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Abstract

Software development teams exchange source code in
shared repositories. These repositories are kept consistent
by having developers follow a commit policy, such as “Pro-
gram edits can be committed only if all available tests suc-
ceed.” Such policies may result in long intervals between
commits, increasing the likelihood of duplicative develop-
ment and merge conflicts. Furthermore, commit policies are
generally not automatically enforceable.

We present a program analysis to identify committable
changes that can be released early, without causing failures
of existing tests, even in the presence of failing tests in a
developer’s local workspace. The algorithm can support
relaxed commit policies that allow early release of changes,
reducing the potential for merge conflicts. In experiments
using several versions of a non-trivial software system with
failing tests, 3 newly enabled commit policies were shown to
allow a significant percentage of changes to be committed.

1 Introduction

Software development of large systems today is a highly

collaborative process where teamwork is essential. Team

development reduces the time to market, but the cost of

coordination problems caused by duplicative and conflict-

ing edits in a code base can be nontrivial [17]. Although it

is customary to assign clear responsibilities for each mod-

ule, team members may be affected unavoidably when their

changes conflict with the changes made by others.

Modern revision control systems such as CVS [4] and

Subversion [18] can automatically resolve direct merge con-
flicts that arise when multiple developers concurrently ac-

cess the same file. However, this conflict resolution is lim-

ited in several ways:

• Manual conflict resolution is needed when the edits in-

volve overlapping text regions.

• Current revision control systems are unable to detect

indirect merge conflicts that arise when the changes

made by different developers on different files ad-

versely impact each other.

• Most importantly, the detection and resolution of con-

flicts in current revision control systems is based on a

textual analysis, and unexpected interactions between

changes may cause erroneous program behavior, even

in cases where no conflicts are reported.

When problems arise, they often manifest themselves as test

failures experienced by other team members. Such test fail-

ures are notoriously difficult to debug for developers be-

cause the problem was not caused by their own changes.

Therefore, the process of committing changes to a shared

repository is typically governed by a commit policy that

aims to minimize merge conflicts, eliminate build problems

and avoid test outcome degradations. A policy imposed by

the project management usually consists of a small number

of informally stated guidelines that developers are encour-

aged to follow. For example, many development teams fol-

low the “Commit early and commit often” rule (see, e.g.,

[3, 11]), in order to avoid long time intervals between com-

mits that may lead to duplicative development and merge

conflicts. To preserve code quality, the commit policy fol-

lowed by the KDE team [14] includes rules such as “Never

commit code that doesn’t compile” and “Test your changes

before committing”. The latter is commonly interpreted to

mean that all tests in a developer’s local workspace must

pass before changes can be committed; this corresponds to

the conservative policy: “Do not commit changes in the

presence of failing tests in the local workspace”. Unfor-

tunately, this requirement also will generally increase the
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time intervals between commits, at odds with the “Commit

early and commit often” rule.

In addition, the conservative policy may be overly re-

strictive. For example, test failures that already occur in the

original version of the program may be completely unre-

lated to the developer’s changes, and fixing them may re-

quire very different knowledge of the application1. Further-

more, several widely used development methodologies such

as extreme programming [2] and test-driven development

[1] advocate that tests be written before the tested function-

ality is implemented. Such tests initially fail until the func-

tionality is implemented, and the conservative policy blocks

such tests from being released, thereby preventing develop-

ers from collaborating on test development.

We conclude from the above discussion that it is de-

sirable to use a more relaxed commit policy that allows

parts of an evolving program to be committed before the

entire implementation of a feature is complete, provided

that the released changes do not introduce additional test

failures. Our research focuses on using program analy-

sis to define practical relaxed commit policies that prevent

the introduction of new test failures, while allowing early

commits of changes. Thus, the analysis determines a set

of safe committable changes that can be exposed to other

team members. The analysis is based on an existing change

impact technique [20] that compares successive versions

of a software system and expresses their difference as a

set of coarse-grained atomic changes. Each test in a test

suite, represented by its dynamic call graph, is then cor-

related with the changes that may affect its outcome. We

present Safe-commit, an algorithm that computes a commit-

table subset of the changes in the edit using this change-test
correlation.

In different development strategies, changes can be con-

sidered to be not safely committable for varying reasons.

Using the change-test correlation, a change can be unsafe

because it is covered by a failing test, covered by a worsen-

ing test (that passed before), or not covered by any test. We

show how Safe-commit can be used to implement 3 commit

policies of varying degrees of “strictness”. The Restrictive
policy allows only the release of changes that are “success-

fully tested”, that is, they only impact tests that pass in the

edited program version. This policy is useful in situations

where the release of changes needs to be controlled tightly,

e.g., when a major release is imminent and only bug fixes

are permissable. The Moderate policy permits the release

of changes that are tested, provided that no outcome of an

1 For example, if a test t fails in both the original and the edited version

of a program, then the failure of t in the edited program may be caused

by the changes, or it may be due to the same reason that caused t’s failure

in the original version. Determining why t fails in the edited program is

beyond the scope of this paper; therefore, we have concentrated on devel-

oping an analysis that guarantees that there are no additional tests that fail

after committing changes.

existing test degrades. It is useful, e.g., for test-driven de-

velopment, since every change has to be tested but failing

tests can be added to the suite. Finally, the Permissive pol-

icy relaxes the Moderate policy by additionally allowing the

release of untested changes. It is probably used by many

projects as the default policy. Either of the Moderate or

Permissive policies can be used instead of the conservative

policy without compromising the code base in the reposi-

tory.

