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Abstract

Much of what we know about how programmers refactor in
the wild is based on studies that examine just a few software
projects. Researchers have rarely taken the time to replicate
these studies in other contexts or to examine the assump-
tions on which they are based. To help put refactoring re-
search on a sound scientific basis, we draw conclusions us-
ing four data sets spanning more than 13 000 developers,
240 000 tool-assisted refactorings, 2500 developer hours,
and 3400 version control commits. Using these data, we
cast doubt on several previously stated assumptions about
how programmers refactor, while validating others. For ex-
ample, we find that programmers frequently do not indicate
refactoring activity in commit logs, which contradicts as-
sumptions made by several previous researchers. In con-
trast, we were able to confirm the assumption that program-
mers do frequently intersperse refactoring with other pro-
gram changes. By confirming assumptions and replicating
studies made by other researchers, we can have greater con-
fidence that those researchers’ conclusions are generaliz-
able.

1. Introduction

Refactoring is the process of changing the structure of a
program without changing the way that it behaves. In his
book on the subject, Fowler catalogs 72 different refac-
torings, ranging from localized changes such as EXTRACT
LOCAL VARIABLE, to more global changes such as EX-
TRACT CLASS [5]. Based on his experience, Fowler claims
that refactoring produces significant benefits: it can help
programmers add functionality, fix bugs, and understand
software [5, pp. 55-57]. Indeed, case studies have demon-
strated that refactoring is a common practice [19] and can
improve code metrics [1].

However, conclusions drawn from a single case study
may not hold in general. Studies that investigate a phe-
nomenon using a single research method also may not hold.
To see why, let’s look at one particular example that uses
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a single research method: Wei3gerber and Diehl’s study of
3 open source projects [18]. Their research method was to
apply a tool to the version history of each project to de-
tect high-level refactorings such as RENAME METHOD and
MOVE CLASS. Low- and medium-level refactorings, such
as RENAME LOCAL VARIABLE and EXTRACT METHOD,
were classified as non-refactoring code changes. One of
their findings was that, on every day on which refactoring
took place, non-refactoring code changes also took place.
What we can learn from this depends on the relative fre-
quency of high-level and mid-to-low-level refactorings. If
the latter are scarce, we can infer that refactorings and
changes to the projects’ functionality are usually interleaved
at a fine granularity. However, if mid-to-low-level refactor-
ings are common, then we cannot draw this inference from
Weilgerber and Diehl’s data alone.

In general, validating conclusions drawn from an indi-
vidual study involves both replicating the study in wider
contexts and exploring factors that previous authors may
not have explored. In this paper we use both of these meth-
ods to confirm — and cast doubt on — several conclusions
that have been published in the refactoring literature.

Our experimental method takes data from four different
sources (described in Section 2) and applies several differ-
ent refactoring-detection strategies to them. We use this data
to test nine hypotheses about refactoring. The contributions
of our work lie in both the experimental method used when
testing these hypotheses, and in the conclusions that we are
able to draw:

e The RENAME refactoring tool is used much more fre-
quently by ordinary programmers than by the develop-
ers of refactoring tools (Section 3.1);

e about 40% of refactorings performed using a tool occur
in batches (Section 3.2);

e about 90% of configuration defaults of refactoring tools
remain unchanged when programmers use the tools
(Section 3.3);

e messages written by programmers in commit logs do
not reliably indicate the presence of refactoring (Sec-
tion 3.4);



e programmers frequently floss refactor, that is, they in-
terleave refactoring with other types of programming
activity (Section 3.5);

e about half of refactorings are not high-level, so refactor-
ing detection tools that look exclusively for high-level
refactorings will not detect them (Section 3.6);

o refactorings are performed frequently (Section 3.7);

e almost 90% of refactorings are performed manually,
without the help of tools (Section 3.8); and

o the kind of refactoring performed with tools differs from
the kind performed manually (Section 3.9).

In Section 4 we discuss the interaction between these
conclusions and the assumptions and conclusions of other
researchers.

