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Abstract 

Process models capture tasks performed by agents 

together with their control flow. Building and 

analyzing such models is important but difficult in 

certain areas such as safety-critical healthcare 

processes. Tool-supported techniques are needed to 

find and correct flaws in such processes. On another 

hand, event-based formalisms such as Labeled 

Transition Systems (LTS) prove effective for analyzing 

agent behaviors. 

The paper describes a blend of state-based and 

event-based techniques for analyzing task models 

involving decisions. The input models are specified as 

guarded high-level message sequence charts, a 

language allowing us to integrate material provided by 

stakeholders such as multi-agent scenarios, decision 

trees, and flowchart fragments. The input models are 

compiled into guarded LTS, where transition guards 

on fluents support the integration of state-based and 

event-based analysis. The techniques supported by our 

tool include model checking against process-specific 

properties, invariant generation, and the detection of 

incompleteness, unreachability, and undesirable non-

determinism in process decisions. They are based on a 

trace semantics of process models, defined in terms of 

guarded LTS, which are in turn defined in terms of 

pure LTS. The techniques complement our previous 

palette for synthesizing behavior models from 

scenarios and goals. 

The paper also describes our preliminary 

experience in analyzing cancer treatment processes 

using these techniques.  

1. Introduction 

For effective software support, real-world processes 

should be captured by adequate models [6]. Process 

and workflow modeling languages have therefore 

flourished, e.g., UML Activity Diagrams [20], BPMN 

[21], and Little-Jil [3], to cite a few languages in use. 

Building adequate, complete, and consistent 

process models is not necessarily an easy task. Flawed 

models might not be a big concern in business 

workflow systems. They can however have dreadful 

consequences in safety-critical areas such as medical 

processes. Techniques should therefore be available for 

systematically detecting and fixing severe flaws. 

Efforts were recently made to adapt verification 

technology [1] to process models. Typically, a state 

machine model is derived from the input model and 

then checked against properties. For example, 

structural consistency constraints on UML activity 

diagrams can be checked using the NuSMV model 

checker [7]. Similar constraints can be verified on 

Little-JIL process models [17], after task conversion 

into LTS, using LTSA [18]. LTSA was also used for 

deadlock analysis and model-checking of workflow 

schemas represented in FSP/LTS [14]. In those papers, 

decision nodes are not handled. The checked properties 

are event-based and refer to events associated with task 

performance. They are not process-specific in [7, 17]. 

The models amenable to formal analysis should 

obviously be as close as possible to the material 

provided by process stakeholders. Our recent 

experience in assembling clinical process fragments 

supplied by medical staff led us to the observation that 

such stakeholders naturally think in terms of (a) 

therapy scenarios involving interacting agents with 

multiple exceptions, (b) decision trees, (c) goals and 

properties on state variables about patients, and, (d) 

sequencing of phases composed of tasks. Our 

observations find confirmations in the literature on 

medical workflows, e.g., [13, 8, 10].  

As we did not find any process language supporting 

those features together, we have extended the language 

of high-level Message Sequence Charts (hMSC) [12], 

satisfying requirements (a) and (d), with guards on 

fluents, to meet requirements (b) and (c). Beyond 

smaller conceptual distance from stakeholders, our 

choice was motivated by the prospect for a clear formal 

semantics and the availability of related formal 
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techniques [9, 22], including our techniques and toolkit 

for synthesizing annotated behavior models from 

scenarios and goals [4, 5]. 

The paper introduces guarded hMSC as a process 

modeling language and guarded LTS (g-LTS) as an 

intermediate language, used for a variety of analyses, 

upwards the LTS language used for model-checking 

and animation. The integration of event-based and 

state-based specification styles is achieved by letting 

guards refer to fluents [9]. The guarded hMSC 

language has a formal trace semantics defined in terms 

of g-LTS, the latter having a trace semantics defined in 

terms of LTS. An algorithm is provided for generating 

trace-equivalent g-LTS and LTS models from a 

guarded hMSC process model.  

The paper then presents tool-supported analysis 

techniques applicable to our process models, namely, 

model checking against state-based properties from a 

goal model; state invariant generation; and guard 

analysis. The latter includes checking that the guards 

on alternatives at some decision point in a task flow 

cover all possibilities (no missing branch), do not 

overlap (deterministic decisions), and are all satisfiable 

(reachability of subsequent tasks).  

Finally, we discuss our experience in applying 

those techniques to the analysis of a safety-critical 

medical process, the clinical pathway for rectal cancer. 

The paper is organized as follows. Section 2 

provides some necessary background on scenario 

specifications, LTS, and fluents. Section 3 introduces 

guarded hMSCs for process modeling whereas Section 

4 defines the trace semantics of this language in terms 

of g-LTS. Section 5 describes our algorithm for 

generating the set of event traces admitted by a g-LTS, 

yielding the equivalent LTS. Section 6 describes the 

analyses we can perform on process models in guarded 

hMSC. Section 7 shows our approach in action for 

clinical pathway analysis.  

2. Background 

This section introduces some necessary rudiments 

on MSCs, hMSCs, LTS, and fluents. 

2.1 High-level message sequence charts 

Message sequence charts (MSCs) are commonly 

used for capturing multi-agent scenarios [12]. A MSC 

is composed of vertical timelines associated with agent 

instances and horizontal arrows representing 

interactions among them. Agents are active 

components of a system; they define the system’s 

scope and control system behaviors. A timeline label 

declares the class of the corresponding agent instance. 