The contributions of this paper are threefold:

• Safe-commit, an algorithm to calculate a set of safely
committable changes. Releasing these changes is guar-

anteed not to cause the failure of any existing test. To

our knowledge, this is the first semantic analysis for
calculating committable changes;

• A prototype implementation of Safe-commit in JU-

NITMX, a plug-in that seamlessly extends the JUnit

support in Eclipse, and shows developers the set of

committable changes after running their test suite; and

• A preliminary evaluation of three new commit policies

that were implemented using Safe-commit on several

versions of Daikon [9]. In this experiment, an aver-

age of 4.6%, 31.4%, and 99.5% of all atomic changes

were identified as committable according to the Re-
strictive, Moderate, and Permissive commit policies,

respectively.

We also report on an experiment where Safe-commit is

applied to public releases of JMeter [8]. Surprisingly,

Safe-commit was capable of identifying a nontrivial num-

ber of committable changes, despite the huge number of

changes that separates these releases.

2 Motivating Example

The program shown in Figure 1 will serve as a running

example throughout the paper to illustrate the algorithm.

Part (a) of the figure shows the program itself, and part (b)

shows the associated test suite. Since we will use two ver-

sions of this program to illustrate our approach, program

changes are indicated with boxes (for additions) and with

strikeout font (for deletions). In other words, the original

program contains none of the boxed code fragments and

all of the code fragments in strikeout font, and the edited

program version is constructed by adding all boxed code

fragments and removing all fragments in strikeout font. In

Figure 1, gray labels are used to indicate various kinds of

changes (e.g., AM changes correspond to added methods).

These annotations are used to illustrate our analysis ap-

proach and will be explained in Section 3.

The example program consists of two classes A and B
and a test suite of five tests. In the original program version,

508



Program Code Test Suite

public class A {

  protected int y;

  public int zip(int x) {

    this.y = x;

    x = zap(x);

    return x + 2;

  }

  public int zap(int x) { return 2 * x; }

  public int foo(int x) { 

    return 2 * x; 

  }

  public int bar(int x) { return x / 2 ; }

  public int wiff(int x) { return x; }

  public int baz(int x) { 

                   return x + 1; 

  }

  public int val() { return 2; }

}

public class B extends A {

  public int waff(int x) { this.y = x; return x; }

  

  public int bla(int x) { return 7 + this.val(); }

  

  public int val() { return 1; }

}

public class Tests extends TestCase {

  public void test1() {

    A a = new A();

    a.bar(3);

    assertEquals(5, a.zip(3));

  }

  public void test2() {

    A a = new A();

    int temp = a.bar(2);

    assertEquals(2, a.foo(temp));

  }

  public void test3() { 

    B b = new B(); 

    assertEquals(5, b.waff(5));

  }

  public void test4() {

    B b = new B();

    assertEquals(8, b.bla(5));

  }

  public void test5() {

    A a = new B();

    assertEquals(a.baz(1), a.val());

  }

}

(a) (b)

CM(1)

CM(6)

AM(2), CM(3), LC(4), LC(5)

CM(7)

Lookup Changes
LC(4) [A, A.zap()]
LC(5) [B, A.zap()]
LC(10) [A, A.wiff(int)]
LC(11) [B, A.wiff(int)]
LC(18) [B, B.val()]
LC(19) [B, A.val()]

CM(14)

Test Results

original edited

test1 � �

test2 � �

test3 � �

test4 � �

test5 � �

(c)

CM(15)

DM(16), CM(17), LC(18), LC(19)

CM(12)

(d)

AF(13)

AM(8), CM(9), LC(10), LC(11)

Figure 1. (a) Original and edited version of the example program. The original program consists of
all program fragments except those shown in boxes. The edited program is obtained by adding all
boxed code fragments. Each box is labeled with the numbers of the corresponding atomic changes.
(b) Tests associated with (both versions of) the example program. (c) Test results for both versions
of the example program (here, � indicates that a test is passing, and � indicates that a test is failing).
(d) Lookup changes indicating changes to dynamic dispatch.

class A defines (from top to bottom) 5 methods: A.zip(),

A.foo(), A.bar(), A.baz(), and A.val(), each re-

turning an integer value. Furthermore, in the original pro-

gram version, the subclass B of class A contains 3 methods

B.waff(), B.bla(), and B.val(). The test suite ex-

ercises most of the methods in these classes and compares

the values actually returned with the expected values. All

the tests in the test suite pass on the original program.

In the edited program version, methods A.zap() and

A.wiff() are added to class A and several changes are

applied to the other methods. In addition, a field A.y is

added, the bodies of methods B.waff() and B.bla()
are changed, and method B.val() is deleted. A run of

the test suite after the edit shows that some of the changes

break our assertions, resulting in the failures of test1 and

test4. Figure 1(c) summarizes the results of running the

tests in the original and edited versions of the program.

If, after running the test suite, a developer wants to com-

mit some of these changes to the shared repository without

breaking any test, there are two options:

• identify those changes that are not exercised by any

test (e.g., the addition of methods or fields that are not

yet used), or

• identify changes that are exercised by one or more

tests, but that do not contribute to any test failure.

Considering the changes in Figure 1, it is obvious that the

method A.wiff() and the field A.y can be added with-

out breaking any tests, because none of the tests exercises

this new functionality. However, identifying the remain-

ing changes that can be committed requires a deeper un-

derstanding of the program.