2. The Data that We Analyzed

The work described in this paper is based on four sets
of data. The first set we will call Users; it was originally
collected in the latter half of 2005 by Murphy and col-
leagues [7] who used the Mylyn Monitor tool to capture and
analyze fine-grained usage data from 41 volunteer program-
mers in the wild using the Eclipse development environ-
ment (http:/eclipse.org). These data capture an average of 66
hours of development time per programmer; about 95 per-
cent of the programmers wrote in Java. The data include in-
formation on which Eclipse commands were executed, and
at what time. Murphy and colleagues originally used these
data to characterize the way programmers used Eclipse, in-
cluding a coarse-grained analysis of which refactoring tools
were used most often. Murphy-Hill and Black have also
used these data as a source of evidence for the claim that
refactoring tools are underused [10].

The second set of data we will call Everyone; it is pub-
licly available from the Eclipse Usage Collector [16], and
includes data from every user of the Eclipse Ganymede re-
lease who consented to an automated request to send the
data back to the Eclipse Foundation. These data aggregate
activity from over 13 000 Java developers between April
2008 and January 2009, but also include non-Java devel-
opers. The data count how many programmers have used
each Eclipse command, including refactoring commands,
and how many times each command was executed. We
know of no other research that has used these data for char-
acterizing programmer behavior.

The third set of data we will call Toolsmiths; it includes
refactoring histories from 4 developers who primarily main-
tain Eclipse’s refactoring tools. These data include detailed
histories of which refactorings were executed, when they
were performed, and with what configuration parameters.
These data include all the information necessary to recreate
the usage of a refactoring tool, assuming that the original
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source code is also available. These data were collected be-
tween December 2005 and August 2007, although the date
ranges are different for each developer. This data set is not
publicly available and has not previously been described in
the literature. The only study that we know of using simi-
lar data was published by Robbes [14]; it reports on refac-
toring tool usage by Robbes himself and one other devel-
oper.

The fourth set of data we will call Eclipse CVS, be-
cause it is the version history of the Eclipse and JUnit (http:
/ljunit.org) code bases as extracted from their Concurrent Ver-
sioning System (CVS) repositories. Commonly, CVS data
must be preprocessed before analysis. Unfortunately, CVS
does not maintain records showing which file revisions were
committed as a single transaction. The standard approach
for recovering transactions is to find revisions committed by
the same developer with the same commit message within a
small time window [20]; we use a 60 second time window.
Henceforth, we use the word “revision” to refer to a partic-
ular version of a file, and the word “commit” to refer to one
of these commit transactions. We excluded from our sam-
ple (a) commits to CVS branches, which would have com-
plicated our analysis, and (b) commits that did not include
a change to a Java file.

In our experiments, we focus on a subset of the com-
mits in Eclipse CVS. Specifically, we randomly sampled
from about 3400 source file commits (Section 3.4) that cor-
respond to the same time period, the same projects, and
the same developers represented in Toolsmiths. Using these
data, two of the authors (Murphy-Hill and Parnin) inferred
which refactorings were performed by comparing adjacent
commits manually. While many authors have mined soft-
ware repositories automatically for refactorings (for exam-
ple, Weiigerber and Diehl [18]), we know of no other re-
search that compares refactoring tool logs with code histo-
ries.

3. Findings on Refactoring Behavior

In this section we analyze these four sets of data and discuss
our findings.

3.1. Toolsmiths and Users Differ

We hypothesize that the refactoring behavior of the pro-
grammers who develop the Eclipse refactoring tools dif-
fers from that of the programmers who use them. Tole-
man and Welsh assume a variant of this hypothesis — that
the designers of software tools erroneously consider them-
selves typical tool users—and argue that the usability of
software tools should be objectively evaluated [17]. How-
ever, as far as we know, no previous research has tested this
hypothesis, at least not in the context of refactoring tools. To



