
Taint-based Directed Whitebox Fuzzing ∗

Vijay Ganesh† and Tim Leek‡ and Martin Rinard†

†MIT Computer Science and Artificial Intelligence Lab, ‡MIT Lincoln Laboratory

vganesh@csail.mit.edu, tleek@ll.mit.edu, rinard@csail.mit.edu

Abstract

We present a new automated white box fuzzing tech-
nique and a tool, BuzzFuzz , that implements this tech-
nique. Unlike standard fuzzing techniques, which ran-
domly change parts of the input file with little or no
information about the underlying syntactic structure of
the file, BuzzFuzz uses dynamic taint tracing to au-
tomatically locate regions of original seed input files
that influence values used at key program attack points
(points where the program may contain an error).
BuzzFuzz then automatically generates new fuzzed test
input files by fuzzing these identified regions of the orig-
inal seed input files. Because these new test files typi-
cally preserve the underlying syntactic structure of the
original seed input files, they tend to make it past the
initial input parsing components to exercise code deep
within the semantic core of the computation.

We have used BuzzFuzz to automatically find er-
rors in two open-source applications: Swfdec (an Adobe
Flash player) and MuPDF (a PDF viewer). Our re-
sults indicate that our new directed fuzzing technique
can effectively expose errors located deep within large
programs. Because the directed fuzzing technique uses
taint to automatically discover and exploit information
about the input file format, it is especially appropriate
for testing programs that have complex, highly struc-
tured input file formats.

1 Introduction

Fuzz testing [17] is a form of automatic, black-box
testing which uses a fuzzer to randomly generate or mu-
tate sample inputs. This technique has been shown to
be surprisingly effective in exposing errors in software

∗This research was supported in part by National Sci-

ence Foundation grants CCR-0325283, CNS-0509415, and CCF-

0811397, and the Department of Defense under the Air Force

Cooperative Agreement FA8750-06-2-0189. The Lincoln Labo-

ratory portion of this work was sponsored by the Department of

Defense under the Air Force Contract FA8721-05-C-0002. Opin-

ions, interpretations, conclusions and recommendations are those

of the authors and are not necessarily endorsed by the United

States Government.

systems [17, 23, 16]. It is especially useful for testing
input parsing components — the randomly generated
inputs often exercise overlooked corner cases in the ini-
tial parsing and error checking code.

But fuzz testing (or simply fuzzing) has been less
effective at generating syntactically legal inputs that
expose deeper semantic errors in programs [23, 8] —
for many programs virtually all of the randomly gener-
ated inputs fail to satisfy the basic syntactic constraints
that characterize well-formed inputs, and hence fail to
make it past the initial parsing phase to exercise the
remaining code.

This paper presents a new testing approach, directed
whitebox fuzz testing, and a new tool, BuzzFuzz , that
implements this testing approach. Instead of generat-
ing random inputs that primarily exercise the initial
input parsing components, directed fuzz testing is de-
signed to produce well-formed test inputs that exercise
code deep within the core semantic processing com-
ponents of the program under test. As such, it com-
plements random fuzzing and significantly extends the
reach of automated testing techniques. Directed fuzz
testing is based on the following techniques:

• Taint Tracing: The program under test executes
on one or more valid sample inputs. The execu-
tion is instrumented to record taint information.
Specifically, the instrumented execution records,
for each value that the program computes, the in-
put bytes that influence that value.

• Attack Point Selection: Specific points in the
program under test are identified as potential at-
tack points, i.e., locations that may exhibit an er-
ror if the program is presented with an appropri-
ate error-revealing input. By default, our imple-
mented BuzzFuzz system selects library and sys-
tem calls as attack points. BuzzFuzz can also be
configured, under user control, to select any arbi-
trary set of program points as attack points.

• Directed Fuzzing: For each attack point and
each sample input, BuzzFuzz computes the set of
input bytes that affect the values at that attack

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 474

point. For library and system calls, for example,
the values at the attack point are the parameters
passed to the library or system call. BuzzFuzz
then generates new inputs as follows: Each new
input is identical to one of the sample inputs, ex-
cept that the input bytes that affect the values
at one or more attack points have been altered.
By default, our implemented BuzzFuzz system sets
these bytes to extremal values, e.g., large, small,
or zero integer values. BuzzFuzz can also be con-
figured to use different policies such as generating
random values for the corresponding input bytes.

• Directed Testing: Finally, BuzzFuzz runs the
program under test on the newly generated inputs
to see if the inputs expose any errors.

This approach has several benefits:

• Preservation of Syntactic Structure: Di-
rected fuzzing tends to target input bytes that can
be changed without violating the legal syntactic
structure of the original seed inputs. The auto-
matically generated fuzzed inputs therefore tend
to make it past the initial parsing components to
exercise code within the semantic core of the com-
putation.

• Targeted Values: The altered input bytes are
designed to target values that are directly relevant
to specific potential vulnerabilities. The generated
test suite therefore tends to have a high concen-
tration of inputs that can expose errors that may
exist at these potential vulnerabilities.

• Coordinated Changes: Finally, directed
fuzzing can identify and alter multiple disjoint re-
gions of the input space that must change together
in a coordinated way to expose the presence of an
error.