An arrow label indicates some interaction event among 

the source and target agent instances; the event is 

synchronously controlled by the source and monitored 

by the target.  

Fig. 1 shows a MSC scenario of users searching for 

papers on the web to ask for download. The system is 

composed of three agents: a user, a website server, and 

a database agent. (For clarity of presentation, our 

running example is kept simple and non-medical.) 

High-level MSCs (hMSCs) are directed graphs 

where each node is a MSC or a finer-grained hMSC. 

Edges indicate the acceptable ordering among 

scenarios. They allow for scenario sequencing, 

repetition, and reuse. We can break up a complex 

scenario into manageable parts and specify how the 

latter relate. 

2.2 Labeled transition systems  

A labeled transition system (LTS) is an automaton 

defined by a structure (Q,Σ,δ,q0), where Q is a finite set 

of states, Σ is a set of event labels, δ ⊆ Q×Σ×Q is a 
labeled transition relation, and q0 is an initial state [18]. 

A system is behaviorally modeled by a parallel 

composition of LTS models – one for each agent. The 

LTS being composed behave asynchronously but 

synchronize on shared events. 

A LTS trace is a sequence of events <e0,…,en> 

accepted by the LTS from its initial state (ei ∈ Σ). 
The semantics of MSCs and hMSCs is defined in 

terms of LTS and parallel composition [22]. A MSC 

timeline defines a finite LTS trace capturing the 

behavior of the corresponding agent instance. The 

semantics of an entire MSC is similarly defined as a 

trace of the system LTS; MSCs yield traces of this 

LTS. 

2.3 Fluents 

A fluent Fl is a proposition defined by a set IFl of 

initiating events, a set TFl of terminating events, and an 

initial value InitiallyFl that can be true or false [9]. The 

sets of initiating and terminating events must be 

disjoint. A fluent definition takes the form: 

fluent Fl = < IFl, TFl > initially InitiallyFl 

For example, we can define a fluent LOGGED to 

capture whether a user is logged:  

fluent LOGGED  = <login, logout> initially false 

 
Figure 1: MSC scenario for paperRequest task 
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This fluent states that a user is logged (resp. not 

logged) after a login (resp. logout) event occurs  and 

until a logout (resp. login) event occurs, and is initially 

not logged. 

Given a set of fluent Φ and a LTS trace <e0,…,en>, a 

state can be defined after every event in the trace. This 

state is characterized by the value of every fluent at 

this point in the trace. In such fluent value assignment, 

a fluent gets true (resp. false) if either of the following 

conditions holds: 

• the fluent is initially true (resp. false) and no 

terminating (resp. initiating) event has occurred; 

• some initiating (resp. terminating) event has 

occurred with no terminating (resp. initiating) 

event occurring since then. 

Process goals and properties can be defined in 

Fluent Linear Temporal Logic (FLTL), a LTL variant 

where atomic propositions are fluents. The FLTL 

assertions use standard operators for temporal 

referencing such as:  � (at the next smallest time unit), 

� (some time in the future), � (always in the future), 

U (always in the future until), W (always in the future 

unless), → (implies in the current state), ⇒ (always 

implies) [19, 15]. For example, the goal “the user 

should be logged to download a paper” is formalized 

as: 

LoggedToDownload:   � (� DOWNLOAD → LOGGED) 

where DOWNLOAD is a fluent becoming true after the 

event download and false after any other event in the 

alphabet. 

3. Process models as guarded hMSC 

A guarded hMSC is a directed graph where each 

node is a MSC, a decision node, or a finer-grained 

guarded hMSC.  

For example, the paperRequest box of the hMSC in 

Fig. 2 is the MSC shown in Fig. 1.  (To keep our 

running example simple, the MSC nodes in the sequel 

will consist of a single event having the MSC name.) 

Guarded hMSCs may capture parallel processes and 

decisions. Parallelism arises from MSC nodes. A 

decision node states specific conditions for the tasks 

along outgoing branches to be performed. A guard 

labels each outgoing branch; it must be evaluated to 

true for this branch to be followed. Guards are 

specified as Boolean expressions on fluents. In simple 

cases where there are only two branches, such 

expression may be moved up inside the decision node 

with ‘yes’, “no’ labels being attached to the 

corresponding branch (as in Fig. 2). 

Beyond the capturing of explicit decisions 

regulating subsequent tasks, guards prove convenient 

for modeling systems or processes where different 

instances can start in different states. In our example, 

the model should cover different processes dependent 

on the user’s initial state. Different paths in the model 

will be followed dependent on whether a user is 

initially already registered, currently logged, etc.  

In a fluent-based specification, we will just omit the 

initial value InitiallyFl for the relevant fluents, meaning 

that they may be initially true for some instances and 

false for others. Initial values are thus defined at 

instance level, not at class level. For example, the 

fluent REGISTERED hereafter specifies that some users 

are already registered when surfing the web site while 

others are not: 

fluent REGISTERED =  <register, unregister> 

When initial values are left unspecified for some 

fluents, we may want to state that certain combinations 

of initial values are to be ruled out in view of 

properties known from a companion goal model [15]. 

For example, assuming that the initial values of fluents 

REGISTERED and LOGGED are not specified, we know 

that a user cannot be logged when not registered. Any 

initial state should meet this property. To support this, 

a guarded hMSC may be annotated with an initial 

condition constraining the acceptable initial values of 

unitialized fluents. In our example, the initial condition 

might be: LOGGED → REGISTERED. Initial values in 

fluent definitions are no longer needed then. 