Refactoring Tool Toolsmiths Users Everyone
Uses Use % Batched Batched %  Uses Use % Batched Batched % Uses Use %
Rename 670 28.7% 283 422% 1862 61.5% 1009 542% 179871 74.8%
Extract Local Variable 568 24.4% 127 22.4% 322 10.6% 106 32.9% 13523 5.6%
Inline 349 15.0% 132 37.8% 137 4.5% 52 38.0% 4102 1.7%
Extract Method 280 12.0% 28 10.0% 259  8.6% 57 22.0% 10581 4.4%
Move 147  6.3% 50 34.0% 171 5.6% 98 57.3% 13208  5.5%
Change Method Signature 93  4.0% 26 28.0% 55 1.8% 20 36.4% 4764  2.0%
Convert Local To Field 92 3.9% 12 13.0% 27 09% 10 37.0% 1603 0.7%
Introduce Parameter 41 1.8% 20 48.8% 16 0.5% 11 68.8% 416  0.2%
Extract Constant 22 0.9% 6 27.3% 81 2.7% 48 59.3% 3363 1.4%
Convert Anonymous To Nested 18 0.8% 0 0.0% 19  0.6% 7 36.8% 269 0.1%
Move Member Type to New File 15  0.6% 0 0.0% 12 0.4% 5 41.7% 838  0.3%
Pull Up 12 0.5% 0 0.0% 36 12% 4 11.1% 1134 0.5%
Encapsulate Field 11 05% 8 72.7% 4 0.1% 2 50.0% 1739 0.7%
Extract Interface 2 0.1% 0 0.0% 15 05% 0 0.0% 1612 0.7%
Generalize Declared Type 2 0.1% 0 0.0% 4  0.1% 2 50.0% 173 0.1%
Push Down 1 0.0% 0 0.0% 1 0.0% 0 0.0% 279 0.1%
Infer Generic Type Arguments 0 0.0% 0 - 3 0.1% 0 0.0% 703 0.3%
Use Supertype Where Possible 0 0.0% 0 - 2 0.1% 0 0.0% 143 0.1%
Introduce Factory 0 0.0% 0 - 1 0.0% 0 0.0% 121 0.1%
Extract Superclass 7 03% 0 0.0% * - * * 558  0.2%
Extract Class 1 0.0% 0 0.0% * - * * 983  0.4%
Introduce Parameter Object 0 0.0% 0 - * - * * 208  0.1%
Introduce Indirection 0 0.0% 0 - * - * * 145 0.1%
Total 2331  100% 692 29.7% 3027 100% 1431 473% 240336  100%

Table 1. Refactoring tool usage in Eclipse. Some tool logging began in the middle of the Toolsmiths
data collection (shown in light grey) and after the Users data collection (denoted with a *).

do so, we compared the refactoring tool usage in the Tool-
smith data set against the tool usage in the User and Every-
one data sets.

In Table 1, the “Uses” columns indicate the number of
times each refactoring tool was invoked in that dataset. The
“Use %” column presents the same measure as a percent-
age of the total number of refactorings. (The “Batched”
columns are discussed in Section 3.2.) Notice that while
the rank order of each tool is similar across the three data
sets— RENAME, for example, always ranks first— the pro-
portion of occurrence of the individual refactorings varies
widely between Toolsmiths and Users/Everyone. In Tool-
smiths, RENAME accounts for about 29% of all refactor-
ings, whereas in Users it accounts for about 62% and in Ev-
eryone for about 75%. We suspect that this difference is not
because Users and Everyone perform more RENAMES than
Toolsmiths, but because Toolsmiths are more frequent users
of the other refactoring tools.

This analysis is limited in two ways. First, each data set
was gathered over a different period of time, and the tools
themselves may have changed between those periods. Sec-
ond, the Users data include both Java and non-Java RE-
NAME and MOVE refactorings, but the Toolsmiths and Ev-
eryone data report on just Java refactorings. This may in-

flate actual RENAME and MOVE percentages in Users rela-
tive to the other two data sets.