One of the keys to making this approach work is
choosing a set of attack points that tend to have la-
tent errors. We have found that library calls can com-
prise a particularly productive set of attack points. The
program and library are typically developed by differ-
ent people operating with different perspectives, infor-
mation, and assumptions. This cognitive gap between
the program and library developers can easily enable
a range of errors — the program may use the library
in ways that the library developer did not anticipate,
corner cases can become lost or forgotten at the inter-
face between the program and the library, or the pro-
gram developer may simply be unaware of some library
preconditions. Moreover, the large potential execution
space at library calls can be difficult to adequately ex-
plore with standard testing practices, making library

Program

Fuzzed Test InputsBuzzFuzz

Program Attack Points

Seed Inputs

Figure 1. BuzzFuzz Inputs and Outputs. The
inputs to BuzzFuzz are: source of a C pro-
gram, seed inputs, and a list of program at-
tack points. The output of BuzzFuzz is a set of
fuzzed test inputs for the program under test.

calls particularly susceptible to the kind of latent er-
rors that our directed fuzzing technique is designed to
expose.
Experimental Results: We have used BuzzFuzz to
test several programs that process highly structured
binary data (examples of such data include video, im-
ages, document, and sound files). We have found that
directed fuzzing is able to successfully generate inputs
that satisfy complex input consistency constraints and
make it past the initial input processing components
to expose errors at attack points within the semantic
core. More specifically, our results show that BuzzFuzz
is able to preserve the syntactic structure present in
the original inputs, generate new inputs that satisfy
the key properties that characterize legal inputs, and
successfully target vulnerabilities deep within the se-
mantic core of the program under test. In the con-
text of programs for processing highly structured in-
puts like movies or documents, BuzzFuzz nicely com-
plements random fuzzing, since random fuzzing usually
uncovers errors in shallower parts of the program such
as input validation code.

All of the experimental results presented in this pa-
per are available at http://people.csail.mit.
edu/vganesh/buzzfuzz.html. This web site in-
cludes the source code for our benchmark applications,
the automatically generated test files that expose er-
rors in these applications, and the seed test input files
that BuzzFuzz started with to generate the test files.
Inputs and Outputs: Figure 1 illustrates the pro-
gram inputs and outputs of the BuzzFuzz system. The
user provides BuzzFuzz with a program and set of seed
input files for that program. BuzzFuzz also accepts a
specification of attack points. BuzzFuzz comes precon-
figured with a default attack point specification; The
user can also provide additional attack point specifica-
tions. Given these inputs, BuzzFuzz instruments the
source to trace taint information, then runs the instru-
mented source on the provided inputs to find out which

475

input file locations influence attack point values. It
then uses this information to produce new fuzzed test
input files.
Contributions: This paper makes the following con-
tributions:
• Technique: It presents a new automatic tech-

nique for using taint information to fuzz input
files. This technique uses the taint information
to identify promising locations in the input file to
fuzz, while preserving the syntactic structure of
the original input file.

• Results: It presents experimental results that
characterize the effectiveness of our automatic
technique on two sizable open-source applications.
These results show that our technique is effective
in generating inputs that make it past the initial
input parsing components to automatically expose
subtle errors within the semantic core of programs
that have complex input file formats.

2 Example

We next present an example that illustrates the
basic concepts and operation of BuzzFuzz . The ex-
ample presents an error that BuzzFuzz exposed in
Swfdec, an open source C program that decodes and
renders Adobe Shockwave Flash movie and animation
formats [21, 1]. Figure 2 presents two procedures: the
jpeg_decoder procedure from the Swfdec Version
0.5.5 source code and the clipconv8x8_u8_s16_c
procedure that Swfdec invokes from the libOIL li-
brary [2]. libOIL is an optimized inner loop library;
it contains a variety of simple functions that have been
optimized to take advantage of the extended instruc-
tion set features in the microprocessor. Swfdec uses
various libOIL functions to improve the performance
of its image processing operations.

In the example code in Figure 2, the Swfdec
jpeg_decoder procedure reads in JPEG images em-
bedded inside Flash movie files, decodes the images,
and populates the datastructure dec that holds the
resulting decoded images. As part of this computa-
tion, it invokes the libOIL clipconv8x8_u8_s16_c
procedure to convert 8 by 8 arrays of signed 16 bit inte-
gers into corresponding 8 by 8 arrays of unsigned 8 bit
integers. Each 8 by 8 destination array is embedded
within a larger array that holds the converted image
blocks. Because this larger array stores the decoded
image, its size depends on the size of the image that
Swfdec is currently processing.

Before the call to jpeg_decoder, Swfdec stored
the width and height of the image in dec->width
and dec->height. Swfdec originally read these val-
ues in from the (syntactically valid) Flash input file.
During the setup for the image decode, these values

1 //Application Code
2 //Swfdec JPEG Decoder
3 jpeg_decoder(JpegDecoder* dec){
4 ...
5 dec->width_blocks =
6 (dec->width + 8*max_h_sample - 1)/
7 (8*max_h_sample);
8 dec->height_blocks =
9 (dec->height + 8*max_v_sample - 1)/

10 (8*max_v_sample);
11 int rowstride;
12 int image_size;
13 ...
14 rowstride =
15 dec->width_blocks * 8*max_h_sample/
16 dec->compsi.h_subsample;
17 image_size = rowstride *
18 (dec->height_blocks * 8*max_v_sample/
19 dec->compsi.v_subsample);
20

21 dec->ci.image=malloc(image_size);
22 ...
23 //LibOIL API function call
24 clipconv8x8_u8_s16_c(dec->ci.image...);
25 ...
26 }
27 //End of Application Code
28

29 //Library Code
30 clipconv8x8_u8_s16_c(ptr...){
31 ...
32 for (i = 0; i < 8; i++) {
33 for (j = 0; j < 8; j++) {
34

35 x = BLOCK8x8_S16 (src,sstr,i,j);
36 if (x < 0) x = 0;
37 if (x > 255) x = 255;
38

39 //CRASH POINT!!!!!
40 (*((uint8_t *)((void *)ptr +
41 stride*row) + column)) = x;
42 }
43 }
44 }
45 //End of Library Code

Figure 2. Swfdec JPEG decoder (jpeg.c
line 523), and libOIL Code. Highlighted
code indicates dynamic taint transfer
from width and height of JPEG image to
clipconv8x8 u8 s16 c, the libOIL library
API. An out of bounds memory access
causes a crash at CRASH POINT.

