard

labels each outgoing branch; it must be evaluated to

true for this branch to be followed. Guards are

specified as Boolean expressions on fluents. In simple

cases where there are only two branches, such

expression may be moved up inside the decision node

with ‘yes’, “no’ labels being attached to the

corresponding branch (as in Fig. 2).

Beyond the capturing of explicit decisions

regulating subsequent tasks, guards prove convenient

for modeling systems or processes where different

instances can start in different states. In our example,

the model should cover different processes dependent

on the user’s initial state. Different paths in the model

will be followed dependent on whether a user is

initially already registered, currently logged, etc.

In a fluent-based specification, we will just omit the

initial value InitiallyFl for the relevant fluents, meaning

that they may be initially true for some instances and

false for others. Initial values are thus defined at

instance level, not at class level. For example, the

fluent REGISTERED hereafter specifies that some users

are already registered when surfing the web site while

others are not:

fluent REGISTERED = <register, unregister>

When initial values are left unspecified for some

fluents, we may want to state that certain combinations

of initial values are to be ruled out in view of

properties known from a companion goal model [15].

For example, assuming that the initial values of fluents

REGISTERED and LOGGED are not specified, we know

that a user cannot be logged when not registered. Any

initial state should meet this property. To support this,

a guarded hMSC may be annotated with an initial

condition constraining the acceptable initial values of

unitialized fluents. In our example, the initial condition

might be: LOGGED → REGISTERED. Initial values in

fluent definitions are no longer needed then.

The introduction of guards in hMSCs provides a

source for interesting checks such as guard

completeness and disjointness (see section 6.3).

4. From guarded hMSCs to guarded LTS

This section introduces guarded LTS (g-LTS) as an

intermediate formalism between guarded hMSCs and

LTS. Roughly, a g-LTS is a transition system with

guards or events on transitions. It provides a

convenient milestone on the way from a guarded

hMSC to the corresponding LTS, in particular, for

determining the set of traces accepted by the guarded

Figure 2: Guarded hMSC

443

hMSC. As a structured form of LTS, a g-LTS

representation avoids state explosion. It is easier to

understand and facilitates code generation. Moreover,

interresting analyses may be performed at g-LTS level,

see Section 6.

4.1 Guarded LTS

A guarded LTS (g-LTS) is defined by a structure

(Q,Σ,Φ,δ,q0,C0) where Q is a finite set of states, Σ is a

set of event labels, Φ is a set of fluents defined on Σ,

δ ⊆ Qx(Σ∪2
Φ
)xQ is a labeled transition relation, q0 is

the initial state, and C0 is an initial condition playing

the same role as in guarded hMSCs.

In a guarded LTS, transitions are labeled either by a

guard or by an event. A guard is a conjunction of

literals where a literal is a fluent or its negation.

Intuitively, the guard must be evaluated to true for its

transition to be activated. Note that every defined

fluent or its negation must appear in every guard. For

readability of figures, a set of guarded transitions

between the same source and target states will be

represented by {[GUARD]}, where GUARD is the

disjunction of guards on those transitions. For

example, the transition labeled {[REGISTERED]} from

state 1 to state 2 in Fig. 3 actually covers two

transitions guarded with [REGISTERED ∧ LOGGED] and
[REGISTERED ∧ ¬ LOGGED], respectively.

4.2 Trace semantics of g-LTS

The semantics of g-LTS is defined in terms of

event traces involving no guards at all.

Let G denote the g-LTS (Q,Σ,Φ,δ,q0,C0). A trace of

G from q0 is a pair (Init, <l0,…>) where Init is an initial

fluent value assignment, mapping every fluent in Φ to

true or false, and <l0,…> is an infinite sequence of

labels li ∈ Σ∪2
Φ
, some being events and others being

guards. Such trace is accepted by G from q0 iff the

following acceptance conditions are met for every i:

trace inclusion: ∃ qi+1 ∈ Q s.t. (qi, li, qi+1) ∈ δ
admissible start: Init = C0

guard satisfaction: Si = li if li ∈ 2
Φ
,

where Si is the fluent value assignment after the i-th

event in the trace (with S0 = Init).

The first condition states that the label sequence is

accepted by the automaton. The second condition

states that the initial fluent value assignment must meet

the initial condition C0. The third condition ensures

that all guards are met along the sequence.

An event trace of G from q0 with respect to Init is a

trace accepted by G where all labels corresponding to

guards have been removed. The set of event traces

accepted by G is the union of all such traces, for all

initial states Init meeting the second condition.