The introduction of guards in hMSCs provides a 

source for interesting checks such as guard 

completeness and disjointness (see section 6.3).  

4. From guarded hMSCs to guarded LTS 

This section introduces guarded LTS (g-LTS) as an 

intermediate formalism between guarded hMSCs and 

LTS. Roughly, a g-LTS is a transition system with 

guards or events on transitions. It provides a 

convenient milestone on the way from a guarded 

hMSC to the corresponding LTS, in particular, for 

determining the set of traces accepted by the guarded 
 

Figure 2: Guarded hMSC 
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hMSC. As a structured form of LTS, a g-LTS 

representation avoids state explosion. It is easier to 

understand and facilitates code generation. Moreover, 

interresting analyses may be performed at g-LTS level, 

see Section 6.  

4.1 Guarded LTS 

A guarded LTS (g-LTS) is defined by a structure 

(Q,Σ,Φ,δ,q0,C0) where Q is a finite set of states, Σ is a 

set of event labels, Φ is a set of fluents defined on Σ, 

δ ⊆ Qx(Σ∪2
Φ
)xQ is a labeled transition relation, q0 is 

the initial state, and C0 is an initial condition playing 

the same role as in guarded hMSCs. 

In a guarded LTS, transitions are labeled either by a 

guard or by an event. A guard is a conjunction of 

literals where a literal is a fluent or its negation. 

Intuitively, the guard must be evaluated to true for its 

transition to be activated. Note that every defined 

fluent or its negation must appear in every guard. For 

readability of figures, a set of guarded transitions 

between the same source and target states will be 

represented by {[GUARD]}, where GUARD is the 

disjunction of guards on those transitions. For 

example, the transition labeled {[REGISTERED]} from 

state 1 to state 2 in Fig. 3 actually covers two 

transitions guarded with [REGISTERED ∧ LOGGED] and 
[REGISTERED ∧ ¬ LOGGED], respectively.  

4.2 Trace semantics of g-LTS 

The semantics of g-LTS is defined in terms of 

event traces involving no guards at all.  

Let G denote the g-LTS (Q,Σ,Φ,δ,q0,C0). A trace of 

G from q0 is a pair (Init, <l0,…>) where Init is an initial 

fluent value assignment, mapping every fluent in Φ to 

true or false, and <l0,…> is an infinite sequence of 

labels li ∈ Σ∪2
Φ
, some being events and others being 

guards. Such trace is accepted by G from q0 iff the 

following acceptance conditions are met for every i:  

trace inclusion: ∃ qi+1 ∈ Q s.t. (qi, li, qi+1) ∈ δ 
admissible start: Init = C0 

guard satisfaction:  Si = li if li ∈ 2
Φ
, 

where Si is the fluent value assignment after the i-th 

event in the trace (with S0 = Init). 

The first condition states that the label sequence is 

accepted by the automaton. The second condition 

states that the initial fluent value assignment must meet 

the initial condition C0. The third condition ensures 

that all guards are met along the sequence. 

An event trace of G from q0 with respect to Init is a 

trace accepted by G where all labels corresponding to 

guards have been removed. The set of event traces 

accepted by G is the union of all such traces, for all 

initial states Init meeting the second condition. 

4.3 Guarded hMSCs as g-LTS 

A guarded hMSC can be rewritten as a g-LTS 

having the same traces. The rewriting algorithm 

extends [23] to take a guarded hMSC as input and a 

guarded LTS for the global system as output. The latter 

abstracts from the agents and captures the set of global 

behaviors covered by the hMSC. Our algorithm may 

be outlined as follows. 

Handling nodes. Every hMSC node yields a 

behaviorally equivalent sub-LTS. 

• A MSC node is rewritten as a sub-LTS collecting 

the linear event sequences from the scenario.  

• A decision node is rewritten as a sub-LTS having 

only one state and no event. 

• For a node expanded into a finer-grained hMSC, 

the procedure is applied recursively to obtain the 

corresponding sub-LTS. 

In each case, initial and terminal states are added to the 

corresponding sub-LTS to connect transitions created 

in the next step. 

Handling edges. The edges in a guarded hMSC yield 

transitions between the terminal and initial states of the 

sub-LTS corresponding to their source and target 

nodes, respectively.  

• An outgoing edge of a decision node is labeled by 

a guard. As this guard may be any Boolean 

expression on fluents, we first compute all 

conjunctions of fluent literals satisfying it. Each 

of these yields a guarded transition in the g-LTS. 

A guarded hMSC edge is thus rewritten as a set of 

guarded transitions in the g-LTS. 

• Any other edge is simply converted as LTS 

transition labeled with an unobservable event 

(tau), which can be removed while preserving 

 
Figure 3.  g- LTS for the guarded hMSC in Fig. 2 
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trace equivalence using standard automata 

algorithms.  

This extended algorithm yields the g-LTS in Fig. 3 

from the guarded hMSC in Fig. 2. 