476

were copied into the dec data structure that Swfdec
uses to store the decoded image.

Taint Tracing: Figure 2 shows in boldface the flow of
dynamic taint from dec->width and dec->height
(line numbers 5 and 8, respectively, in the source
code shown in Figure 2) to the ptr parameter of
clipconv8x8_u8_s16_c (line number 30).

As this flow illustrates, the taint flows from
dec->height and dec->width through the com-
putation of the image_size value to the ptr pa-
rameter of clipconv8x8_u8_s16_c. As part of its
dynamic taint trace computation, BuzzFuzz records
that input bytes 0x1843 through 0x1846 in the orig-
inal input Flash file (these bytes contain the image
height and width that Swfdec read and copied into
dec->height and dec->width for that particular
input) influence the parameter values at the call to
clipconv8x8_u8_s16_c. BuzzFuzz also records the
fact that Swfdec interprets input bytes 0x1843 through
0x1846 as integer values.

Fuzzed Test Input Generation: Because the
call to clipconv8x8_u8_s16_c is an attack point,
BuzzFuzz fuzzes the corresponding input bytes 0x1843
through 0x1846 when it constructs its new test input.
Specifically, BuzzFuzz uses the fact that Swfdec inter-
prets the input bytes as integers to set the height and
width to the extremal value 0xffff in the new test input
files. Bytes that do not affect values at attack points
are left unchanged.

Execution on Test Input: When Swfdec attempts
to process the new fuzzed test input, the computa-
tion of image_size overflows, causing the call to
malloc to allocate a destination image array that is
too small to hold the decoded image. The resulting out
of bounds array writes in clipconv8x8_u8_s16_c
cause Swfdec to fail with a SIGSEGV violation.

Discussion: This example illustrates several features
of the BuzzFuzz system. First, the use of taint trac-
ing enables BuzzFuzz to automatically find input file
bytes that it can change without destroying the syntac-
tic structure of the original input file. In our example,
the taint tracer identifies which bytes in the input file
represent the integer height and width. This informa-
tion enables BuzzFuzz to apply targeted changes that
preserve the underlying syntactic structure of the in-
put Flash file. The result is that the new fuzzed input
Flash file makes it past the initial input parsing compo-
nents to exercise components (like the jpeg_decode
procedure) in the core of the computation.

Second, this use of taint information enables
BuzzFuzz to operate in a completely automatic, push-
button fashion. In effect, BuzzFuzz observes how the
program itself manipulates the input file bytes to dis-

cover how to change the input without invalidating the
underlying synactic structure of the original input file.
There is no need for the BuzzFuzz tester to specify
or even understand the input file format. BuzzFuzz is
therefore especially appealing for applications (such as
Swfdec) with very complex input file formats. On the
one hand, traditional random fuzzing techniques have
great difficulty producing syntactically valid input files
for such programs, and are therefore primarily useful
for testing the input file parsing components of such
programs. On the other hand, more structured tech-
niques that assume the presence of some specification
of the input file format require the tester to understand
and specify the input file format before effective test-
ing can begin [23, 12, 8]. By automatically discovering
enough information about the input file format to en-
able effective directed fuzz testing, BuzzFuzz makes it
possible to automatically obtain test cases that exer-
cise the core of the computation (rather than the input
parsing) without requiring the tester to understand or
specify the input file format.

Finally, the example illustrates how library calls can
provide relevant attack points. Many modern pro-
grams make extensive use of libraries, with the core
data structures (as in Swfdec) passed as parameters to
libraries. These library parameter values are often de-
termined by specific combinations of input bytes (such
as the image height and width in our example) that
the program uses to compute the shape and form of its
internal data structures. In many cases (as in Swfdec),
related distinct values must be changed together in a
coordinated way to expose the underlying error in the
code that processes the data structures. Choosing li-
brary calls as attack points is one productive way to
identify these kinds of related combinations of input
file bytes.

3 Technique

The BuzzFuzz system, as illustrated in Figure 1, re-
quires three inputs:

• The source code of a program P written in the C
language,

• A list of attack points in the form of a list of
function names (our production BuzzFuzz system
comes with several lists preconfigured to include
specific library and system calls), and

• One or more seed inputs I for the program P .

Given these inputs, BuzzFuzz automatically and
without any human intervention produces new test in-
puts T that are derived from I by appropriately fuzzing
input bytes that affect values at attack points accord-
ing to the types of these attack point values.

477

BuzzFuzz
Test Input Generator

Program Source

Seed Inputs
Program

Instrumented

BuzzFuzz Taint
Instrumentor

Fuzzed Test Inputs

Taint Report
Attack Point

Figure 3. Internals of BuzzFuzz

Figure 3 graphically illustrates the operation of
BuzzFuzz . The BuzzFuzz taint instrumentator takes
as input the source of the program under test. It pro-
duces as output the instrumented program, which runs
on the provided seed test inputs. The result of each in-
strumented execution is a BuzzFuzz attack point taint
report which indicates how specific locations in the in-
put file influence values at attack points. Finally, the
BuzzFuzz test input generator uses the taint reports
and the seed inputs to produce the fuzzed test inputs.
We next describe the individual BuzzFuzz components
in more detail.