4.3 Guarded hMSCs as g-LTS

A guarded hMSC can be rewritten as a g-LTS

having the same traces. The rewriting algorithm

extends [23] to take a guarded hMSC as input and a

guarded LTS for the global system as output. The latter

abstracts from the agents and captures the set of global

behaviors covered by the hMSC. Our algorithm may

be outlined as follows.

Handling nodes. Every hMSC node yields a

behaviorally equivalent sub-LTS.

• A MSC node is rewritten as a sub-LTS collecting

the linear event sequences from the scenario.

• A decision node is rewritten as a sub-LTS having

only one state and no event.

• For a node expanded into a finer-grained hMSC,

the procedure is applied recursively to obtain the

corresponding sub-LTS.

In each case, initial and terminal states are added to the

corresponding sub-LTS to connect transitions created

in the next step.

Handling edges. The edges in a guarded hMSC yield

transitions between the terminal and initial states of the

sub-LTS corresponding to their source and target

nodes, respectively.

• An outgoing edge of a decision node is labeled by

a guard. As this guard may be any Boolean

expression on fluents, we first compute all

conjunctions of fluent literals satisfying it. Each

of these yields a guarded transition in the g-LTS.

A guarded hMSC edge is thus rewritten as a set of

guarded transitions in the g-LTS.

• Any other edge is simply converted as LTS

transition labeled with an unobservable event

(tau), which can be removed while preserving

Figure 3. g- LTS for the guarded hMSC in Fig. 2

444

trace equivalence using standard automata

algorithms.

This extended algorithm yields the g-LTS in Fig. 3

from the guarded hMSC in Fig. 2.

5. From g-LTS to LTS

The set of traces accepted by a g-LTS is determined

by building a trace-equivalent LTS. The latter is a

parallel composition of LTS ensuring the various

acceptance conditions in Section 4.2. The first LTS in

this composition is a “super LTS” meeting the trace

inclusion condition. To meet the admissible start

condition, an initializer LTS is added in the

composition; this LTS forces initial value assignments

on fluents to satisfy C0. To meet the guard satisfaction

condition, the set of traces of the super LTS is pruned

further by composing it with fluent automata. Let us

make each LTS in the composition further precise.

Super LTS. The LTS (Q, Σ, δ, q0) meeting the trace

inclusion condition is built from the g-LTS (Qg, Σg, Φ,

δg, q0g,C0) as follows:

 Q = Qg ∪ {qstart}

 Σ = Σg ∪ 2
Φ

 δ = {(qi, l, qj) | (qi, l, qj) ∈ δg }
 ∪ {(qstart, start, q0g)}

 q0 = qstart ,

where qstart is a new specific initial state for the super

LTS and start is a transition from it on which the

Initializer will synchronize for their composition to

guarantee the admissible start condition (see below).

The start event will enforce two phases: (a) fluent

value assignments before it, to define an admissible

initial state, and (b) system run after it.

In this super LTS, some transition labels l in the

transition function δ denote original events whereas

others are event encodings of the guards they are

replacing. We will call them guard-events. The LTS

alphabet is thus extended accordingly. To avoid

confusing a guard and its guard-event, we will denote

the latter by dropping the brackets and expressing the

logical connectors in natural language (AND, OR, NOT).

For example the guard-event for the guard [¬ LOGGED ∧
REGISTERED] is denoted by NOT LOGGED AND REGISTERED.

The super LTS defines a superset of traces; it meets

the trace inclusion condition by construction. We now

need to restrict this set so as to meet the other

acceptance conditions.

Initializer LTS. This automaton enforces the

admissible start condition by letting its events,

encoding fluent value assignments, meet the initial

condition C0 before synchronizing with the super LTS

on the start shared event. A self-transition labeled

{TRUE} on its final state is added to avoid undue

restrictions on the occurrence of guards from the super

LTS. This self-transition represents the set of 2
Φ

transitions corresponding to all possible combinations

of fluent literal values.

Fig. 4 shows the Initializer LTS for our running

example. The transitions between the two first states

are labeled by guard-events. They capture fluent value

assignments meeting the initial condition

LOGGED → REGISTERED.

Fluent LTS. The guard satisfaction condition is

enforced by pruning all traces violating guards in the

super LTS. For this we compose the super LTS with

fluent automata. The latter keep track of the current

fluent values; guard-events are constrained to happen

only when the corresponding guard is true.

For example, the fluent LTS for fluent LOGGED is

shown in Fig. 5. The states qu, qf, qt correspond to the

states where the fluent is not assigned yet, is false, and

is true, respectively. The fluent’s initiating and

terminating events synchronize with the super LTS to

keep track of the current fluent value at each step.