5. From g-LTS to LTS 

The set of traces accepted by a g-LTS is determined 

by building a trace-equivalent LTS. The latter is a 

parallel composition of LTS ensuring the various 

acceptance conditions in Section 4.2. The first LTS in 

this composition is a “super LTS” meeting the trace 

inclusion condition. To meet the admissible start 

condition, an initializer LTS is added in the 

composition; this LTS forces initial value assignments 

on fluents to satisfy C0. To meet the guard satisfaction 

condition, the set of traces of the super LTS is pruned 

further by composing it with fluent automata. Let us 

make each LTS in the composition further precise. 

Super LTS. The LTS (Q, Σ, δ, q0) meeting the trace 

inclusion condition is built from the g-LTS (Qg, Σg, Φ, 

δg, q0g,C0) as follows:  

 Q = Qg ∪ {qstart} 

 Σ = Σg ∪ 2
Φ
 

 δ = {(qi, l, qj) | (qi, l, qj) ∈ δg }  
  ∪ {(qstart, start, q0g)} 

 q0 =  qstart , 

where qstart is a new specific initial state for the super 

LTS and start is a transition from it on which the 

Initializer will synchronize for their composition to 

guarantee the admissible start condition (see below). 

The start event will enforce two phases: (a) fluent 

value assignments before it, to define an admissible 

initial state, and (b) system run after it. 

In this super LTS, some transition labels l in the 

transition function δ denote original events whereas 

others are event encodings of the guards they are 

replacing. We will call them guard-events. The LTS 

alphabet is thus extended accordingly.  To avoid 

confusing a guard and its guard-event, we will denote 

the latter by dropping the brackets and expressing the 

logical connectors in natural language (AND, OR, NOT). 

For example the guard-event for the guard [¬ LOGGED ∧ 
REGISTERED] is denoted by NOT LOGGED AND REGISTERED.  

The super LTS defines a superset of traces; it meets 

the trace inclusion condition by construction. We now 

need to restrict this set so as to meet the other 

acceptance conditions. 

Initializer LTS. This automaton enforces the 

admissible start condition by letting its events, 

encoding fluent value assignments, meet the initial 

condition C0 before synchronizing with the super LTS 

on the start shared event. A self-transition labeled 

{TRUE} on its final state is added to avoid undue 

restrictions on the occurrence of guards from the super 

LTS. This self-transition represents the set of 2
Φ
 

transitions corresponding to all possible combinations 

of fluent literal values. 

Fig. 4 shows the Initializer LTS for our running 

example. The transitions between the two first states 

are labeled by guard-events. They capture fluent value 

assignments meeting the initial condition  

LOGGED → REGISTERED. 

Fluent LTS. The guard satisfaction condition is 

enforced by pruning all traces violating guards in the 

super LTS. For this we compose the super LTS with 

fluent automata. The latter keep track of the current 

fluent values; guard-events are constrained to happen 

only when the corresponding guard is true.  

For example, the fluent LTS for fluent LOGGED is 

shown in Fig. 5. The states qu, qf, qt correspond to the 

states where the fluent is not assigned yet, is false, and 

is true, respectively. The fluent’s initiating and 

terminating events synchronize with the super LTS to 

keep track of the current fluent value at each step. 

Transitions from the unassigned state are introduced to 

synchronize with the first transitions of the Initializer 

LTS (before event start). A transition labeled by 

{LOGGED} corresponds to two transitions, labeled by 

LOGGED AND REGISTERED and LOGGED AND NOT 

REGISTERED, and similarly for {NOT LOGGED}. When 

the fluent is false (resp. true), the fluent automaton 

prevents the occurrence of any transition with LOGGED 

(resp. NOT LOGGED). Those transitions thus prevent 

activation of guard-events when the corresponding 

guards are not satisfied. 

A fluent automaton is more precisely defined as 

follows: 

 Q = {qu, qt, qf} 

 Σ = IFl ∪ TFl ∪ 2
Φ
 

 
Figure 4: Initializer LTS 

 
Figure 5: Fluent LTS for LOGGED 
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 δ =  {(qf, e, qt) | e ∈ IFl} ∪ {(qt, e, qt) | e ∈ IFl}  
  ∪ {(qt, e, qf) | e ∈ TFl} ∪ {(qf, e, qf) | e ∈ TFl} 

  ∪ {(qf, x, qf) | x ∈ 2
Φ
, Fl ∉ x}  

  ∪ {(qu, x, qf) | x ∈ 2
Φ
, Fl ∉ x} 

  ∪ {(qt, x, qt) | x ∈ 2
Φ
, Fl ∈ x}  

  ∪ {(qu, x, qt) | x ∈ 2
Φ
, Fl ∈ x} 

 q0 = qu 

Synthesized LTS. Putting all pieces together, the trace-

equivalent LTS of a g-LTS is obtained through the 

following parallel composition: 

(Super LTS  Initializer  FFl1 … FFln ) \ {2ΦΦΦΦ, start} , 

where || is the standard LTS composition operator and 

\{events} is the hiding operator replacing all 

specified events by unobservable tau events. In this 

case, we hide all events that are not in the system 

alphabet, i.e., the guard events and the start event. The 

resulting LTS may be further minimized. It provides, 

by construction, the set of event traces accepted by the 

g-LTS. 

In practice, we may want to keep the start event as 

well as the initial fluent value assignments before it, 

e.g., for annotating counterexample traces produced by 

the model checker or for documentation purpose. The 

hiding procedure can be adapted to hide guards only. 

 Fig. 6 shows the LTS generated from the g-LTS in 

Fig. 3. Note that the fluent values are assigned before 

starting, to determine the initial state. 