3.1 Dynamic Taint Tracing

The BuzzFuzz taint tracing implementation pro-
cesses the source code of the program under test to
appropriately insert calls to the BuzzFuzz taint trace
library. This library maintains a mapping that records,
for each computed value, the input bytes that affect
that value. This mapping is implemented as a hash ta-
ble that maps addresses to sets of byte locations in the
input file. Whenever the program uses a set of existing
values to compute a new value, the inserted taint trac-
ing calls use the hash table to retrieve the input byte
locations for the existing values used to compute the
new value, take the union of these sets of input byte
locations, then record this set of input byte locations
in the hash table indexed under the address where the
new value is stored.

For example, consider the case where the program
under test uses an assignment statement to copy a
value from an input buffer into a local variable. The
inserted taint tracing call causes the BuzzFuzz dynamic
taint tracing system to retrieve the set of input byte lo-
cations for the accessed input buffer address, then store
that set of input byte locations in the hash table in-
dexed under the address of the assigned local variable.
Statements that combine multiple values to compute a
new value (for example, a statement that adds several
values) take the union of the input byte locations for
all of the values used to compute the new value.

Type Information: In addition to the file location (or
input byte location) information, the taint tracing sys-
tem also records the type of the new value. BuzzFuzz
uses this information during its directed fuzzing step
to choose appropriate extremal values for the fuzzed
input file bytes.

Procedure Calls: To trace taint across procedure
calls, BuzzFuzz maintains a stack that records informa-
tion about the taint information for procedure param-
eters. At each procedure call point, the inserted calls
to the taint trace library push taint information for the
parameters onto the stack. The taint trace calls inside
the invoked procedure then use this stack to retrieve
taint information for statements that use the parame-
ters.

Library Procedures: In certain cases BuzzFuzz does
not have access to the source code for procedures in li-
braries. BuzzFuzz is therefore unable to insert the taint
tracing calls into these procedures. BuzzFuzz instead
maintains an internal database of information about
how taint flows across a small set of important library
procedure calls. For example, BuzzFuzz ’s database
specifies that taint flows from the parameter of malloc
to its return value. BuzzFuzz uses this information to
insert appropriate calls to the taint library at such pro-
cedure call points.

Attack Points: At each attack point the inserted
BuzzFuzz instrumentation records the taint informa-
tion for all of the values at the attack point each time
the attack point executes.

Report: When the execution terminates, BuzzFuzz
produces a report that contains a list of input bytes
(and the corresponding types) that influence values at
attack points. Together, the entries in this list identify
every region of the input that influences a value that
appears at an attack point. We present several lines
from a Swfdec report below:

((int) 0x1862 0x1863)
((int) 0x1862 0x1863 0x1864 0x1865)

478

Limitations: As is standard for most taint tracing
systems of which we are aware, BuzzFuzz does not trace
indirect tainting relationships that occur at condition-
als or array accesses. So if a particular set of input
bytes is used to determine whether to execute the true
or false branch of a conditional, the locations of those
bytes may not appear as influencing the values com-
puted along the executed side of the conditional. Sim-
ilarly, for array assignments taint flows only from the
array index to the assigned array element and not to
the remaining unmodified array elements.

Performance: The inserted instrumentation imposes
a performance overhead. Specifically, our results indi-
cate that the taint tracing calls cause the instrumented
version of the program to execute between 20 and 30
times slower than the original non-instrumented ver-
sion. As the results in Section 3.3 indicate, this perfor-
mance overhead does not significantly impair the abil-
ity of our system to generate test inputs that expose
errors in our benchmark applications.

3.2 Generating Fuzzed Inputs

The first step in generating fuzzed inputs is to ac-
quire a corpus of seed inputs. Given such a set,
BuzzFuzz runs the instrumented version of the program
on each input in turn. The result is a report identifying
which bytes in the input influence values that appear
at attack points.

The next step is to use the report to fuzz the corre-
sponding seed input to obtain a new test input. Each
report entry identifies a sequence of input bytes that
BuzzFuzz can change along with the type of the value
stored in that set of bytes. Many possible fuzzing
strategies are possible — for example, the new value
for the bytes may be chosen at random or from a pre-
defined set of values. The current implementation of
BuzzFuzz chooses extremal values such as very large
or small values. The specific bit-level representation of
the value is chosen based on the type recorded in the
report.

The current implementation fuzzes every identified
sequence of input bytes to produce, for each seed input,
a single fuzzed input. If entries conflict (i.e., specify
overlapping but not equal byte ranges or conflicting
types), BuzzFuzz arbitrarily applies changes from only
one of the entries. It is, of course, possible to use more
involved strategies that fuzz some but not all of the
identified input bytes. It is also possible to generate
multiple fuzzed test input files from a single seed file
(for example, by fuzzing different subsets of input byte
sequences, by applying different fuzzing strategies to
the same input byte sequence, or by combining these
techniques).

3.3 Testing

The last step is to run the uninstrumented version of
the program on the new fuzzed test inputs and observe
any failures. These failures can then be reported to
developers.

4 Results

We experimentally evaluate BuzzFuzz on two open-
source C applications, namely, Swfdec [21] version
0.5.5, an Adobe Flash player, and MuPDF [4] version
0.1, a PDF viewer.

4.1 Methodology

We first obtained an initial corpus of seed input files
for each application. We would like to thank Pedram
Amini for providing us with a corpus of Adobe Flash
files and Adam Kiezun of MIT for providing us with a
corpus of Adobe PDF files. We verified that each ap-
plication processes all of the files in its corpus correctly
without failures.