Transitions from the unassigned state are introduced to

synchronize with the first transitions of the Initializer

LTS (before event start). A transition labeled by

{LOGGED} corresponds to two transitions, labeled by

LOGGED AND REGISTERED and LOGGED AND NOT

REGISTERED, and similarly for {NOT LOGGED}. When

the fluent is false (resp. true), the fluent automaton

prevents the occurrence of any transition with LOGGED

(resp. NOT LOGGED). Those transitions thus prevent

activation of guard-events when the corresponding

guards are not satisfied.

A fluent automaton is more precisely defined as

follows:

 Q = {qu, qt, qf}

 Σ = IFl ∪ TFl ∪ 2
Φ

Figure 4: Initializer LTS

Figure 5: Fluent LTS for LOGGED

445

 δ = {(qf, e, qt) | e ∈ IFl} ∪ {(qt, e, qt) | e ∈ IFl}
 ∪ {(qt, e, qf) | e ∈ TFl} ∪ {(qf, e, qf) | e ∈ TFl}

 ∪ {(qf, x, qf) | x ∈ 2
Φ
, Fl ∉ x}

 ∪ {(qu, x, qf) | x ∈ 2
Φ
, Fl ∉ x}

 ∪ {(qt, x, qt) | x ∈ 2
Φ
, Fl ∈ x}

 ∪ {(qu, x, qt) | x ∈ 2
Φ
, Fl ∈ x}

 q0 = qu

Synthesized LTS. Putting all pieces together, the trace-

equivalent LTS of a g-LTS is obtained through the

following parallel composition:

(Super LTS  Initializer  FFl1 … FFln) \ {2ΦΦΦΦ, start} ,

where || is the standard LTS composition operator and

\{events} is the hiding operator replacing all

specified events by unobservable tau events. In this

case, we hide all events that are not in the system

alphabet, i.e., the guard events and the start event. The

resulting LTS may be further minimized. It provides,

by construction, the set of event traces accepted by the

g-LTS.

In practice, we may want to keep the start event as

well as the initial fluent value assignments before it,

e.g., for annotating counterexample traces produced by

the model checker or for documentation purpose. The

hiding procedure can be adapted to hide guards only.

 Fig. 6 shows the LTS generated from the g-LTS in

Fig. 3. Note that the fluent values are assigned before

starting, to determine the initial state.

6. Analyzing guarded hMSCs

This section presents different kinds of analysis our

tool performs on processes modeled by guarded

hMSCs, including model checking, state invariant

generation, and guard analysis.

6.1 Model checking

We may want to verify that LTL properties on

fluents are satisfied by our process model and, if not,

see a trace counter-example showing the violation. For

example, if the property:

LoggedToDownload : � (� DOWNLOAD → LOGGED)

is violated, we would like to see a sequence of tasks

allowed by the model where a user downloads a paper

without being logged.

FLTL properties can be verified on LTS models

using a model checking procedure described in [9] and

implemented in LTSA [18]. This procedure cannot be

used directly on our generated LTS. It checks a

property for a specific initial state; in our case we want

to check it for any initial state satisfying the initial

condition. In case of violation, we would like a

counterexample trace with a specific initial state

leading to violation. The procedure in [9] is therefore

extended accordingly.

In [9], the checked LTS is composed with (a) a

Büchi automaton encoding the negation of the verified

property P, (b) fluent automata, and (c) a synchronizer

forcing the transition on the Büchi automaton after

every system event. The property P is violated if an

accepting state of the Büchi automaton can be reached

in this composition. Our extension is outlined as

follows.

• The checked LTS is the one generated from the

process model using the algorithm from the

previous section. In this LTS, the initial fluent

value assignments and the start event are kept.

• The Büchi automaton is generated for the

property ¬([](start->P), instead of ¬ P; the

user’s property P must be verified only after the

occurrence of a start event.

• The fluent automata are the ones defined in the

previous section. Those in [9] do not contain the

unassigned state, which is required here.

• The synchronizer LTS is slightly modified so as

to first synchronize with initial fluent value

assignments and the start event.

When verifying the property LoggedToDownload on

the process model in Fig. 2, the extended model

checker returns the following counterexample trace:

NOT LOGGED AND NOT REGISTERED

start

directLink

download

The counterexample showing the violation path in

the process model always provides an initial fluent

value assignement, followed by the event start,

followed by an event trace leading to violation. In the

Figure 6. LTS generated from the guarded hMSC in

Fig. 2

446

example, the counterexample shows that the use of the

directLink feature may lead to a violation of the

property if the user is initially not logged and not

registered. In this case, the trace suggests that the

definition of fluents LOGGED and REGISTERED should

be adapted so that the directLink feature encapuslates

user authentication, ensuring her to be registered and

logged.