3.2. Programmers Repeat Refactorings

We hypothesize that when programmers perform a refactor-
ing, they typically perform several refactorings of the same
kind within a short time period. For instance, a program-
mer may perform several EXTRACT LOCAL VARIABLES
in preparation for a single EXTRACT METHOD, or may RE-
NAME several related instance variables at once. Based on
personal experience and anecdotes from programmers, we
suspect that programmers often refactor several pieces of
code because several related program elements may need to
be refactored in order to perform a composite refactoring.
In previous research, Murphy-Hill and Black built a refac-
toring tool that supported refactoring several program ele-
ments at once, on the assumption that this is common [§].
To determine how often programmers do in fact repeat
refactorings, we used the Toolsmiths and the Users data to
measure the temporal proximity of refactorings to one an-
other. We say that refactorings of the same kind that exe-
cute within 60 seconds of each another form a batch. From
our personal experience, we think that 60 seconds is usu-
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Figure 1. Percentage of refactorings that ap-
pear in batches as a function of batch thresh-
old, in seconds. 60-seconds, the batch size
used in Table 1, is drawn in green.

ally long enough to allow the programmer to complete an
Eclipse wizard-based refactoring, yet short enough to ex-
clude refactorings that are not part of the same conceptual
group. Additionally, a few refactoring tools, such as PULL
Up in Eclipse, can refactor multiple program elements, so a
single application of such a tool is an explicit batch of re-
lated refactorings. We measured the median batch size for
tools that can refactor multiple program elements in Tool-
smiths.

In Table 1, each “Batched” column indicates the number
of refactorings that appeared as part of a batch, while each
“Batched %” column indicates the percentage of refactor-
ings appearing as part of a batch. Overall, we can see that
certain refactorings, such as RENAME, INTRODUCE PA-
RAMETER, and ENCAPSULATE FIELD, are more likely to
appear as part of a batch for both Toolsmiths and Users,
while others, such as EXTRACT METHOD and PULL UP,
are less likely to appear in a batch. In total, we see that 30%
of Toolsmiths refactorings and 47% of Users refactorings
appear as part of a batch.! For comparison, Figure 1 dis-
plays the percentage of batched refactorings for several dif-
ferent batch thresholds.

In Toolsmiths, the median batch size (for explic-
itly batched refactorings used with tools that can refactor
multiple program elements) varied between tools. The me-
dian number of explicitly batched elements used in MOVE

1 We suspect that the difference in percentages arises partially because
the Toolsmiths data set counts the number of completed refactorings
while Users counts the number of initiated refactorings. We have ob-
served that programmers occasionally initiate a refactoring tool on
some code, cancel the refactoring, and then re-initiate the same refac-
toring shortly thereafter [9].
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is 1 (n=147), PuLL UP is 2.5 (n=12), PUSH DOWN is
5 (n=1), EXTRACT SUPERCLASS is 17 (n=7), and EX-
TRACT INTERFACE is 4.5 (n=2).

This analysis has two main limitations. First, while we
wished to measure how often several related refactorings
are performed in sequence, we instead used a 60-second
heuristic: it may be that some related refactorings occur out-
side our 60-second window, and that some unrelated refac-
torings occur inside the window. Other metrics for detect-
ing batches, such as burstiness, should be investigated in
the future. Second, we could only ascertain how often ex-
plicit batches are used in the Toolsmith data set because the
other data sets are not sufficiently detailed.

3.3. Programmers often don’t Configure
Refactoring Tools

Refactoring tools are typically of two kinds: they either
force the programmer to provide configuration information,
such as whether a newly created method should be public
or private, or they quickly perform a refactoring with-
out allowing any configuration. Configurable refactoring
tools are more common in some environments, such as Net-
beans (http:/netbeans.org), whereas non-configurable tools
are more common in others, such as X-develop (http:/www.
omnicore.com/en/xdevelop.htm). Which interface is preferable
depends on how often programmers configure refactoring
tools.

‘We hypothesize that programmers do not often configure
refactoring tools. We suspect this because tweaking code
manually after the refactoring may be easier than config-
uring the tool. In the past, we have found some limited
evidence that programmers perform only a small amount
of configuration of refactoring tools. When we did a small
survey in September 2007 at a Portland Java User’s Group
meeting, 8 programmers estimated that, on average, they
supply configuration information only 25% of the time.