For example, the reader may observe that test3 is the

only test that exercises the change to the body of method

B.waff(), which requires the addition of field A.y. A

509



careful examination reveals that these two changes can be

committed safely because test3 passes in both versions

of the program and because committing these changes will

not affect the behavior of the other tests.

In general, as programs become larger and more com-

plex, the effects of changes on program behavior become

harder to understand. Dependences between changes com-

plicate the analysis because a change that is not responsible

for any test’s failure may still be non-committable because

it may be dependent on a responsible change.

3 Change Impact Analysis

This section reviews a change impact analysis [20, 16]

that is used as the basis for the Safe-commit algorithm that

will be presented in Section 4. The change impact analysis

used in this paper [20, 19, 21, 24] consists of two steps: (i) a

decomposition of the edit into atomic changes, and (ii) cor-

relating these changes with dynamic call graphs that are ob-

tained by running a test suite on the two program versions.

Our analysis makes the following common assumptions:

• Tests are deterministic, so that multiple runs produce

the same dynamic call graph and the same outcome.

• The execution of a test is independent from the execu-

tions of other tests, (e.g., a test must not use data stored

in a global object by a previously executed test).

• There are no changes to the environment and libraries

between executions of tests.

This section reviews the change model and defines classifi-

cations of changes and tests that will be used in Section 4.

3.1 Change Model

A software edit can be decomposed into a set of atomic
changes. We use a fairly coarse-grained change model that

reflects the semantics of an object-oriented program. It sup-

ports change categories such as added classes (AC), deleted

classes (DC), added methods (AM), deleted methods (DM),

changed method bodies (CM), added fields (AF), deleted

fields (DF), and lookup changes (LC) (i.e., changes to dy-

namic dispatch) [20]. Regarding changes to method bod-

ies (CM changes), note that we generate one CM change

regardless of the number of statements within the respec-

tive method’s body that have been changed, as we employ a

method-level analysis.

In Figure 1, the developer adds method A.zap() to

class A as part of the edit that leads to the new version

of the program. This method addition is expressed as

four atomic changes, including the addition of an empty

method, AM(2), and a change to the method’s body, CM(3),

as shown in the shaded box label. The remaining two

atomic changes associated with this method addition, LC(4)

and LC(5), represent the effect of the method addition on

dynamic dispatch behavior, specifically, the newly possi-

ble dispatches of method A.zap() on objects of types

A and B, respectively. There are many other kinds of ed-

its that may also impact dispatch behavior. For exam-

ple, the removal of method B.val() gives rise to the

atomic changes LC(18) and LC(19), which correspond to

the changed dispatch behavior of method A.val() when

invoked on objects of type B (originally, such calls dis-

patched to B.val(), but after the edit they dispatch to

A.val()), and the removed dispatch behavior of method

B.val() on objects of type B, respectively. Figure 1(d)

shows all of the LC changes corresponding to the edits

shown in Figure 1(a).

3.2 Dependences between changes

An atomic change may be dependent on one or more

other atomic changes, that must be applied also in order

for the resulting program to compile [19]. Intuitively, an

atomic change c1 structurally depends on another atomic

change c2, if applying c1 to the original version of the pro-

gram without also applying c2 results in an invalid pro-

gram. These dependences can be used to construct syntac-

tically valid intermediate versions of the program that con-

tain some, but not all of the atomic changes, as described in

detail in [7, 19].

For example, consider the deleted method B.val() in

the example program of Figure 1. This method is referenced

in the body of method B.bla(), which has been edited to

remove the reference to B.val(). The structural depen-

dence between the corresponding atomic changes DM(16)

and CM(15) reflects the fact that DM(16) can only be com-

mitted together with CM(15): Committing the deletion of

B.val() without committing the change to the body of

B.bla() results in a program with a compilation error.

Structural dependences only capture the requirements

for creating a syntactically valid program, and do not cap-

ture all effects of an edit on program behavior. Certain

changes indirectly impact program behavior. For example,

the addition of a virtual method may give rise to changes in

dispatch behavior, and changing a field initializer may re-

sult in an implicit change to the bodies of the constructors

for the class in which the field is declared. Such effects are

captured by mapping dependences between changes. Map-

ping dependences are symmetrical, (i.e., if c1 is mapping-

dependent on c2, then c2 is mapping-dependent on c1) be-

cause it is not possible to apply one without the other.

For example, the addition of method A.zap() (AM(2)

in Figure 1) causes two LC changes, LC(4) and LC(5), that

witness its impact on dispatch behavior. These two LC
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test1() test2() test3()

test4()

CM(1)
[A.zip()]

CM(3)
[A.zap]

AM(2)
[A.zap()]

CM(6)
[A.foo()]

CM(7)
[A.bar()]

DM(16)
[B.val()]

LC(18)
[B, B.val()]

CM(15)
[B.bla()]

CM(14)
[B.waff()]

Legend
exercised by
depends on

LC(4)
[A, A.zap()]

LC(19)
[B, A.val()]

LC(5)
[B, A.zap()]

CM(17)
[B.val()]

test5()

CM(12)
[A.baz()]

AF(13)
[A.y]

AM(8)
[B.wiff()]

CM(9)
[A.wiff()]

LC(10)
[A, A.wiff()]

LC(11)
[B, A.wiff()]

Figure 2. Atomic changes, dependences
between atomic changes, and exercised
changes for the example program of Figure 1.

changes indicate that this method addition may alter the out-

come of tests that exercise this dispatch behavior.