6. Analyzing guarded hMSCs 

This section presents different kinds of analysis our 

tool performs on processes modeled by guarded 

hMSCs, including model checking, state invariant 

generation, and guard analysis. 

6.1 Model checking 

We may want to verify that LTL properties on 

fluents are satisfied by our process model and, if not, 

see a trace counter-example showing the violation. For 

example, if the property: 

LoggedToDownload :   � (� DOWNLOAD → LOGGED) 

is violated, we would like to see a sequence of tasks 

allowed by the model where a user downloads a paper 

without being logged. 

FLTL properties can be verified on LTS models 

using a model checking procedure described in [9] and 

implemented in LTSA [18]. This procedure cannot be 

used directly on our generated LTS. It checks a 

property for a specific initial state; in our case we want 

to check it for any initial state satisfying the initial 

condition. In case of violation, we would like a 

counterexample trace with a specific initial state 

leading to violation. The procedure in [9] is therefore 

extended accordingly. 

In [9], the checked LTS is composed with (a) a 

Büchi automaton encoding the negation of the verified 

property P, (b) fluent automata, and (c) a synchronizer 

forcing the transition on the Büchi automaton after 

every system event. The property P is violated if an 

accepting state of the Büchi automaton can be reached 

in this composition. Our extension is outlined as 

follows. 

• The checked LTS is the one generated from the 

process model using the algorithm from the 

previous section. In this LTS, the initial fluent 

value assignments and the start event are kept. 

• The Büchi automaton is generated for the 

property ¬([](start->P), instead of ¬ P; the 

user’s property P must be verified only after the 

occurrence of a start event. 

• The fluent automata are the ones defined in the 

previous section. Those in [9] do not contain the 

unassigned state, which is required here. 

• The synchronizer LTS is slightly modified so as 

to first synchronize with initial fluent value 

assignments and the start event. 

When verifying the property LoggedToDownload on 

the process model in Fig. 2, the extended model 

checker returns the following counterexample trace: 

NOT LOGGED AND NOT REGISTERED 

start 

directLink 

download 

The counterexample showing the violation path in 

the process model always provides an initial fluent 

value assignement, followed by the event start, 

followed by an event trace leading to violation. In the 

 

Figure 6. LTS generated from the guarded hMSC in 

Fig. 2 
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example, the counterexample shows that the use of the 

directLink feature may lead to a violation of the 

property if the user is initially not logged and not 

registered. In this case, the trace suggests that the 

definition of fluents LOGGED and REGISTERED should 

be adapted so that the directLink feature encapuslates 

user authentication, ensuring her to be registered and 

logged.  

6.2 State invariant generation 

A state invariant of a state machine is an assertion 

on some specific state which holds every time this state 

is visited. Annotating LTS state machines with state 

invariants has multiple benefits: the understandability 

and documentation of the state machine is improved; 

the invariants can be used for validation and error 

detection; and code generators may use them for 

improving code quality. Moreover, state invariants are 

required for the guard analyses in Section 6.3 hereafter. 

An algorithm for generating state invariants on LTS 

from fluent definitions was described in [4]. Each state 

is decorated by a conjunction of fluent literals. A fluent 

or its negation appears in the conjunction decorating 

some state if it is true or false for all LTS executions 

reaching this state. It does not appear in the 

conjunction if it is true for some LTS executions 

reaching the state and false for others. For example, if 

(A ∧ ¬ B ∧ C) ∨ (¬ A ∧ B ∧ C) is the weakest invariant at 
some state, the algorithm in [4] will return C, as A and 

B are true for some executions and false for others. 

The algorithm presented here extends our previous 

one along two directions. The computed state 

invariants are more accurate; they capture all possible 

literal combinations satisfied by their associated state 

through disjunctions of conjunctions. Moreover, the 

new algorithm handles guards and initial conditions 

(while applicable to guard-free LTS as well.) 

The algorithm proceeds by symbolic execution until 

a fixpoint is reached. At each step, every state has a 

decoration. Initially, the decoration is false for every 

state except the initial state; the latter is decorated by 

the initial condition C0. The algorithm propagates 

fluent literals through the state machine according to 

fluent definitions and outcomes of guards. When such 

propagation terminates, a state decorated with false 

means that no OR-combination of fluent literals holds 

in that state, that is, the state is unreachable. 

Fig. 7 shows the invariant generation algorithm. 

The set ToExpl collects the states whose decoration 

changed and to which propagation of literals should 

still be applied. The algorithm terminates when this set 

is empty. It will eventually be empty as a state can 

change its decoration at most 2
Φ
 times. In the worst 

case, a state will be decorated by the disjunction of all 

possible literal combinations, that is, true.  

The expression decor(source)event in Fig. 7 denotes 

the decoration of state source after the corresponding 

event has been applied. If event belongs to the 

initiating (resp. terminating) events of a fluent F, this 

expression is calculated by replacing all occurrences of 

¬ F (resp. F) by F (resp. ¬ F). As an event may belong 

to initiating/terminating events of several fluents, this 

must be done for each fluent.  

Let us see how the guarded LTS in Fig. 3 gets 

decorated. Table 1 shows decorations at each step until 

a fixpoint is reached. 

Step 0. We initialize all decorations to false except 

the initial state, which gets the initial condition 

¬LOGGED ∨ REGISTERED. 