6.2 State invariant generation

A state invariant of a state machine is an assertion

on some specific state which holds every time this state

is visited. Annotating LTS state machines with state

invariants has multiple benefits: the understandability

and documentation of the state machine is improved;

the invariants can be used for validation and error

detection; and code generators may use them for

improving code quality. Moreover, state invariants are

required for the guard analyses in Section 6.3 hereafter.

An algorithm for generating state invariants on LTS

from fluent definitions was described in [4]. Each state

is decorated by a conjunction of fluent literals. A fluent

or its negation appears in the conjunction decorating

some state if it is true or false for all LTS executions

reaching this state. It does not appear in the

conjunction if it is true for some LTS executions

reaching the state and false for others. For example, if

(A ∧ ¬ B ∧ C) ∨ (¬ A ∧ B ∧ C) is the weakest invariant at
some state, the algorithm in [4] will return C, as A and

B are true for some executions and false for others.

The algorithm presented here extends our previous

one along two directions. The computed state

invariants are more accurate; they capture all possible

literal combinations satisfied by their associated state

through disjunctions of conjunctions. Moreover, the

new algorithm handles guards and initial conditions

(while applicable to guard-free LTS as well.)

The algorithm proceeds by symbolic execution until

a fixpoint is reached. At each step, every state has a

decoration. Initially, the decoration is false for every

state except the initial state; the latter is decorated by

the initial condition C0. The algorithm propagates

fluent literals through the state machine according to

fluent definitions and outcomes of guards. When such

propagation terminates, a state decorated with false

means that no OR-combination of fluent literals holds

in that state, that is, the state is unreachable.

Fig. 7 shows the invariant generation algorithm.

The set ToExpl collects the states whose decoration

changed and to which propagation of literals should

still be applied. The algorithm terminates when this set

is empty. It will eventually be empty as a state can

change its decoration at most 2
Φ
 times. In the worst

case, a state will be decorated by the disjunction of all

possible literal combinations, that is, true.

The expression decor(source)event in Fig. 7 denotes

the decoration of state source after the corresponding

event has been applied. If event belongs to the

initiating (resp. terminating) events of a fluent F, this

expression is calculated by replacing all occurrences of

¬ F (resp. F) by F (resp. ¬ F). As an event may belong

to initiating/terminating events of several fluents, this

must be done for each fluent.

Let us see how the guarded LTS in Fig. 3 gets

decorated. Table 1 shows decorations at each step until

a fixpoint is reached.

Step 0. We initialize all decorations to false except

the initial state, which gets the initial condition

¬LOGGED ∨ REGISTERED.

Step 1. Only state 0 is in ToExpl. We propagate its

decoration to states 1 and 4. Events paperRequest and

directLink do not belong to initiating or terminating

events of fluents; the propagated decoration pDecor is

simply the decoration of state 1, i.e. ¬LOGGED ∨
REGISTERED. State 1 and state 4 are decorated by the

disjunction of pDecor with their old decoration:

(¬LOGGED ∨ REGISTERED) ∨ false, yielding ¬LOGGED

∨ REGISTERED. States 1 and 4 are added to ToExpl as
their decoration has changed.

Input: A guarded LTS (Q, Σ, Φ, δ, q0, C0),
 where Φ is a set of fluents Fli
Output: decor : Q → P (2

Φ
)

/* initial decorations */

for each q ∈ Q do
 decor(q) ← false ;

decor(q0) ← C0 ;

/* fixpoint loop, starting with the initial state */

ToExpl ←{q0}

while (ToExpl ≠ ∅) do
 source ← getOne(ToExpl);

 ToExpl ← ToExpl\{source};

 for each (target,label) such that

 (source,label,target) ∈ δ do

 /* propagate source decoration (by case) */

 if (label ∈ 2Φ) then
 pDecor = decor(source) ∧ label
 else

 pDecor = decor(source)event

 /* compute disjunction with old decoration */

 decor’(target) ← pDecor ∨ decor(target);

 /* mark as “to explore” if changed */

 if (decor’(target) ≠ decor(target)) then
 ToExpl ← ToExpl ∪ {target};
 decor(target) ← decor’(target)

return decor

Figure 7. Fixpoint generation of invariants

447

Step 2. Let us assume state 1 is chosen in ToExpl.