We next used the corpus as a basis for directed fuzz
testing. Specifically, we provided BuzzFuzz with 1) an
instrumented version of the application program under
test (this version uses dynamic taint tracing to compute
the input bytes that affect each value at each attack
point), 2) the corpus of seed input files for that appli-
cation, 3) the uninstrumented production version of the
application, and 4) a specification of the attack points.
BuzzFuzz then iterated through the files in the corpus
of seed input files, performing the following steps for
each file:

• Instrumented Execution: The instrumented
version of the application executes on the seed in-
put file. This execution produces a report that
identifies, for each attack point, the input bytes
that influence the values that occur at that attack
point and the types of these values.

• Directed Fuzzing: BuzzFuzz processes both the
report generated in the step above and the seed
input file to produce a new fuzzed test file. This
test file differs from the seed input file in only those
bytes that affect values at attack points. Those
bytes are set to extremal values, with the specific
extremal value chosen as a function of the type of
the corresponding attack point value.

• Testing: The uninstrumented version of the ap-
plication executes on the automatically generated
fuzzed test file. All failures are logged and infor-
mation (such as the test input file and stack back
trace at the point of failure) recorded.

We performed two sets of experiments. The first set
identified all calls to the X11 library as attack points.

479

Application Lines of Number of Total Distinct Mean Errors Distinct
Code Fuzzed tests Errors Errors Stack Depth per hour Errors per hour

Swfdec 70,000 2152 128 5 28 11.33 0.41

MuPDF 40,000 553 1 1 7 .25 0.25

Table 1. BuzzFuzz Results

Application Crash Type File:# Library Stack Depth

Swfdec BADALLOC XCreatePixMap X11 Library 23

Swfdec BADALLOC XCreatePixMap X11 Library 23

Swfdec SIGABRT cairo_pen.c:325 CAIRO Library 43

Swfdec SIGSEGV convert8x8_c.c:130 LibOIL Library 40

Swfdec SIGSEGV swfdec_sprite_movie.c:377 Swfdec Application 11

MuPDF SIGSEGV atoi libc Library 7

Table 2. Information on Specific Errors Exposed by BuzzFuzz

The second set identified all calls to the Cairo and Li-
bOIL libraries as attack points. Using multiple focused
sets of attack points (as opposed to a single large set
that includes all attack points) has the dual advantages
of 1) fuzzing more precisely targeted portions of the in-
put file (thereby promoting the preservation of the legal
syntactic structure of the seed input files), and 2) min-
imizing the possibility that errors exposed at one set of
attack points will mask errors exposed at other attack
points. For Swfdec, for example, a combined set of at-
tack points that includes calls to the X11, Cairo, and
LibOIL libraries produces a set of fuzzed inputs that
exposes errors only at calls to the X11 library. For this
set of inputs, the application always fails at an X11 call
before it can reach additional errors exposed at calls to
the Cairo and LibOIL libraries.

4.2 Experimental Results

Table 1 presents our results for both Swfdec and
MuPDF. The first column presents the number of lines
of code in each application (excluding libraries), the
second presents the total number of fuzzed test inputs
presented to each application, the third presents the
number of executions that failed, the fourth presents
the number of distinct errors responsible for these
failures (in some cases a single error was responsible
for failures in multiple different runs), and the fifth
presents the mean depth of the stack trace when the
failure occurred. The last two columns present the
number of failed executions per hour and the number
of distinct errors found per hour.

We note that the error discovery rate per hour of
testing reflects the overall effectiveness of our tech-
nique. In general, the mean stack depth trace numbers
reflect the fact (discussed further below) that the er-
rors occur deep within the core of application rather
than in shallower, more peripheral components.

Table 2 presents additional detail for each error.
There is one row in the table for each error that
BuzzFuzz exposed. The first column presents the ap-
plication with the error; the second column identifies
the manifestation of the error as a specific crash type.
The next column identifies the location of the manifes-
tation of the error, either as a filename plus line num-
ber or (if that information is not available) as a func-
tion name. The next column identifies this location
as either in a specific named library (such as LibOIL,
CAIRO, X11 [2], or libc) or within the source code of
the application itself. The next column identifies the
depth of the stack at the manifestation point.

The information in this table indicates that
BuzzFuzz (configured with attack points at library
and system calls) can effectively expose errors related
to problematic interactions across module boundaries.
Specifically, five of the six errors manifest themselves
within library rather than application code.

The BADALLOC errors, for example, are caused
by the application passing very large width (x-axis)
and height (y-axis) window size parameters to the X11
graphics library. The memory management system is
unable to satisfy the library’s ensuing attempt to allo-
cate a data structure to hold the (very large) window’s
contents, and the program fails because of a BADAL-
LOC error.

The CAIRO SIGABRT error similarly involves a
problematic interaction between the application and
the library. This error occurs when a field specifying
the number of strokes in a given image representation
is inconsistent with the actual number of strokes. This
inconsistency does not effect the application until it
is deep within the CAIRO library actually using the
number of strokes as it attempts to render the image.
Also, as discussed above in Section 1, the SIGSEGV
error in the libOIL library occurs because of an over-

480

Application Lines of Number of Total Distinct Mean Errors Distinct
Code Fuzzed tests Errors Errors Stack Depth per hour Errors/hour

Swfdec 70,000 9936 198 3 19 16.5 0.25

MuPDF 40,000 555 4 1 7 2 0.5

Table 3. Random Fuzzing Results
Application Crash Type File:# Source Stack Depth

Swfdec SIGSEGV swfdec_sprite_movie.c:377 Swfdec Application 11

Swfdec SIGABRT swfdec_as_types.c:500 Swfdec Application 22

Swfdec BADALLOC swfdec_as_context.c:967 Swfdec Application 18

MuPDF SIGSEGV atoi libc Library 7

Table 4. Information on Specific Errors Exposed by Random Fuzzing

flow when computing the size of a memory block used
to hold converted JPEG images.