Step 1. Only state 0 is in ToExpl. We propagate its 

decoration to states 1 and 4. Events paperRequest and 

directLink do not belong to initiating or terminating 

events of fluents; the propagated decoration pDecor is 

simply the decoration of state 1, i.e. ¬LOGGED ∨ 
REGISTERED. State 1 and state 4 are decorated by the 

disjunction of pDecor with their old decoration: 

(¬LOGGED ∨ REGISTERED) ∨ false, yielding ¬LOGGED 

∨ REGISTERED. States 1 and 4 are added to ToExpl as 
their decoration has changed. 

Input: A guarded LTS (Q, Σ, Φ, δ, q0, C0), 
 where Φ is a set of fluents Fli 
Output: decor : Q → P (2

Φ
) 

/* initial decorations */ 

for each q ∈ Q do 
   decor(q) ← false ; 

decor(q0) ← C0 ; 

/* fixpoint loop, starting with the initial state */ 

ToExpl ←{q0} 

while (ToExpl ≠ ∅) do 
   source ← getOne(ToExpl); 

   ToExpl ← ToExpl\{source}; 

   for each (target,label) such that  

 (source,label,target) ∈ δ do 

      /* propagate source decoration (by case) */ 

      if (label ∈ 2Φ) then  
         pDecor = decor(source) ∧ label  
      else 

         pDecor = decor(source)event 

      /* compute disjunction with old decoration */ 

      decor’(target) ← pDecor ∨ decor(target); 

      /* mark as “to explore” if changed */ 

      if (decor’(target) ≠ decor(target)) then 
         ToExpl ← ToExpl ∪ {target}; 
         decor(target) ← decor’(target) 

return decor 

Figure 7. Fixpoint generation of invariants 
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Step 2. Let us assume state 1 is chosen in ToExpl. 

Its decoration is propagated to its successors (states 2 

and 3). For each of these, we compute pDecor by 

taking the conjunction of the decoration of state 1 with 

their respective guard. The decoration of the states is 

obtained as the disjunction of the propagated 

decoration with their old one; both are added to 

ToExpl. 

Step 3. State 3 is choosen in ToExpl. It has an 

outgoing transition to state 0; pDecor is computed as 

(¬LOGGED ∧ ¬REGISTERED)register.  After event 

register, the fluent registered becomes true; pDecor is 

therefore equal to ¬LOGGED ∧ REGISTERED. The 

disjunction of pDecor with the old decoration of state 

0 keeps it unchanged; state 0 is thus not added to 

ToExpl. 

The process is continued until ToExpl is empty. 

6.3 Guard analysis 

Three kinds of guard-based checks are worth 

considering in process models involving decisions. 

Guard completeness: At any process step where a 

decision node is reached, the guards on the alternative 

outcomes must cover all possible cases; no guarded 

branch may be missing. Otherwise a process run might 

be blocked forever at this node with no guard evaluated 

to true. 

Guard disjointness: At any process step where a 

decision node is reached, two guards on different 

outcomes may not overlap; they may not be both 

evaluated to true. We generally want to preclude non-

deterministic process decisions where different courses 

of action are taken in different process runs applied in 

the same situation. In clinical processes, for example, 

every patient with the same state must be treated 

identically  (see Section 7). 

Guard satisfiability: At any process step where a 

decision node is reached, the guards on the outcomes 

must all be satisfiable. Otherwise the subsequent tasks 

along some branch would be unreachable.  

In our framework, those three types of checks are 

applied to guarded hMSCs. Incomplete, overlapping, 

or unsatisfiable guards are reported to stakeholders for 

fixing the problematic decision nodes. 

Such checks are close in spirit to those supported in 

[11] for SCR tables. Beyond different formalisms there 

is a notable difference, however. The checks here must 

account for the contextual condition holding at the 

point in the process model where the decision node is 

reached. This contextual condition is the state invariant 

at that point, generated by the decoration algorithm in 

Fig. 7. 

The checks could be implemented at two different 

levels: on the g-LTS or on the trace-equivalent LTS. 

Our tool implements them on the g-LTS for several 

reasons. The alternative of taking the trace-equivalent 

LTS for checking incompleteness by deadlock analysis 

and overlaps by non-determinism detection would 

prevent us from determining whether the problem is 

specifically due to guards or not. Moreover, 

unreachable paths would not be present in the target 

LTS. It would be quite difficult to point out the 

problematic guards.  

Once contextual conditions are generated as state 

invariants, the checks are automated through 

satisfiability checking. For a set of guards gi at a 

decision node with contextual condition C holding 

right before, we need to check the following: 

 C = ∨i gi , 

 for every pair gi, gj:  gi  ∧ gj  ∧ C =  false , 
 for every gi:  gi  ∧ C  is satisfiable. 

In case of incompleteness, our tool returns all fluent 

value assignments that are not covered by the guards. 

In case of overlap, it returns all fluent value 

assignments that meet several guards. In case of 

unsatisfiability, it indicates outgoing transitions that 

are unreachable. 