Its decoration is propagated to its successors (states 2

and 3). For each of these, we compute pDecor by

taking the conjunction of the decoration of state 1 with

their respective guard. The decoration of the states is

obtained as the disjunction of the propagated

decoration with their old one; both are added to

ToExpl.

Step 3. State 3 is choosen in ToExpl. It has an

outgoing transition to state 0; pDecor is computed as

(¬LOGGED ∧ ¬REGISTERED)register. After event

register, the fluent registered becomes true; pDecor is

therefore equal to ¬LOGGED ∧ REGISTERED. The

disjunction of pDecor with the old decoration of state

0 keeps it unchanged; state 0 is thus not added to

ToExpl.

The process is continued until ToExpl is empty.

6.3 Guard analysis

Three kinds of guard-based checks are worth

considering in process models involving decisions.

Guard completeness: At any process step where a

decision node is reached, the guards on the alternative

outcomes must cover all possible cases; no guarded

branch may be missing. Otherwise a process run might

be blocked forever at this node with no guard evaluated

to true.

Guard disjointness: At any process step where a

decision node is reached, two guards on different

outcomes may not overlap; they may not be both

evaluated to true. We generally want to preclude non-

deterministic process decisions where different courses

of action are taken in different process runs applied in

the same situation. In clinical processes, for example,

every patient with the same state must be treated

identically (see Section 7).

Guard satisfiability: At any process step where a

decision node is reached, the guards on the outcomes

must all be satisfiable. Otherwise the subsequent tasks

along some branch would be unreachable.

In our framework, those three types of checks are

applied to guarded hMSCs. Incomplete, overlapping,

or unsatisfiable guards are reported to stakeholders for

fixing the problematic decision nodes.

Such checks are close in spirit to those supported in

[11] for SCR tables. Beyond different formalisms there

is a notable difference, however. The checks here must

account for the contextual condition holding at the

point in the process model where the decision node is

reached. This contextual condition is the state invariant

at that point, generated by the decoration algorithm in

Fig. 7.

The checks could be implemented at two different

levels: on the g-LTS or on the trace-equivalent LTS.

Our tool implements them on the g-LTS for several

reasons. The alternative of taking the trace-equivalent

LTS for checking incompleteness by deadlock analysis

and overlaps by non-determinism detection would

prevent us from determining whether the problem is

specifically due to guards or not. Moreover,

unreachable paths would not be present in the target

LTS. It would be quite difficult to point out the

problematic guards.

Once contextual conditions are generated as state

invariants, the checks are automated through

satisfiability checking. For a set of guards gi at a

decision node with contextual condition C holding

right before, we need to check the following:

 C = ∨i gi ,

 for every pair gi, gj: gi ∧ gj ∧ C = false ,
 for every gi: gi ∧ C is satisfiable.

In case of incompleteness, our tool returns all fluent

value assignments that are not covered by the guards.

In case of overlap, it returns all fluent value

assignments that meet several guards. In case of

unsatisfiability, it indicates outgoing transitions that

are unreachable.

7. Analyzing cancer therapy processes

Our techniques were applied on a real medical process

for treatment of rectal cancer, with medical staff at the

UCL university hospital as stakeholders. Our work is

motivated by a joint project aimed at building and

analyzing models of clinical pathways [2]. A clinical

pathway is a well-defined process, based on medical

protocols, guidelines and recommendations, centered

on a specific patient class with similar needs, involving

a multi-disciplinary team, and addressing clear clinical

Step ToExpl State0 State1 State2 State3 State4 State5 State6

0 ¬L ∨ R false false false false false false

1 {0} ¬L ∨ R ¬L ∨ R false false ¬L ∨ R false false

2 {1,4} ¬L ∨ R ¬L ∨ R R ¬L ∧ ¬R ¬L ∨ R false false

3 {3,2,4} ¬L ∨ R ¬L ∨ R R ¬L ∧ ¬R ¬L ∨ R false false

4 {2,4} ¬L ∨ R ¬L ∨ R R ¬L ∧ ¬R ¬L ∨ R ¬L ∧ R false

5 {4,5} ¬L ∨ R ¬L ∨ R R ¬L ∧ ¬R ¬L ∨ R ¬L ∧ R ¬L ∨ R

Table 1. Decoration steps for the g-LTS in Fig. 3. L, R stand for fluents LOGGED, REGISTERED, respectively.

448

goals. One project objective is to help medical staff

detect and correct flaws in clinical pathways early in

their elaboration using software engineering

technology.