In the remainder of the paper, structural and mapping de-

pendences are not further distinguished, and we will simply

write c1 � c2 if c1 is structurally dependent on c2 or if c1

is mapping dependent on c2. Figure 2 shows the atomic

changes and dependences for the program of Figure 1.

3.3 Call Graphs and Exercised Changes

Our algorithm for computing committable changes relies

on two sets of (dynamic) call graphs. First, the original test

suite is executed using the original version of the program

and, then the edited version of the test suite is applied to the

edited program version. A dynamic call graph is obtained

for each test in each version. Figure 3 shows the call graphs

for each of the five tests in the original and edited versions.

Bold boxes and arrows indicate added nodes and edges in

the edited version, whereas dashed boxes and arrows indi-

cate deletions.

If a test t fails (or crashes2), then we determine the sub-

set of atomic changes that may have impacted t’s behav-

ior. In particular, we identify a set of exercised changes by

correlating the computed call graphs with the set of atomic

changes: Each CM or LC change that corresponds to a node

or edge in t’s call graph in either version is exercised by

t. We will use ExercisedChanges(t) to denote the set of

changes exercised by test t. Figure 2 visualizes the exer-

cised changes for each test by way of dashed arrows. In Fig-

ure 3, the exercised changes for each test are shown as labels

attached to nodes and edges in the call graph. For exam-

ple, for test1, the exercised changes are CM(1), CM(3),

LC(4), and CM(7).

2 JUnit distinguishes between assertion failures and exceptions; both

are treated as test failures by our algorithm.

3.4 Test Classification

We classify tests based on whether or not they exist in

the original and edited versions of the program, and on their

outcome in each program version. Each test falls into one

of the following categories:

pass→pass pass in both program versions,

fail→pass fail in the original version, and pass

in the edited version,

pass→fail pass in the original version, and fail

in the edited version,

fail→fail fail in both program versions,

∅→pass added and pass in the edited version,

∅→fail added and fail in the edited version,

pass→∅ deleted and pass in the original ver-

sion, and

fail→∅ deleted and fail in the original ver-

sion.

The pass→∅ and fail→∅ categories are only mentioned

for completeness. Deleted tests no longer exercise program

behavior, and therefore do not play a role in the computation

of committable changes in Section 4.

According to this classification, test1 and test4 in

the example program are in the pass→fail category, and

test2, test3 and test5 are in the pass→pass category.

3.5 Change Coverage

Finally, we define a notion of change coverage that will

be used for two purposes. First, we will use this notion to

conservatively approximate the impact of applying changes

on test behavior in the following sense: If two tests t and t′

cover non-intersecting sets of changes, then the outcome of

t cannot be affected by committing the changes covered by

t′ and vice versa.

Second, we will use the total number of changes cov-

ered by any test for measuring the effectiveness of our al-

gorithm. Intuitively, our goal is to use a metric that differ-

entiates changes that are “used by tests” from changes that

are completely untested (otherwise, a scenario in which a

very low percentage of an application’s code is covered by

tests is likely to give rise to an artificially high percentage

of committable changes).

From the discussion of the change model, it is clear that

changes cannot be applied or tested in isolation because

of their interdependences, and our notion of change cov-

erage takes this into account. Specifically, we will say that

a change c is covered by a test t if (i) c is exercised by t,
(ii) c� c′, and c′ is covered by t, or (iii) c′ � c, and c′ is

covered by t. We will write CoveredChanges(t) to denote

the set of changes covered by test t.
Once all covered changes are computed, we calculate

those remaining uncovered changes that are not covered by
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<B,B.val()>

Assert.assertEquals()

Tests.test2()

<A,A.bar()> <A,A.foo()>

A.A()

A.bar()

CM(7)

A.foo()

CM(6)

Tests.test3()

Assert.assertEquals()

<B,B.waff()>

A.A()

B.B()

B.waff()

CM(14)

Tests.test4()

A.A()

B.B()

<B,B.bla()>

Assert.assertEquals()

LC(18)

B.val()

CM(17)

Tests.test5()

Assert.assertEquals()

<B,A.baz()>

A.A()

B.B() A.val()

<B,A.val()>

B.val()

<B,A.val()>

CM(17)

A.baz()

CM(12)

LC(19)

Legend

edge

Node Change added

deleted

Tests.test1()

<A,A.bar()>

<A,A.zap()>

A.A() Assert.assertEquals()A.zip()

<A,A.zap()

AA.zip()

CM(1)

A.bar()

CM(7)

LC(4)

A.zap()

CM(3)

<A,A.zip()>

B.bla()

<B,B

AB.bla()

CM(15)

Figure 3. Call graphs for the tests in the original and edited versions of the example program. Bold
boxes and arrows indicate added nodes and edges in the edited version, dashed boxes and arrows
indicate deletions. Gray annotations to the boxes refer to the atomic changes shown in Figure 1.

any test. In the example program, the newly added method

A.wiff() is not exercised by the test suite, thus AM(8),

CM(9), LC(10) and LC(11) are uncovered changes.

4 Determining Committable Changes

Figure 4 shows our algorithm for computing a set of

committable changes. The algorithm takes as inputs: (i)

the set AC containing all atomic changes, with the depen-

dence relation� that was defined in Section 3, (ii) a set In-
putTests of tests that exhibit unwanted behavior in the edited

version of the program (according to the selected commit

policy), and for each test t, (iii) the set CoveredChanges(t)
of changes covered by that test, and (iv) its set of exercised

changes ExercisedChanges(t). The output of the algorithm

is a set CommitChanges of changes that can be committed

safely.