These errors reflect the difficulty of making libraries
with complex interfaces robust in the face of incon-
sistent or simply unusual or unanticipated parameter
settings. Many of the errors involve corrupted meta-
data that is passed (potentially after translation) from
the input file through the application into the library,
which either fails to check the validity of the metadata
or simply does not have enough information to do so.
The application itself, on the other hand, is often act-
ing primarily as a conduit for the information and is
in no position to perform the detailed checks required
to detect parameter combinations that may cause the
library to fail. In effect, the division of the computa-
tional task into an application plus a library has left an
information gap that provides room for errors to occur.

4.3 Comparison with Random Fuzzing

To compare directed and random fuzzing, we im-
plemented a random fuzzer that reads in an arbitrary
input file, then randomly fuzzes bytes within the file
to generate new fuzzed test files. Like the directed
fuzzing technique that BuzzFuzz uses, the purely ran-
dom fuzzer provides a fully automatic, push-button
testing environment. Unlike directed fuzzing, however,
the random fuzzer does not attempt to exploit any in-
formation about how the application processes input
file bytes. It therefore implements a less targeted test-
ing strategy.

The random fuzzer can be configured to fuzz a cho-
sen percentage of the input files. For our set of bench-
mark applications, randomly fuzzing bytes in the file
headers almost always produces an invalid file that is
immediately rejected by the inital input parsing code.
Moreover, fuzzing over 20 percent of the remaining in-
put file bytes almost invariably produces an immedi-
ately rejected invalid file. Fuzzing less than 5 percent
of the remaining input bytes, on the other hand, pro-
duces minimally perturbed files that fail to expose any

errors at all. We therefore chose to randomly fuzz 10
percent of the non-header bytes in the input files.

Table 3 presents our results for random fuzzing for
both Swfdec and MuPDF. The first column presents
the number of lines of code in each application (exclud-
ing libraries), the second presents the total number of
fuzzed test inputs presented to each application. Un-
like BuzzFuzz , the random fuzzer does not need to exe-
cute an instrumented version of the application on the
seed input files. It can therefore generate new fuzzed
input files much more quickly than BuzzFuzz , which
in turn enables it to test the applications on more in-
put files (we ran both testers for 12 hours). The third
column presents the number of executions that failed,
the fourth presents the number of distinct errors re-
sponsible for these failures (in some cases a single error
was responsible for failures in multiple different runs),
and the fifth presents the mean depth of the stack
trace when the failure occurred. The last two columns
present the number of failed executions per hour and
the number of distinct errors found per hour.

This random fuzzing strategy exposed three distinct
errors in Swfdec and one error in MuPUDF. Table 4
presents additional information for each of the errors.
Some of the errors overlap with the errors in Table 2
that BuzzFuzz exposed. Specifically, the first error in
Table 4 and the third error in Table 2 are the same
error. Also, the MuPDF errors are the same for both
fuzzing techniques.

The remaining errors, however, illustrate the dif-
ferent and complementary strengths of the two tech-
niques. The remaining two errors that the random
fuzzer exposed occur in the initial parsing of the Flash
action script language embedded within the Flash in-
put file. In fact, both errors manifest themselves as
assertion failures inside the Swfdec source code. They
therefore trigger anticipated and handled fatal error
conditions (and are therefore arguably not errors at
all). On the other hand, the remaining four Swfdec
errors from Table 2 that BuzzFuzz exposed all occur

481

within the core of the computation after the input has
passed the initial input parsing phase. These differ-
ences reflect the effectiveness of directed fuzz testing
in 1) identifying parts of the input file that, when ap-
propriately fuzzed, expose errors within the core of the
program while 2) preserving the underlying syntactic
structure of input files with complex formatting con-
straints to enable the automatically generated test files
to make it past the initial parsing and input validation
to exercise the error-containing code within the core.

Note that because directed fuzz testing tends to pre-
serve the synactic structure of the seed input files, it is
not designed to expose errors in the initial input pars-
ing code. And in fact, the results show that simple
random fuzzing is more effective at appropriately exer-
cising the parsing code to expose such errors.

5 Related Work

Fuzzing: Fuzzing refers to a class of techniques for
randomly generating or mutating seed inputs to get
new test inputs. These techniques have been shown to
be surprisingly effective in uncovering errors [17, 23],
and are used heavily by security researchers. Fuzzing
is relatively cheap and easy to apply. However, it suf-
fers from several drawbacks: many random inputs may
lead to the same bug, and the probability of producing
valid inputs may be low, especially for deeply struc-
tured formats like movies. Furthermore, the proba-
bility of exposing certain classes of incorrect behavior,
which require many conditions to be simultaneously
true in deep program paths, can be vanishingly small.

Our directed fuzzing technique provides similar ease
of use benefits. But because it exploits information
about how the program accesses the input file bytes
to preserve the important syntactic structure present
in the initial seed inputs, it can effectively target deep
errors in the core of the computation. The tradeoff is
that it is not designed to expose errors in the initial
input parsing code.
Grammar-based Black Box Fuzzing: Black box
fuzzing tools use a grammar to characterize syntacti-
cally legal inputs [23, 3, 12]. The insight behind this
approach is that a fuzzer that understands the input
file format can preserve the syntactic validity of the ini-
tial seed inputs (or even inputs generated from scratch)
and therefore produce test inputs that make it past the
initial input parsing code to exercise code in the core
of the computation.