Preliminary model elaboration. Initial model

fragments for the rectal cancer pathway were sketched

on paper by clinicians using box-and-arrow diagram

pieces showing tasks and decision nodes. These

fragments were translated next into a guarded hMSC

using our tool. Such translation already stimulated

fruitful discussions with medical staff. Issues about the

process were raised and discussed, leading to early

clarification of the preliminary paper version.

Fig. 8 shows the emerging guarded hMSC for a

pathway fragment, simplified for explanatory purpose.

It consists of a sequence of pre-treatment, treatment,

and follow-up tasks, cycling in case of cancer

recurrence. The refinement of the pre-treatment task is

shown on the right part of Fig. 8. It can be rephrased as

follows.

“A patient gets in for cancer consultation (usually through
a general practitioner). After this first meeting, a cancer
diagnosis is established and a spread evaluation is performed.
Such evaluation is aimed at estimating cancer invasiveness
and extension data : T for local Tumor invasion, N for
lymphatic Nodes invasion, M for distant Metastasis). Based on
this, the medical staff envisions some appropriate therapy
strategy. When the patient is operable, the treatment may
consist in simple surgery, or chemotherapy preceding surgery,
or a combination of radiotherapy and chemotherapy preceding
surgery. When the patient is not operable, palliative care is
provided.”

As model elaboration proceeds, tasks are further

refined into MSCs or finer-grained hMSCs. (Unrefined

tasks are encoded here as single events named by the

task name.)

Fluent identification. Guard formalization requires

fluents to be identified and defined. Some fluents were

easily identified by medical staff. For example, the

fluent DIAGKNOWN in Fig. 8 states that a diagnosis is

known about the actual patient's cancer status when

histology has been performed, and remains known until

follow-up has been done. The fluent EVALDONE gets

true when the evaluation task has been performed; the

evaluation results remain valid until chemotherapy is

performed. Hence the definitions:

fluent DIAGKNOWN = < histology, follow-up >

fluent EVALDONE = < evaluation, chemotherapy >

Other fluent definitions raise the need for refining

tasks further. For example, the fluent OPERABLE refers

to specific events identified by refining the inter-

disciplinary decision meeting task named staff in Fig.

8. Similarly, the fluents T, N and M are obtained from

the refinement of tasks consultation, endoscopy and

histology.

Ten fluents were defined from the informal guards

in Fig. 8. Most of them do not specify an initial value

as the latter may differ from one patient to the other.

The initial condition C0 reflects a domain property

elicited from clinicians, namely, “if the spread evaluation

is already done in the initial state (possibly by another
hospital), then the diagnosis is known (as possibly provided by

that other hospital)”. This condition is easily formalized:

EVALDONE → DIAGKNOWN.

Guard analysis. Our tool was used to perform the

three types of guard analysis discussed in Section 6.3.

Undesired non-determinism in decisions was

automatically detected in the clinical pathway fragment

shown in Fig. 8; the guards

[¬ T ∧ ¬ N], [(T ∧ ¬ N) ∨ N], and [M]

do overlap. The problem was easily fixed in this case

by adding ¬ M in the first two guards, as advised by

medical staff. Similar problems involving guards were

identified in other pathway fragments supplied by

medical staff, and similarly fixed, including missing

guarded branches at other decision nodes.

Model checking. While building a companion goal

model [15], a number of descriptive and prescriptive

properties were identified with medical staff and

model-checked using our tool.

For example, one Avoid goal states that “a patient

may never get irradiated twice in the same anatomic zone”.

Its parent goal is to avoid the potentially serious side-

effects of iterative radiation. In simpler form, the goal

Avoid [PatientIrradiatedTwice] states that the radiotherapy

and radiochemo tasks may not be performed when the

patient has already been irradiated (we omit the “same

anatomic zone” restriction to simplify the

presentation.) The formal specification of this goal is:

� ((� radiotherapy ∨ � radiochemo) → ¬ IRRADIATED)

Figure 8. Treatment process for rectal cancer, with

refinement of pre-treatment task

449

This specification yields an additional fluent definition:

fluent IRRADIATED = < {radiotherapy, radiochemo}, { } >
initially false

When verifying this property on the process model

fragment in Fig. 8, our model-checker returns the

following violating trace:

NOT IRRADIATED AND M AND …

start

consultation

[…]

radiotherapy

[…]

follow-up

consultation

[…]

radiotherapy

This trace shows that cancer recurrence, illustrated

in the trace by the follow-up task followed by a new

consultation task, was overlooked in the original

pathway fragments supplied by medical staff. The

problem may be fixed by guarding the radiotherapy

task further, e.g., with [M ∧ ¬ IRRADIATED].