The algorithm follows an iterative workset-based ap-

proach to simultaneously identify sets of non-committable
changes and preserved tests for which the original be-

havior must be preserved. For each non-committable

change, the set NewNonCommitChanges contains non-

committable changes that are identified in the current iter-

ation, and the set ProcessedNonCommitChanges contains

non-committable changes that have already been processed

(i.e., their impact on test behavior has been explored fully).

Likewise, there are sets NewPreservedTests and Processed-
PreservedTests of preserved tests that are identified in the

current iteration, and preserved tests that have already been

processed.

An important property of the algorithm is that for each

test t, either all changes that impact t’s behavior are com-

mittable (along with the changes that depend on them via

the � relation), or all such changes are non-committable.

Intuitively, this means that such a test t will have either the

behavior that it had in the original version program, or the

behavior that it has in the edited version.

The algorithm begins on lines 1–4 by initializing New-
PreservedTests to InputTests, and initializing each of Pro-
cessedPreservedTests, NewNonCommitChanges, and Pro-
cessedNonCommitChanges to the empty set.

The algorithm then traverses the outer while-loop

(lines 5–31) as long as new tests are found for which the

original behavior must be preserved. Each such test t is

removed from NewPreservedTests and added to Processed-
PreservedTests (lines 8–9), and each LC or CM change c
that is exercised by test t, and that is not already marked

as non-committable is added to NewNonCommitChanges
(lines 10–14).

Next, on lines 16–30 the impact of each new non-

committable change c on tests is explored. Specifically,

each test t that has not already been marked as a preserved

test and for which c ∈ CoveredChanges(t) is added to New-
PreservedTests.

The purpose of the loop on lines 25–29 is to ensure that

applying the identified set of committable changes results

in a syntactically valid program with correct test behavior.

To this end, the algorithm marks as non-committable any

atomic change c′ that is dependent on a non-committable

change c, according to the� relation defined in Section 3.

Finally, the algorithm computes the set of committable

changes as any covered atomic change that is not found to

be non-committable (line 32).
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Input: AC: set containing all atomic changes, with dependence

relation�
Input: InputTests: set of tests with undesirable behavior

Input: CoveredChanges(t): set of changes covered by test t
Input: ExercisedChanges(t): the changes exercised by test t
Output: CommitChanges: set of committable changes

NewPreservedTests = InputTests;1
ProcessedPreservedTests = ∅;2
NewNonCommitChanges = ∅;3
ProcessedNonCommitChanges = ∅;4
while NewPreservedTests �= ∅ do5

while NewPreservedTests �= ∅ do6
select a test t ∈ NewPreservedTests;7
NewPreservedTests = NewPreservedTests \ { t } ;8
ProcessedPreservedTests =9

ProcessedPreservedTests ∪ { t };

foreach change c in ExercisedChanges(t) do10
if change c �∈ (NewNonCommitChanges ∪11

ProcessedNonCommitChanges) then
NewNonCommitChanges =12

NewNonCommitChanges ∪ { c };

end13
end14

end15
while NewNonCommitChanges �= ∅ do16

select a change c ∈ NewNonCommitChanges;17
NewNonCommitChanges =18

NewNonCommitChanges \ { c };

ProcessedNonCommitChanges =19
ProcessedNonCommitChanges ∪ { c };

foreach test t such that CoveredChanges(t) �= ∅ do20
if c ∈ CoveredChanges(t) ∧ (t �∈21

(NewPreservedTests ∪ ProcessedPreservedTests))
then

NewPreservedTests =22
NewPreservedTests ∪ { t };

end23
end24
foreach change c′ ∈ AC do25

if c′�c ∧ (c′ �∈ (NewNonCommitChanges ∪26
ProcessedNonCommitChanges)) then

NewNonCommitChanges =27
NewNonCommitChanges ∪ { c′ };

end28
end29

end30
end31
CommitChanges = AC \32

(ProcessedNonCommitChanges ∪ UncoveredChanges);

Figure 4. Algorithm for computing commit-
table changes.

4.1 Modeling Commit Policies

The algorithm of Figure 4 can be used to implement the

following three commit policies:

Restrictive. Allow programmers to commit a set of

changes if each change in this set is covered only by

passing (pass→pass, fail→pass, or ∅→pass) tests.

Moderate. Allow programmers to commit a set of

changes if each change in this set is covered only by

pass→pass, fail→pass, fail→fail, ∅→pass, or ∅→fail
tests.

Permissive. Allow programmers to commit a set of

changes if each change in this set is uncovered, or if it

is covered only by pass→pass, fail→pass, fail→fail,
∅→pass, or ∅→fail tests.

Informally, the Restrictive commit policy allows program-

mers to commit only those changes that are “successfully

tested”, i.e., exercised by tests that pass in the edited ver-

sion of the program. This policy could be used in the later

stages of development, when avoiding the introduction of

new and untested functionality is crucially important. The

Moderate commit policy enables programmers to commit

changes provided that they are covered and do not break

existing tests. Introducing new failing tests is permitted un-

der the Moderate policy, in order to enable collaborative

development scenarios in which one team member writes

and commits tests (that initially fail), and the functionality

needed to make the tests pass is implemented later by other

team members. The Permissive policy extends the Moder-
ate policy by allowing programmers also to commit uncov-

ered changes. Both the Moderate and Permissive commit

policies could be used during development instead of the

commonly used conservative policy without compromising

the integrity of the repository.