To validate this hypothesis, we analyzed the 5 most pop-
ular refactorings performed by Toolsmiths to see how of-
ten programmers used various configuration options. We
skipped refactorings that did not have configuration options.
The results of the analysis are shown in Table 2. “Configura-
tion Option” refers to a configuration parameter that the user
can change. “Default Value” refers to the default value that
the tool assigns to that option. “Change Frequency” refers
to how often a user used a configuration option other than
the default. The data suggest that refactoring tools are con-
figured very little: the overall mean change frequency for
these options is just under 10%. Although different config-
uration options are changed from defaults with varying fre-
quencies, all configuration options that we inspected were
below the average configuration percentage predicted by the
Portland Java User’s Group survey.



Refactoring Tool Configuration Option

Default Value Change Frequency

Extract Local Variable = Declare the local variable as ‘final’ false 5%

Extract Method = New method visibility private 6%
Declare thrown runtime exceptions false 24%

Generate method comment false 9%

Rename Type = Update references true 3%
Update similarly named variables and methods false 24%
Update textual occurrences in comments and strings false 15%

Update fully qualified names in non-Java text files true 7%

Rename Method = Update references true 0%

Keep original method as delegate to renamed method false 1%

Inline Method = Delete method declaration true 9%

Table 2. Refactoring tool configuration in Eclipse from Toolsmiths.

This analysis has several limitations. First, we did not
have detailed-enough information in the other data sets to
cross-validate our results outside Toolsmiths. Second, we
could not count how often certain configuration options
were changed, such as how often parameters are reordered
when EXTRACT METHOD is performed. Third, we exam-
ined only the 5 most-common refactorings; configuration
may be more frequent for less popular refactorings.

3.4. Commit Messages don’t predict Refac-
toring

Several researchers have used messages attached to com-
mits into a version control as indicators of refactoring activ-
ity [6, 12, 13, 15]. For example, if a programmer commits
code to CVS and attaches the commit message “refactored
class Foo,” we might predict that the committed code con-
tains more refactoring activity than if a programmer com-
mits with a message that does not contain the word “refac-
tor.”” However, we hypothesize that this assumption is false.
We suspect this because refactoring may be an unconscious
activity [2, p. 47], and because the programmer may con-
sider it subordinate to some other activity, such as adding a
feature [10].

In his thesis, Ratzinger describes the most sophisticated
strategy for finding refactoring messages of which we are
aware [12]: searching for the occurrence of 13 keywords,
such as “move” and “rename,” and excluding “needs refac-
toring.” Using two different project histories, the author
randomly drew 100 file modifications from each project
and classified each as either a refactoring or as some other
change. He found that his keyword technique accurately
classified modifications 95.5% of the time. Based on this
technique, Ratzinger and colleagues concluded that an in-
crease in refactoring activity tends to be followed by a de-
crease in software defects [13].
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We replicated Ratzinger’s experiment for the Eclipse
code base. Using the Eclipse CVS data, we grouped indi-
vidual file revisions into global commits as previously dis-
cussed in Section 2. We also manually removed commits
whose messages referred to changes to a refactoring tool
(for example, “105654 [refactoring] Convert Local Variable
to Field has problems with arrays”), because such changes
are false positives that occur only because the project is
itself a refactoring tool project. Next, using Ratzinger’s
13 keywords, we automatically classified the log messages
for the remaining 2788 commits. 10% of these commits
matched the keywords, which compares with Ratzinger’s
reported 11% and 13% for two other projects [12]. Next,
a third party randomly drew 20 commits from the set that
matched the keywords (which we will call “Labeled”) and
20 from the set that did not match (“Unlabeled”). Without
knowing whether a commit was in the Labeled or Unla-
beled group, two of the authors (Murphy-Hill and Parnin)
manually compared each committed version of the code
against the previous version, inferring how many and which
refactorings were performed, and whether at least one non-
refactoring change was made. Together, Murphy-Hill and
Parnin compared these 40 commits over the span of about
6 hours, comparing the code using a single computer and
Eclipse’s standard compare tool.