This fix, however, breaks guard completeness on

the decision node, which raises the following new

question: “What happens in case of cancer recurrence, when

irradiation care would otherwise have been provided?”.

A number of other goals and domain properties

were verified, among which few were satisfied by the

preliminary model.

• Some of the checked properties were originally

too strong, being representative of a subset of

patients only (e.g., those without metastasis).

Such problem must be fixed by correct

reformulation of the property in the goal model,

possibly together with missing domain properties.

• Other properties were violated because of

exceptions not correctly covered by the model

(e.g., a patient coming from emergencies). In this

case, further iterations with medical staff are

required, possibly resulting in refactoring and

refinement of the process model.

Preliminary lessons learned. Such iteration of

stepwise process model elaboration, analysis, and

refactoring appears quite promising.

• We can systematically detect errors arising from

novice modelers, such as superfluous or

overlapping guards, or resulting from the

complexity of guards in the medical domain.

• Model analysis may reveal ambiguities in the

model and suggest ways of fixing them –e.g., the

addition of “...∧¬ M” in the first two guards as

discussed before.

• Error detection can be made early, avoiding the

difficulties of late fixing of anomalies

disseminated throughout a large, complex model.

• Early analysis contributes to the model elicitation

process. Implicit information gets clarified. In

case of overlapping guards, we may highlight

some modeling error or some desired non-

determinism to be explicitly documented.

As in [3], we mostly found errors in the process

models rather than in the actual processes currently

followed by medical staff. Analysis is nevertheless

important for a correct model to be used, e.g., to

highlight potentially hazardous situations in real

processes, enact daily work processes, advise less

experienced people, deliver explanations or tutorial

material, etc.

8. Conclusion

Model-driven development requires adequate

model development. Model building is a complex and

error-prone task. It should be supported, especially in

case of critical systems or processes, through

techniques and tools for stepwise model elaboration,

analysis, and refinement.

Guarded hMSCs were introduced in this paper to

model multi-agent processes involving decisions. This

formalism proves understandable by stakeholders and

convenient for modelling decomposable tasks,

interaction scenarios, goals, and decision trees. The

language has a clear formal semantics defined in terms

of LTS.

Guarded LTS were proposed as an intermediate

event-based formalism allowing state-based guards to

be defined as conjunctions of fluents. Their trace

semantics is defined in terms of LTS.

Three complementary techniques were proposed for

analyzing process models as guarded hMSCs. The

three of them are implemented by a tool. The model

checker verifies safety properties that may refer to

states and events. The tool also generates state

invariants which are, in particular, used for analyzing

decision alternatives against completeness,

disjointness, and satisfiability.

Our approach was applied to a real safety-critical

process for cancer treatment. Errors in the model

fragments supplied to us were successively detected

and corrected. Although preliminary, this experience

appears promising for other clinical pathway models

we are currently working on.

The techniques described in the paper were

implemented and integrated in our ISIS tool for

scenario-based and goal-based synthesis of behavior

models [4, 5]. Guards are encoded as binary decision

diagrams (BDDs), which allows for a compact

representation of Boolean formulas. This avoids

exploding guards through multiple transitions (up to 2
Φ

in the worst case). Standard operators from BDD

450

libraries also make it easier to implement the

algorithms for fluent decoration and guard analysis.

Our model checker is fully integrated and relies on an

algorithm specifically developed to handle BDDs

during LTS composition. Note that a worst-case

computation of the trace LTS may lead to identifying

up to 2
Φ
 states immediately reachable from the initial

one. The provision of initial conditions is intended to

prune these significantly. The exponential blow of the

trace LTS naturally results from the ability of models

with guards to cover numerous behaviors in an

implicit, compact way.

Our approach raises a number of challenging issues.

Firstly, some paths may be missing from the

preliminary process model fragments provided by

stakeholders. The technique in [4] for generalizing

accepted behaviors of a MSC specification might be

extended to handle guarded hMSCs as input. Secondly,

the introduction of guards in scenarios and LTS raises

the issue of guard monitorability; the agents involved

in the process must be able to evaluate “their” guards

in order to meet the process model. Thirdly, obstacle

analysis should be applied to process models [16]. In

particular, guards often refer to external quantities;

they might be wrongly evaluated if such quantities are

not accurately reflected in the model. Finally, the

integration of multiple process models raises conflict

management issues [15]. For example, a patient

following both rectal cancer and diabetis pathways is

exposed to feature interaction problems. All such

problems need to be detected and resolved during

process modeling through dedicated validation

techniques.

Acknowledgments.
This work was partially supported by the Regional

Government of Wallonia (GISELE project, RW Conv.