The algorithm of Figure 4 can be used to compute a set

of committable changes that is compatible with the Restric-
tive policy by initializing the set InputTests to include all

pass→fail, fail→fail, and ∅→fail tests. By contrast, the

Moderate commit policy can be implemented by initializ-

ing InputTests to include all pass→fail tests. Alternatively,

the Permissive policy is obtained by initializing InputTests
to include all pass→fail tests and by adding the set Uncov-
eredChanges to the computed set of CommitChanges.

4.2 Example

We will now discuss how the algorithm of Figure 4 is

applied to the example of Figure 1(a). Assuming that the

Restrictive policy is chosen, InputTests is initialized to the

set { test1,test4 }.

The while-loop on lines 6–15 is executed twice. Dur-

ing the first iteration, t is bound to test1, and the exe-

cution of the foreach-loop on lines 10–14 results in adding

the changes CM(1), CM(3), LC(4), and CM(7) to NewNon-
CommitChanges (these changes are correlated with nodes

in the call graph for test1 that was shown in Figure 3).

During the second iteration, t is bound to test4, and

the execution of the foreach-loop on lines 10–14 results

in adding the changes CM(15), CM(17), and LC(18) to
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NewNonCommitChanges. When execution reaches line 16,

NewNonCommitChanges contains the elements CM(1),

CM(3), LC(4), CM(7), CM(15), CM(17), and LC(18), Pro-
cessedNonCommitChanges is empty, NewPreservedTests is

empty, and ProcessedPreservedTests contains test1 and

test4.

Next, the loop on lines 16–30 is entered. Line 17 is

executed for each change c in NewNonCommitChanges.

This results in adding test2 (because CM(7) ∈
CoveredChanges(test2)) and test5 (because CM(17)

∈ CoveredChanges(test5)) to NewPreservedTests.

The execution of the loop on lines 25–29 results in

adding any change c′ to NewNonCommitChanges such that

C ′�C, for some non-committable change c. By examin-

ing the dependences in Figure 2, we determine that AM(2),

LC(5), DM(16), and LC(19) are added to NewNonCom-
mitChanges. Note that AF(13) is not added to NewNon-
CommitChanges because it has no dependence to any non-

committable change. Hence, at the end of the first it-

eration of the outer while loop, we have that NewNon-
CommitChanges contains AM(2), LC(5), DM(16), and

LC(19), ProcessedNonCommitChanges contains CM(1),

CM(3), LC(4), CM(7), CM(15), CM(17), and LC(18),

NewPreservedTests contains test2 and test5, and Pro-
cessedPreservedTests contains test1 and test4.

In the second iteration of the outer while loop,

CM(6) is added to NewNonCommitChanges because

CM(6) ∈ CoveredChanges(test2) and CM(12) is

added to NewNonCommitChanges because CM(12) ∈
CoveredChanges(test5). During the execution of the

loop on lines 16–30, no additional preserved tests are iden-

tified. No additional changes are found during the ex-

ecution of the loop on lines 25–29. So at the end of

the second iteration of the outer while loop, NewNon-
CommitChanges and NewPreservedTests are empty, Pro-
cessedPreservedTests contains test1, test2, test4,

and test5, and ProcessedNonCommitChanges contains

CM(1), AM(2), CM(3), LC(4), LC(5), CM(6), CM(7),

CM(12), CM(15), DM(16), CM(17), LC(18) and LC(19).

Finally, the set of committable changes is computed on

line 32 as AF(13) and CM(14). Intuitively, these changes

are committable under the Restrictive policy because they

are successfully tested by test3.

5 Implementation and Evaluation

5.1 Implementation

JUNITMX is built as an extension of the widely used

JUnit plug-in for Eclipse, enabling developers already fa-

miliar with JUnit and the Eclipse Java Development Tools3

3 http://www.eclipse.org/jdt/

to leverage their experience with these tools. JUNITMX re-

quires two versions of the program: the original version, for

which the CVS HEAD version is used by default, and the

edited version, for which the current version in the devel-

oper’s local workspace is used. In order to use the tool,

developers must select a standard JUnit test suite in the

edited version and run it using a special launch configu-

ration; note that JUNITMX runs the tests associated with

both versions. JUNITMX enables developers to compute

committable changes according to the Restrictive, Moder-
ate, and Permissive policies that were presented earlier. In

addition, all standard JUnit functionality is still available.

JUNITMX hooks into the execution of a JUnit test suite

and adds a pre- and a post-processing phase. In the pre-

processing phase, JUNITMX uses CHIANTI4 [20, 19], a

tool that was previously developed by our group. CHI-

ANTI creates an abstract syntax tree (AST) for the classes

in each version and compares their structure to obtain the

set of atomic changes to construct the change model as pre-

sented in Section 3. In addition, JUNITMX uses DILA, a

library for efficiently constructing dynamic program repre-

sentations such as call graphs, that we developed specifi-

cally for this project5. DILA uses a custom class loader to

instrument the target application’s classes before they are

executed. The purpose of the added instrumentation code is

to construct a separate dynamic call graph on-the-fly, dur-

ing the execution of each test. In its post-processing phase,

JUNITMX performs the analyses for computing commit-

table changes that was presented in Section 4. An interme-

diate version of the program can be constructed from the

computed set of committable changes by adding only those

changes to the original program version. A subsequent run

of the test suite on this version can validate the correctness

of our committable change analysis.

5.2 Goals and Experimental Setup

In cases where all tests pass, every change that is cov-

ered by the tests is committable. Our evaluation therefore

focuses on version pairs with worsening tests that fail in the

edited version. The major goal of the evaluation is to show

that the percentage of committable changes is significant

even in the presence of test failures, so that development

teams have a significant benefit from adopting the presented

approach.