7.  Analyzing cancer therapy processes 

Our techniques were applied on a real medical process 

for treatment of rectal cancer, with medical staff at the 

UCL university hospital as stakeholders. Our work is 

motivated by a joint project aimed at building and 

analyzing models of clinical pathways [2]. A clinical 

pathway is a well-defined process, based on medical 

protocols, guidelines and recommendations, centered 

on a specific patient class with similar needs, involving 

a multi-disciplinary team, and addressing clear clinical 

 

Step ToExpl State0 State1 State2 State3 State4 State5 State6 

0  ¬L ∨ R false false false false false false 

1 {0} ¬L ∨ R ¬L ∨ R false false ¬L ∨ R false false 

2 {1,4} ¬L ∨ R ¬L ∨ R R ¬L ∧ ¬R ¬L ∨ R false false 

3 {3,2,4} ¬L ∨ R ¬L ∨ R R ¬L ∧ ¬R ¬L ∨ R false false 

4 {2,4} ¬L ∨ R ¬L ∨ R R ¬L ∧ ¬R ¬L ∨ R ¬L ∧ R false 

5 {4,5} ¬L ∨ R ¬L ∨ R R ¬L ∧ ¬R ¬L ∨ R ¬L ∧ R ¬L ∨ R 

Table 1. Decoration steps for the g-LTS in Fig. 3.  L, R stand for fluents LOGGED, REGISTERED, respectively. 
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goals. One project objective is to help medical staff 

detect and correct flaws in clinical pathways early in 

their elaboration using software engineering 

technology.  

Preliminary model elaboration. Initial model 

fragments for the rectal cancer pathway were sketched 

on paper by clinicians using box-and-arrow diagram 

pieces showing tasks and decision nodes. These 

fragments were translated next into a guarded hMSC 

using our tool. Such translation already stimulated 

fruitful discussions with medical staff. Issues about the 

process were raised and discussed, leading to early 

clarification of the preliminary paper version.  

Fig. 8 shows the emerging guarded hMSC for a 

pathway fragment, simplified for explanatory purpose. 

It consists of a sequence of pre-treatment, treatment, 

and follow-up tasks, cycling in case of cancer 

recurrence. The refinement of the pre-treatment task is 

shown on the right part of Fig. 8. It can be rephrased as 

follows. 

“A patient gets in for cancer consultation (usually through 
a general practitioner). After this first meeting, a cancer 
diagnosis is established and a spread evaluation is performed. 
Such evaluation is aimed at estimating cancer invasiveness 
and extension data : T for local Tumor invasion, N for 
lymphatic Nodes invasion, M for distant Metastasis). Based on 
this, the medical staff envisions some appropriate therapy 
strategy. When the patient is operable, the treatment may 
consist in simple surgery, or chemotherapy preceding surgery, 
or a combination of radiotherapy and chemotherapy preceding 
surgery. When the patient is not operable, palliative care is 
provided.” 

As model elaboration proceeds, tasks are further 

refined into MSCs or finer-grained hMSCs. (Unrefined 

tasks are encoded here as single events named by the 

task name.)  

Fluent identification. Guard formalization requires 

fluents to be identified and defined. Some fluents were 

easily identified by medical staff. For example, the 

fluent DIAGKNOWN in Fig. 8 states that a diagnosis is 

known about the actual patient's cancer status when 

histology has been performed, and remains known until 

follow-up has been done. The fluent EVALDONE gets 

true when the evaluation task has been performed; the 

evaluation results remain valid until chemotherapy is 

performed. Hence the definitions: 

fluent DIAGKNOWN = < histology, follow-up > 

fluent EVALDONE = < evaluation, chemotherapy > 

Other fluent definitions raise the need for refining 

tasks further. For example, the fluent OPERABLE refers 

to specific events identified by refining the inter-

disciplinary decision meeting task named staff in Fig. 

8. Similarly, the fluents T, N and M are obtained from 

the refinement of tasks consultation, endoscopy and 

histology. 

Ten fluents were defined from the informal guards 

in Fig. 8. Most of them do not specify an initial value 

as the latter may differ from one patient to the other. 

The initial condition C0 reflects a domain property 

elicited from clinicians, namely, “if the spread evaluation 

is already done in the initial state (possibly by another 
hospital), then the diagnosis is known (as possibly provided by 

that other hospital)”. This condition is easily formalized: 

EVALDONE → DIAGKNOWN. 

Guard analysis. Our tool was used to perform the 

three types of guard analysis discussed in Section 6.3. 

Undesired non-determinism in decisions was 

automatically detected in the clinical pathway fragment 

shown in Fig. 8; the guards 

[¬ T ∧ ¬ N], [(T ∧ ¬ N) ∨ N], and [M] 

do overlap. The problem was easily fixed in this case 

by adding ¬ M in the first two guards, as advised by 

medical staff. Similar problems involving guards were 

identified in other pathway fragments supplied by 

medical staff, and similarly fixed, including missing 

guarded branches at other decision nodes. 

Model checking. While building a companion goal 

model [15], a number of descriptive and prescriptive 

properties were identified with medical staff and 

model-checked using our tool.  

For example, one Avoid goal states that “a patient 

may never get irradiated twice in the same anatomic zone”. 

Its parent goal is to avoid the potentially serious side-

effects of iterative radiation. In simpler form, the goal 

Avoid [PatientIrradiatedTwice] states that the radiotherapy 

and radiochemo tasks may not be performed when the 

patient has already been irradiated (we omit the “same 

anatomic zone” restriction to simplify the 

presentation.)  The formal specification of this goal is: 

� ((� radiotherapy ∨ � radiochemo) → ¬ IRRADIATED) 

Figure 8. Treatment process for rectal cancer, with 

refinement of pre-treatment task 
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This specification yields an additional fluent definition: 

fluent IRRADIATED =  < {radiotherapy, radiochemo}, { } > 
initially false 

When verifying this property on the process model 

fragment in Fig. 8, our model-checker returns the 

following violating trace: 

NOT IRRADIATED AND M AND … 

start 

consultation 

[…] 

radiotherapy 

[…] 

follow-up 

consultation 

[…] 

radiotherapy 

This trace shows that cancer recurrence, illustrated 

in the trace by the follow-up task followed by a new 

consultation task, was overlooked in the original 

pathway fragments supplied by medical staff. The 

problem may be fixed by guarding the radiotherapy 

task further, e.g., with [M ∧ ¬ IRRADIATED].  