616425) and the MoVES project (PAI program of the

Belgian government). Warmest thanks are due to Yves

Humblet, Pierre Scaillet, and the medical staff at the

Chemotherapy and Radiotherapy units of Saint-Luc

hospital for their time and experience sharing.

References

[1] Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit,

A., Petrucci, L. and Schnoebelen, Ph. (2001). Systems

and Software Verification. – Model Checking

Techniques and Tools. Springer-Verlag.

[2] H. Campbell, R. Hotchkiss, N. Bradshaw, and M.

Porteous, “Integrated care pathways”, British Medical

Journal (BMJ), 1998, pp 133-137.

[3] L. A. Clarke, G. A. Avrunin, and L.J. Osterweil, “Using

software engineering technology to improve the quality

of medical processes”, Companion Proc. 30th Intl.

Conference on Software Engineering (Leipzig,

Germany), May 2008, 889-898.

[4] C. Damas, B. Lambeau, P. Dupont, and A. van

Lamsweerde, “Generating annotated behavior models

from end-user scenarios”, IEEE Trans. on Software

Engineering, Vol. 31 No.12, Dec. 2005, 1056-1073.

[5] C. Damas, B. Lambeau, and A. van Lamsweerde,

“Scenarios, goals, and state machines: a win-win

partnership for model synthesis”, Proc. 14th ACM

SIGSOFT Symp. on Foundations of Software

Engineering, Portland, Oregon, 2006.

[6] M. Dumas, W. van der Aalst, A. ter Hofstede, Process-

Aware Information Systems. Wiley, 2005

[7] R. Eshuis, “Symbolic model checking of UML activity

diagrams”, ACM Trans. on Software Eng. and

Methodology Vol. 15, No. 1, Jan. 2006, 1-38.

[8] J. Fox, N. Johns, A. Rahmanzadeh, “Disseminating

Medical Knowledge – The ProForma Approach”, Artif.

Intell. Med. Vol. 14, 1998, 157-181.

[9] D. Giannakopoulou and J. Magee, “Fluent model

checking for event-based systems”, Proc. ESEC/FSE

2003, Helsinki, 2003.

[10] M. Han, T. Thiery, X. Song, “Managing Exceptions in

Medical Workflow Systems”, Proc. ICSE’06, 28th Intl.

Conf. on Software Engineering, Shanghai, May. 2006.

[11] C.L. Heitmeyer, R. D. Jeffords, and B. G. Labaw,

"Automated consistency checking of requirements

specifications", ACM Trans. on Software Eng. and

Methodology Vol. 5 No. 3, July 1996, 231-261.

[12] ITU, Message Sequence Charts. Recommendation

Z.120, Intl. Telecom Union, Telecom. Standardization

Sector, 1996.

[13] S.Kaiser and S. Miksch. Modeling Computer-Supported

Clinical Guidelines and Protocols: A Survey. Vienna

Univ. Technology, Rep. Asgaard-TR-2005-2, 2005.

[14] Karamanolis, C. T., Giannakopoulou, D., Magee, J., and

Wheater, S. M., “Model Checking of Workflow

Schemas”, Proc. 4th Intl. Conf. on Enterprise

Distributed Object Computing, IEEE, 2000, 170-181.

[15] A. van Lamsweerde, Systematic Requirements

Engineering: From System Goals to UML Models to

Software Specifications. Wiley, January 2009.

[16] A. van Lamsweerde and E. Letier, “Handling obstacles

in goal-oriented requirements engineering”, IEEE

Trans. Softw. Eng., Vol. 26 No. 10, 2000, 978-1005.

[17] B. S. Lerner, “Verifying process models built using

parameterised state machines”, Proc. ACM SIGSOFT

Symp. Software Testing and Analysis, 2004, 274–284.

[18] J. Magee and J. Kramer, Concurrency: State Models

and Java Programs. Second Edition, Wiley, 2006.

[19] Z. Manna, A. Pnueli, The Temporal Logic of Reactive

and Concurrent Systems. Springer-Verlag, 1992.

[20] OMG, UML 2.0 Superstructure Specification, 2003.

[21] OMG, Business Process Modeling Notation, v1.1, 2008.

[22] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of

behavioral models from scenarios”, IEEE Trans. Softw.

Engineering, Vol. 29 No. 2, 2003, 99-115.

[23] S. Uchitel, J. Kramer, and J. Magee, “Incremental

elaboration of scenario-based specifications and

behavior models using implied scenarios, ACM Trans.

Softw. Eng. and Methodol., Vol. 13 No. 1, 2004, 37-85.

451

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