As mentioned in previous papers [19, 7], failing tests

are rarely found in the versions that are checked into pub-

lic repositories. We analyzed 6 version pairs with failing

tests of Daikon, a dynamic invariant detector developed by

M. Ernst [9]. Each version pair contains a week’s worth of

changes during the year 2002.

4 http://www.prolangs.rutgers.edu/projects/chianti/
5 http://www.prolangs.rutgers.edu/projects/dila/
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Project Daikon
Version Pair p1 p2 p3 p4 p5 p6

Average

01/07-01/14, 

2002

01/14-01/21, 

2002

01/21-01/28, 

2002

01/28-02/04, 

2002

04/15-05/06, 

2002

11/11-11/19, 

2002

Tests (original) 40 42 42 42 52 62

Tests (edited) 42 42 42 42 60 59

Tests (pass-->pass) 36 37 37 37 52 57

Tests (pass-->fail) 0 1 0 0 0 2

Tests (fail-->pass) 0 0 0 0 0 0

Tests (fail-->fail) 4 4 5 5 0 0

Tests (new-->pass) 2 0 0 0 0 0

Tests (new-->fail) 0 0 0 0 8 0

Changes (total) 1751 274 1485 614 302 6050

Changes (covered) 1013 5 1225 20 130 185

Restrictive Policy

Tests (selected) 4 5 5 5 8 2

Changes (committable) 111 4 26 6 50 28

Committable (% of total) 4.6% 6.3% 1.5% 1.8% 1.0% 16.6% 0.5%

Committable (% of covered) 29.4% 11.0% 80.0% 2.1% 30.0% 38.5% 15.1%

Moderate Policy

Tests (selected) 0 1 0 0 0 2

Changes (committable) 1013 4 1225 20 130 28

Committable (% of total) 31.4% 57.9% 1.5% 82.5% 3.3% 43.0% 0.5%

Committable (% of covered) 82.5% 100.0% 80.0% 100.0% 100.0% 100.0% 15.1%

Permissive Policy

Tests (selected) 0 1 0 0 0 2

Changes (committable) 1751 273 1485 614 302 5893

Committable (% of total) 99.5% 100.0% 99.6% 100.0% 100.0% 100.0% 97.4%

Table 1. Data gathered for the selected version pairs of Daikon.

5.3 Experimental Results

Table 1 summarizes the results obtained for Daikon. The

columns of the table correspond to version pairs of Daikon
(identified by their dates), with one additional column for

each application that provides averages where appropriate.

The rows of the table show, from top to bottom: the num-

ber of tests in the original version, the number of tests in

the edited version, and a further breakdown of the tests

by outcome into the categories we discussed previously

(pass→pass, pass→fail, etc.). Next, the table shows 3 sets

of rows for the results of our analysis, one for each of the

Restrictive, Moderate, and Permissive commit policies. For

each policy, we show the number of tests selected as input to

the algorithm of Figure 4, the total number of committable

changes, the number of committable changes as a percent-

age of all changes, and the number of committable changes

as a percentage of covered changes (the latter is omitted

for the Permissive policy where this metric does not make

sense, because uncovered changes also are committed).

We found that under the Restrictive policy, an average

4.6% of all atomic changes could be committed. For the

Moderate policy, the average percentage of committable

changes among all changes is 31.4%. Finally, for the Per-
missive policy, we found an average of 99.5% of all changes

to be committable.

From Table 1, it is clear that often the majority of

changes is not covered. In projects with better test cov-

erage, higher percentages of committable changes can be

expected for the Restrictive and Moderate policies. There-

fore we also report the number of committable changes as

a percentage of covered changes because it provides a bet-

ter measure of the accuracy of our analysis. The Restrictive
policy identifies 29.4% and the Moderate policy 82.5% of

covered changes as committable. Even though further ex-

perimentation is needed to validate the usefulness of each

commit policy, we have shown evidence that a significant

percentage of changes can be released safely to a repos-

itory. In the deployment scenario we envision, program-

mers would apply the analysis frequently—perhaps as part

of each test run—resulting in significantly smaller differ-

ences between successive versions. We conjecture that the

percentage of committable changes would increase in this

scenario.

On average, our analysis added a total overhead of 4 min-

utes to the execution of the tests in both versions. The actual

overhead for each version pair varied from 1 to 15 minutes.

It is dominated by the computation of covered changes for

each test which becomes more expensive as the size of the

call graphs or the number of changes increases6. We are

currently working on optimizations that are likely to reduce

this overhead considerably.

5.4 Experiments with Releases

We also analyzed 5 public releases of JMeter7, taken

from the SIR repository [8]. These releases are separated

6 All performance data were measured on an Apple MBP Laptop Com-

puter with 2.6 GHz Intel Core 2 Duo processor and 2GB main memory.
7 http://jakarta.apache.org/jmeter/
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by time intervals of up to 4 months and by huge numbers of

atomic changes (up to 17475). As another indication of the

amount of change, we found that, on average, 31.4% of the

methods was changed between releases. In other words, this

is a scenario for which we did not envision our technique to

be applicable. For each release, SIR provides a number of

artificial faults that—when seeded into that version—result

in a number of test failures. In our experiments, we used 4

version pairs to determine the changes that can be commit-

ted when comparing the unmodified version N of JMeter
with version N +1 into which all provided faults have been

seeded.