This fix, however, breaks guard completeness on 

the decision node, which raises the following new 

question: “What happens in case of cancer recurrence, when 

irradiation care would otherwise have been provided?”. 

A number of other goals and domain properties 

were verified, among which few were satisfied by the 

preliminary model.  

• Some of the checked properties were originally 

too strong, being representative of a subset of 

patients only (e.g., those without metastasis). 

Such problem must be fixed by correct 

reformulation of the property in the goal model, 

possibly together with missing domain properties. 

• Other properties were violated because of 

exceptions not correctly covered by the model 

(e.g., a patient coming from emergencies). In this 

case, further iterations with medical staff are 

required, possibly resulting in refactoring and 

refinement of the process model. 

Preliminary lessons learned. Such iteration of 

stepwise process model elaboration, analysis, and 

refactoring appears quite promising. 

• We can systematically detect errors arising from 

novice modelers, such as superfluous or 

overlapping guards, or resulting from the 

complexity of guards in the medical domain. 

• Model analysis may reveal ambiguities in the 

model and suggest ways of fixing them –e.g., the 

addition of “...∧¬ M” in the first two guards as 

discussed before. 

• Error detection can be made early, avoiding the 

difficulties of late fixing of anomalies 

disseminated throughout a large, complex model. 

• Early analysis contributes to the model elicitation 

process. Implicit information gets clarified. In 

case of overlapping guards, we may highlight 

some modeling error or some desired non-

determinism to be explicitly documented.  

As in [3], we mostly found errors in the process 

models rather than in the actual processes currently 

followed by medical staff. Analysis is nevertheless 

important for a correct model to be used, e.g., to 

highlight potentially hazardous situations in real 

processes, enact daily work processes, advise less 

experienced people, deliver explanations or tutorial 

material, etc. 

8. Conclusion 

Model-driven development requires adequate 

model development. Model building is a complex and 

error-prone task. It should be supported, especially in 

case of critical systems or processes, through 

techniques and tools for stepwise model elaboration, 

analysis, and refinement.  

Guarded hMSCs were introduced in this paper to 

model multi-agent processes involving decisions. This 

formalism proves understandable by stakeholders and 

convenient for modelling decomposable tasks, 

interaction scenarios, goals, and decision trees. The 

language has a clear formal semantics defined in terms 

of LTS.  

Guarded LTS were proposed as an intermediate 

event-based formalism allowing state-based guards to 

be defined as conjunctions of fluents. Their trace 

semantics is defined in terms of LTS. 

Three complementary techniques were proposed for 

analyzing process models as guarded hMSCs. The 

three of them are implemented by a tool. The model 

checker verifies safety properties that may refer to 

states and events. The tool also generates state 

invariants which are, in particular, used for analyzing 

decision alternatives against completeness, 

disjointness, and satisfiability.  

Our approach was applied to a real safety-critical 

process for cancer treatment. Errors in the model 

fragments supplied to us were successively detected 

and corrected. Although preliminary, this experience 

appears promising for other clinical pathway models 

we are currently working on. 

The techniques described in the paper were 

implemented and integrated in our ISIS tool for 

scenario-based and goal-based synthesis of behavior 

models [4, 5]. Guards are encoded as binary decision 

diagrams (BDDs), which allows for a compact 

representation of Boolean formulas. This avoids 

exploding guards through multiple transitions (up to 2
Φ
 

in the worst case). Standard operators from BDD 
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libraries also make it easier to implement the 

algorithms for fluent decoration and guard analysis. 

Our model checker is fully integrated and relies on an 

algorithm specifically developed to handle BDDs 

during LTS composition. Note that a worst-case 

computation of the trace LTS may lead to identifying 

up to 2
Φ
 states immediately reachable from the initial 

one. The provision of initial conditions is intended to 

prune these significantly. The exponential blow of the 

trace LTS naturally results from the ability of models 

with guards to cover numerous behaviors in an 

implicit, compact way. 

Our approach raises a number of challenging issues. 

Firstly, some paths may be missing from the 

preliminary process model fragments provided by 

stakeholders. The technique in [4] for generalizing 

accepted behaviors of a MSC specification might be 

extended to handle guarded hMSCs as input. Secondly, 

the introduction of guards in scenarios and LTS raises 

the issue of guard monitorability; the agents involved 

in the process must be able to evaluate “their” guards 

in order to meet the process model. Thirdly, obstacle 

analysis should be applied to process models [16]. In 

particular, guards often refer to external quantities; 

they might be wrongly evaluated if such quantities are 

not accurately reflected in the model. Finally, the 

integration of multiple process models raises conflict 

management issues [15]. For example, a patient 

following both rectal cancer and diabetis pathways is 

exposed to feature interaction problems. All such 

problems need to be detected and resolved during 

process modeling through dedicated validation 

techniques. 
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