The results are shown in Table 3. In the left column,
the kind of Change is listed. Pure Whitespace means that
the developer changed only whitespace or comments; No
Refactoring means that the developer did not refactor but
did change program behavior; Some Refactoring means that
the developer both refactored and changed program behav-
ior, and Pure Refactoring means the programmer refactored
but did not change program behavior. The center column
counts the number of Labeled commits with each kind of
change, and the right column counts the number of Unla-
beled commits. The parenthesized lists record the number



Change Labeled Unlabeled
Pure Whitespace 1 3
No Refactoring 8 11
Some Refactoring 5 (1,4,11,15,17) 6 (2,9,11,23,30,37)
Pure Refactoring 6 (1,1,2,3,3,5) 0
Total =~ 20(63) 20(112)

Table 3. Refactoring between commits in
Eclipse CVS. Plain numbers count commits
in the given category; tuples contain the
number of refactorings in each commit.

of refactorings found in each commit. For instance, the Ta-
ble shows that in 5 commits, when a programmer mentioned
a refactoring keyword in the CVS commit message, the
programmer made both functional and refactoring changes.
The 5 commits contained 1, 4, 11, 15, and 17 refactorings.

These results suggest that classifying CVS commits by
commit message does not provide a complete picture of
refactoring activity. While all 6 pure-refactoring commits
were identified by commit messages that contained one of
the refactoring keywords, commits labeled with a refactor-
ing keyword contained far fewer refactorings (63, or 36% of
the total) than those not so labeled (112, or 64%). Figure 2
shows the variety of refactorings in Labeled (dark blue and
purple) commits and Unlabeled (light blue and pink) com-
mits.

There are several limitations to this analysis. First, while
we tried to replicate Ratzinger’s experiment [12] as closely
as was practicable, the original experiment was not com-
pletely specified, so we cannot say with certainty that the
observed differences were not due to methodology. Like-
wise, observed differences may be due to differences in the
projects studied. Indeed, after we completed this analysis,
a personal communication with Ratzinger revealed that the
original experiment included and excluded keywords spe-
cific to the projects being analyzed. Second, because the
process of gathering and inspecting subsequent code revi-
sions is labor intensive, our sample size (40 commits in
total) is smaller than would otherwise be desirable. Third,
the classification of a code change as a refactoring is some-
what subjective. For example, if a developer removes code
known to her to never be executed, she may legitimately
classify that activity as a refactoring, although to an out-
side observer it may appear to be the removal of a feature.
We tried to be conservative, classifying changes as refactor-
ings only when we were confident that they preserved be-
havior. Moreover, because the comparison was blind, any
bias introduced in classification would have applied equally
to both Labeled and Unlabeled commit sets.
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Figure 2. Refactorings over 40 sessions.

3.5. Floss Refactoring is Common

In previous work, Murphy-Hill and Black distinguished two
tactics that programmers use when refactoring: floss refac-
toring and root-canal refactoring [10]. During floss refactor-
ing, the programmer uses refactoring as a means to reach a
specific end, such as adding a feature or fixing a bug. Thus,
during floss refactoring the programmer intersperses refac-
toring with other kinds of program changes to keep code
healthy. Root-canal refactoring, in contrast, is used for cor-
recting deteriorated code and involves a protracted process
consisting of exclusive refactoring. A survey of the liter-
ature suggested that floss refactoring is the recommended
tactic, but provided only limited evidence that it is the more
common tactic [10].

Why does this matter? Case studies in the literature, for
example those reported by Pizka [11] and by Bourqun and
Keller [1], describe root-canal refactoring. However, infer-
ences drawn from these studies will be generally applicable



only if most refactorings are indeed root-canals.

We can estimate which refactoring tactic is used more
frequently from the Eclipse CVS data. We first define be-
havioral indicators of floss and root-canal refactoring during
programming sessions, which (in contrast to the intentional
definitions given above) we can hope to recognize in the
data. For convenience, we let a programming session be the
period of time between consecutive commits to CVS by a
single programmer. In a particular session, if a programmer
both refactors and makes a semantic change, then we say
that that the programmer is floss refactoring. If a program-
mer refactors during a session but does not change the se-
mantics of the program, then we say that the programmer is
root-canal refactoring. Note that a true root-canal refactor-
ing must also last an extended period of time, or take place
over several sessions. The above behavioral definitions re-
lax this requirement, and so will tend to over-estimate the
number of root canals.