To our surprise, the Restrictive and Moderate still man-

aged to identify an average of 3.8% and 4.0% of the cov-

ered changes as committable, despite the huge amount of

change between releases. The Permissive policy even iden-

tified 46.0% of all changes as committable, because a sig-

nificant percentage of the changes was uncovered.

6 Related Work

Revision Control, Software Merging. Traditional pes-
simistic revision control system such as SCCS [12] and

RCS [25] prevent direct merge conflicts by allowing only

one developer to have a writable copy of any artifact at any

given time. Most modern revision control systems are op-
timistic in the sense that they allow multiple developers to

modify a file concurrently. For example, CVS [4] and Sub-

version [18] allow developers to modify artifacts concur-

rently. Whenever a developer wants to commit changes, the

local copy must be reconciled with the current “head” of

the repository. Conflicting changes are merged by a simple

textual merging algorithm if they do not involve overlap-

ping regions of files, and the user must manually resolve

conflicts otherwise. The only conflicts detected by CVS

and SCCS are syntactic ones in which two developers are

editing the same textual region of a file. However, indirect
merge conflicts, where a developer’s changes to one file ad-

versely affect the changes by another developer to another

file may still arise. In our work, the preservation of behavior

of the tests in a test suite is used as an oracle to establish the

absence of indirect merge conflicts.

We are not aware of any previous work where program

analysis is used to determine subsets of changes that can

be committed safely. However, there has been a significant

amount of research on problems related to the merging of

software artifacts [15]. Some of this work involves the use

of program analysis to determine whether or not a given set

of changes can be integrated into a program in its entirety
without affecting behavior. In work by Binkley et al. [5],

static slicing [13] serves as the basis for an algorithm that

integrates changes in variants of a program in a way that is

guaranteed to preserve behavior. In cases where preserva-

tion of behavior cannot be guaranteed, their technique sim-

ply reports that interference was detected.

Workspace Awareness Tools. The goal of workspace

awareness tools is to make developers aware of each other’s

changes before these are committed to a central repository,

so that they can take proactive steps to prevent or mini-

mize unforeseen interferences and/or duplicative develop-

ment. Such steps may include talking to other developers,

reassigning tasks, and postponing changes until the other

developer has done a commit.

Palantı́r [23] is a workspace awareness tool that increases

awareness by continuously sharing, among a team of devel-

opers, information about changes and an estimate of their

severity via a graphical user-interface. This information is

captured and shared at the level of events such as POPU-

LATED (indicating that an artifact has been placed in a de-

veloper’s workspace), CHANGESCOMMITTED (a new ver-

sion of an artifact has been stored in the repository), and

SEVERITYCHANGED (the amount of change—e.g., as the

percentage of lines of code changed—has changed signif-

icantly). Palantı́r initially only supported functionality for

reporting direct conflicts (i.e., situations in which two or

more developers edit the same artifact) [23], but was re-

cently extended with support for a limited class of indirect
conflicts. In this work, syntactic information about depen-

dences between artifacts is used to determine if changes to

different artifacts may interfere with each other [22].

Cheng et al. [6] discuss a “Concert Awareness” feature

of the Jazz environment that visualizes what other devel-

opers are doing with their local copies of files. Estublier

and Garcia [10] point out the importance of considering se-

mantic dependences between artifacts in different files in

the context of workspace awareness tools. Their tool, Ce-

line, also takes into account factors such as the workspace

topology and the cooperative engineering policy that is be-

ing used. The Hipikat system [26] aims to reduce parallel

development by providing a facility that recommends arti-

facts related to a specific task. Hipikat’s generates recom-

mendations by performing a textual similarity analysis of

CVS repositories, issue-tracking systems (e.g., Bugzilla),

newsgroups, and web sites associated with the project.

Our techniques complement workspace awareness tools

by helping developers prevent the premature release of

changes that may hamper others.

Continuous Integration. To avoid merge conflicts, it has

long been known that it is advisable to “commit early, and

commit often” [3]. Development methodologies such as

continuous integration [11] advocate that team members

commit their work frequently using an automated build pro-

cess that includes running tests. Team members who ex-

perience test failures in their local workspace are discour-
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aged from committing their changes. Our research is well-

aligned with continuous integration because it enables pro-

grammers to commit (some of) their changes earlier, even

when there are failing tests in their local workspace.

7 Conclusions

In current practice, developers often postpone the release

of their changes until all tests pass in their local workspace

in order to preserve code quality. This increases the time

intervals between commits, thereby increasing the risk of

merge conflicts and duplicative development later on.

We have presented an analysis-based technique for de-

termining changes that can be committed without compro-

mising the code base in the repository, even in cases where

there are failing tests in a developer’s local workspace. Our

algorithm, Safe-commit, is based on a previously developed

change impact analysis [20, 19, 21, 24], and we show how

it can be used to implement 3 new commit policies (Re-
strictive, Moderate, and Permissive) with varying levels of

strictness. This enables developers to release their changes

more quickly, thus reducing the risk of duplicative develop-

ment and merge conflicts.

We measured the effectiveness of the new commit poli-

cies using versions of Daikon with associated failing tests.

In this experiment, an average of 4.6%, 31.4%, and 99.5%

of all changes were identified as committable according

to the Restrictive, Moderate, and Permissive commit poli-

cies, respectively. In another experiment, we applied

Safe-commit to public releases of JMeter. To our surprise,

a nontrivial number of committable changes was identified,

despite a huge number of changes that separates these re-

leases.
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