Our directed fuzzing technique is also designed to
preserve the syntactic validity of the seed inputs to pro-
duce fuzzed inputs that expose deep errors in the core
of the computation. But because directed fuzzing ex-
ploits the availability of taint information to effectively
identify and change appropriate parts of the seed input

file, it achieves this effect without requiring the tester
to understand or obtain a specification of the input
file format. In general, the cost of obtaining this spec-
ification can be substantial, especially for files (such
as movie, image, and document files) with complex
file structure. For example, see [23], Chapter 21 for
an analysis of the cost of developing a grammar-based
fuzzer for the Adobe Flash file format.

Another advantage is that the tainting information
enables directed fuzzing to target multiple regions in
the input file that must be changed together in a co-
ordinated way to expose the error. Because the com-
putation tends to combine the values of such regions
when it builds its internal data structures, this group-
ing information is readily available in the taint reports
that BuzzFuzz produces.

Concolic Testing: Generally speaking, a concolic
tester executes the subject program both concretely
and symbolically on a seed input until it reaches some
interesting program expression [10, 22, 7, 18]. The con-
crete execution serves the purpose of choosing a pro-
gram path cheaply, while the symbolic part of the ex-
ecution is converted into a constraint, called a path
constraint. The interesting program expression under
consideration could be a program assertion, a condi-
tional, or a dangerous expression like division. The
path constraint is conjoined with a query about this
program expression (e.g., can the assertion be violated,
can negation of the conditional lead to a viable alter-
nate path, or can the denominator of the division go to
zero), and fed to a constraint solver for solution. The
solution, in terms of variables representing the input,
is a test case that can exercise the program path and
the program expression in interesting ways, potentially
exposing an error. Concolic testing has been shown to
be effective, has the advantage of being systematic and
is usually completely automatic.

However, concolic testing faces several challenges [5,
9]. First is the exponential explosion in the number
of shallow paths in the early part of the code (usu-
ally parser code) that are systematically explored by
concolic testers. In many cases, and especially for pro-
grams that process highly structured input files, the
constraint solver gets bogged down exploring the many
shallow execution paths that lead to parser errors. One
way to ameliorate this problem is to augment the con-
colic tester with a grammar that specifies the legal in-
put file format [11]. By using the grammar to guide
the constraint satisfaction, it is possible to avoid ex-
ploring many error cases in the input parsing code. As
for grammer-based black box fuzzing, a potential draw-
back is the need to obtain a grammar that characterizes
the legal inputs.

482

The second issue is that, once the concolic tester
makes it past the initial input parsing stages, the re-
sulting deeper program paths may produce very large
constraints with complex conditions that current state
of the art constraint solvers are unable to handle. This
is especially problematic for deep program paths that
contain hard to invert functions like hash functions or
encryption.

Both concolic testing and BuzzFuzz use the program
source to generate some kind of symbolic information
for each program variable in a particular concrete pro-
gram run. However, the key difference is in the kind
of symbolic information that each technique maintains.
In the case of concolic testing, the symbolic information
is essentially a logical expression for each variable that
semantically captures all possible values these variables
can take for the particular program path chosen by
the concrete execution. In contrast, BuzzFuzz simply
maintains the set of input bytes that influence the pro-
gram variables in the particular program path chosen,
in particular for the variables involved in the attack
points. In other words, BuzzFuzz uses a simpler and
more tractable algebra of symbolic expressions, i.e.,
sets of input bytes per program variable, as opposed
to concolic testers, which maintain logical expressions
per program variable.

This distinction in the kind of symbolic information
maintained by each technique is a key differentiator.
For programs whose inputs are highly structured, con-
colic execution of deep program paths may result in
heavyweight constraints that are difficult or even im-
possible to solve. BuzzFuzz , on the other hand, works
with much lighter weight symbolic information and is
therefore capable in practice of exploring much deeper
program paths and exposing errors that occur deeper
in the computation. The trade-off, of course, is that
BuzzFuzz cannot systematically enumerate inputs that
exhaust the program execution space — the probability
of exposing an error depends entirely on the interaction
between the fuzzing algorithm and the characteristics
of the program.

Dynamic Monitoring Using Taint Tracing: Dy-
namic taint tracing has also been used to find potential
security vulnerabilities and monitor deployed programs
for the presence of potential security attacks. The idea
is to use the taint information to detect situations in
which the program uses input data in a potentially
dangerous way (such as the target of a branch instruc-
tion) [13, 19, 20].

It is also possible to use taint tracing to improve test
coverage. Comet dynamically tracks taint from regions
of the input to conditionals in the subject program [14].
It then uses heuristics to determine new values for the

input regions that may result in the program taking a
new path, thus potentially increasing coverage.
Protocol Induction: The goal of automatic protocol
induction or protocol reverse engineering is to auto-
matically infer the file format or the grammar for valid
inputs of a given program [6, 24, 15]. Like our tech-
nique, these techniques use taint tracing to obtain in-
formation about the structure of the input file. Unlike
our technique, which aims to expose errors by modify-
ing targeted parts of the input file, the goal of protocol
induction is simply to obtain an understanding of the
input format.