Returning to Table 3, we can see that “Some Refactor-
ing”, indicative of floss refactoring, accounted for 28% of
commits, while Pure Refactoring, indicative of root-canal
refactoring, accounts for 15%. Normalizing for the relative
frequency of commits labeled with refactoring keywords in
Eclipse CVS, commits indicating floss refactoring would
account for 30% of commits while commits indicating root-
canal would account for only 3% of commits.

Also notice in Table 3 that the “Some Refactoring”
(floss) row tends to show more refactorings per commit than
the “Pure Refactoring” (root-canal) row. Again normalizing
for labeled commits, 98% of individual refactorings would
occur as part of a Some Refactoring (floss) commit, while
only 2% would occur as part of a Pure Refactoring (root-
canal) commit.

Pure refactoring with tools is infrequent in the Users
data set, suggesting that very little root-canal refactoring oc-
curred in Users as well. We counted the number of refactor-
ings performed using a tool during sessions in that data. In
no more than 10 out of 2671 commits did programmers use
a refactoring tool without also manually editing their pro-
gram. In other words, in less that 0.4% of commits did we
observe the possibility of root-canal refactoring using only
refactoring tools.

Our analysis of Table 3 is subject to the same limita-
tions described in Section 3.4. The analysis of the Users
data set (but not the analysis of Table 3) is also limited in
that we consider only those refactorings performed using
tools. Some refactorings may have been performed by hand;
these would appear in the data as edits, thus possibly inflat-
ing the count of floss refactoring and reducing the count of
root-canal refactoring.
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Eclipse CVS Toolsmiths

Low 18% 33%
Medium 22% 27%
High 60% 40%

Table 4. Refactoring level percentages in the
Eclipse CVS and the Toolsmiths data.

3.6. Many Refactorings are Medium and
Low-level

Refactorings operate at a wide range of levels, from as low-
level as single expressions to as high-level as whole inheri-
tance hierarchies. Past research has often drawn conclusions
based on observations of high-level refactorings. For exam-
ple, several researchers have used automatic refactoring-
detection tools to find refactorings in version histories,
but these tools can generally detect only those refactor-
ings that modify packages, classes, and member signa-
tures [3, 4, 18, 19]. The tools generally do not detect sub-
method level refactorings, such as EXTRACT LOCAL VARI-
ABLE and INTRODUCE ASSERTION. We hypothesize that in
practice programmers also perform many lower-level refac-
torings. We suspect this because lower-level refactorings
will not change the program’s interface and thus program-
mers may feel more free to perform them.

To investigate this hypothesis, we divided the refac-
torings that we observed in our manual inspection of
Eclipse CVS commits into three levels— High, Medium
and Low. We classified refactoring tool uses in the Tool-
smiths data in the same way. High level refactorings
are those that change the signatures of classes, meth-
ods, and fields; refactorings at this level include RENAME
CLASS, MOVE STATIC FIELD, and ADD PARAME-
TER. Medium level refactorings are those that change the
signatures of classes, methods, and fields and also signif-
icantly change blocks of code; this level includes EX-
TRACT METHOD, INLINE CONSTANT, and CONVERT
ANONYMOUS TYPE TO NESTED TYPE. Low level refac-
torings are those that make changes to only blocks of code;
low level refactorings include EXTRACT LOCAL VARI-
ABLE, RENAME LOCAL VARIABLE, and ADD ASSER-
TION. Refactorings with tool support that were found in the
Eclipse CVS data set are labeled as high (H), medium (M),
and low (L) in Figure 2.

The results of this analysis are displayed in Table 4.
For each level of refactoring, we show what percentage of
refactorings from Eclipse CVS (normalized) and Toolsmiths
make up that level. We see that many low and medium-level
refactorings do indeed take place; as a consequence, tools
that detect only high-level refactorings will miss 40 to 60
percent of refactorings.



3.7. Refactorings are Frequent

While the concept of refactoring is now popular, it is not
entirely clear how commonly refactoring is practiced. In
Xing and Stroulia’s automated analysis of the Eclipse code
base, the authors conclude that “indeed refactoring is a fre-
quent practice” [19]. The authors make this claim largely
based on observing a large number of structural changes,
70% of which are considered to be refactoring. However,
this figure is based on manually excluding 75% of seman-
tic changes — resulting in refactorings accounting for 16%
of all changes. Further, their automated approach suffers
from several limitations, such as the failure to detect low-
level refactorings, imprecision when distinguishing signa-
ture changes from semantic changes, and the limited win-
dow of granularity offered by CVS inspection.