6 Conclusions

In comparison with other testing approaches, ran-
dom testing offers clear advantages in automation, ease
of use, and its ability to generate inputs that step out-
side the developer’s expected input space. Our new
directed fuzz testing technique, as implemented in our
BuzzFuzz tool, complements existing random testing
techniques to enable, for the first time, fully automatic
generation of test inputs that exercise code deep within
the semantic core of programs with complex input file
formats.

A key insight behind the success of our technique
is the use of taint tracing to obtain information about
how input bytes affect values that appear at attack
points. This taint information helps BuzzFuzz gener-
ate new, syntactically valid fuzzed input files, thereby
enabling BuzzFuzz to successfully target specific attack
points deep within the computation. It also enables
BuzzFuzz to identify multiple regions of the input file
that must be modified in a coordinated way to expose
errors. Because the taint information is available au-
tomatically without human intervention (or even any
need for the tester to understand any aspect of the
input file format), it enables the fully automatic gen-
eration of precisely targeted test inputs. This property
makes it especially appropriate for testing programs
with complex input file formats.

Testing is currently the most effective and widely
used technique for enhancing program robustness and
reliability. By opening up a new region of the test-
ing space for automatic exploitation, our directed fuzz
testing technique promises to help developers find and
eliminate deep subtle errors more quickly, efficiently,
and with less effort.

Acknowledgements

We are grateful to Pedram Amini and Adam Kiezun
for providing us with a large number of Flash and PDF
files, respectivley, for testing purposes. We would also
like to thank Adam Kiezun and David Molnar for their
useful feedback on early drafts of the paper.

483

References

[1] Adobe macromedia shockwave flash file for-
mat. http://en.wikipedia.org/wiki/
Adobe_Flash.

[2] Gnome and freedesktop enviroments. http:
//en.wikipedia.org/wiki/Freedesktop.
org.

[3] Wikipedia entry on fuzzing. http://en.
wikipedia.org/wiki/Fuzz_testing.

[4] T. Andersson. Mupdf: A pdf viewer. http://
ccxvii.net/fitz/.

[5] P. Boonstoppel, C. Cadar, and D. R. Engler.
Rwset: Attacking path explosion in constraint-
based test generation. In TACAS, pages 351–366,
2008.

[6] J. Caballero, H. Yin, Z. Liang, and D. Song. Poly-
glot: automatic extraction of protocol message
format using dynamic binary analysis. In CCS ’07:
Proceedings of the 14th ACM conference on Com-
puter and communications security, pages 317–
329, New York, NY, USA, 2007. ACM.

[7] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and
D. Engler. EXE: Automatically generating inputs
of death. In Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security,
October-November 2006.

[8] J. DeMott. The evolving art of fuzzing.
http://www.vdalabs.com/tools/The_
Evolving_Art_of_Fuzzing.pdf, 2006.

[9] P. Godefroid, A. Kiezun, and M. Y. Levin.
Grammar-based whitebox fuzzing. In PLDI, pages
206–215, 2008.

[10] P. Godefroid, N. Klarlund, and K. Sen. Dart: di-
rected automated random testing. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN confer-
ence on Programming language design and imple-
mentation, pages 213–223, New York, NY, USA,
2005. ACM.

[11] P. Godefroid, M. Y. Levin, and D. Molnar. Au-
tomated whitebox fuzz testing. In Network and
Distributed Systems Security Symposium, 2008.

[12] R. Kaksonen. A functional method for assessing
protocol implementation security. Technical Re-
port 448, VTT Electronics, 2001.

[13] E. Larson and T. Austin. High coverage detec-
tion of input-related security facults. In SSYM’03:
Proceedings of the 12th conference on USENIX Se-
curity Symposium, pages 9–9, Berkeley, CA, USA,
2003. USENIX Association.

[14] T. Leek, G. Baker, R. Brown, M. Zhivich, and
R. Lippmann. Coverage maximization using dy-
namic taint tracing. Technical Report TR-1112,
MIT Lincoln Laboratory, 2007.

[15] Z. Lin and X. Zhang. Deriving input syntactic
structure from execution. In Proceedings of the
16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’08),
Atlanta, GA, USA, November 2008.

[16] B. Miller. Fuzzing website. http://pages.cs.
wisc.edu/˜bart/fuzz/fuzz.html, 2008.

[17] B. P. Miller, L. Fredriksen, and B. So. An empir-
ical study of the reliability of unix utilities. Com-
mun. ACM, 33(12):32–44, 1990.

[18] D. Molnar and D. Wagner. Catchconv: Symbolic
execution and run-time type inference for integer
conversion errors. Technical Report UCB/EECS-
2007-23, University of California, Berkeley, CA,
Feb 2007.

[19] J. Newsome and D. Song. Dynamic taint analysis
for automatic detection, analysis, and signature
generation of exploits on comnodity software. In
NDSS, 2005.

[20] A. Nguyen-Tuong, S. Guarnieri, D. Greene,
J. Shirley, and D. Evans. Automatically hardening
web applications using precise tainting. In IFIP
Security, 2005.

[21] B. Otte and D. Schleef. Swfdec: A flash animation
player. http://swfdec.freedesktop.org/
wiki/.

[22] K. Sen, D. Marinov, and G. Agha. Cute: a con-
colic unit testing engine for c. SIGSOFT Softw.
Eng. Notes, 30(5):263–272, 2005.

[23] M. Sutton, A. Greene, and P. Amini. Fuzzing:
Brute Force Vulnerability Discovery. Addison-
Wesley Professional, 1 edition, July 2007.

[24] G. Wondracek, P. M. Comparetti, C. Kruegel, and
E. Kirda. Automatic network protocol analysis.
In Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS08,
2008.

484

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