To validate the hypothesis that refactoring is a frequent
practice, we characterize the occurrence of refactoring ac-
tivity in the Users and Toolsmiths data. In order for refac-
toring activity to be defined as frequent, we seek to apply
criteria that require refactoring to be habitual and occur-
ring at regular intervals. For example, if refactoring activ-
ity occurs just before a software release, but not at other
times, then we would not want to claim that refactoring is
frequent. First, we examined the Toolsmiths data to deter-
mine how refactoring activity was spread throughout devel-
opment. Second, we examined the Users data to determine
how often refactoring occurred within a programming ses-
sion and whether there was significant variation among the
population.

In the Toolsmiths data, we found that refactoring activ-
ity occurred throughout the Eclipse development cycle. In
2006, an average of 30 refactorings took place each week; in
2007, there were 46 refactorings per week. Only two weeks
in 2006 did not have any refactoring activity, and one of
these was a winter holiday week. In 2007, refactoring oc-
curred every week.

In the Users data set, we found refactoring activity dis-
tributed throughout the programming sessions. Overall,
41% of programming sessions contained refactoring ac-
tivity. More interestingly, sessions that did not have refac-
toring activity contained an order of magnitude fewer
edits than sessions with refactoring, on average. The ses-
sions that contained refactoring also contained, on av-
erage, 71% of the total edits made by the programmer.
This was consistent across the population: 22 of 31 pro-
grammers had an average greater than 72%, whereas
the remaining 9 ranged from 0% to 63%. This analy-
sis of the Users data suggests that when programmers must
make large changes to a code base, refactoring is a com-
mon way to prepare for those changes.

Inspecting refactorings performed using a tool does not
have the limitations of automated analysis; it is independent
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of the granularity of commits and semantic changes, and
captures all levels of refactoring activity. However, it has its
own limitation: the exclusion of manual refactoring. Includ-
ing manual refactorings can only increase the observed fre-
quency of refactoring. Indeed, this is likely: as we will see
in Section 3.8, many refactorings are in fact performed man-
ually.

3.8. Refactoring Tools are Underused

A programmer may perform a refactoring manually, or may
choose to use an automated refactoring tool if one is avail-
able for the refactoring that she needs to perform. Ideally,
a programmer will always use a refactoring tool if one is
available, because automated refactorings are theoretically
faster and less error-prone than manual refactorings. How-
ever, in one survey of 16 students, only 2 reported having
used refactoring tools, and even then only 20% and 60% of
the time [10]. In another survey of 112 agile enthusiasts, we
found that the developers reported refactoring with a tool a
median of 68% of the time [10]. Both of these estimates of
usage are surprisingly low, but they are still only estimates.
We hypothesize that programmers often do not use refac-
toring tools. We suspect this because existing tools may not
have a sufficiently usable user-interface.

To validate this hypothesis, we correlated the refactor-
ings that we observed by manually inspecting Eclipse CVS
commits with the refactoring tool usages in the Toolsmiths
data set. A refactoring found by manual inspection can be
correlated with the application of a refactoring tool by look-
ing for tool applications between commits. For example, the
Toolsmiths data provides sufficient detail (the new variable
name and location) to correlate an EXTRACT LOCAL VARI-
ABLE with an EXTRACT LOCAL VARIABLE observed by
manually inspecting adjacent commits in Eclipse CVS.

After analysis, we were unable to link 89% of 145 ob-
served refactorings that had tool support to any use of a
refactoring tool (also 89% when normalized). This suggests
that Toolsmiths primarily refactor manually. An unexpected
finding was that 31 refactorings that were performed with
tools were not visible by comparing revisions in CVS. It ap-
peared that most of these refactorings occurred in methods
or expressions that were later removed or in newly created
code that had not yet been committed to CVS. Overall, the
results support the hypothesis that programmers are manu-
ally refactoring in lieu of using tools, but actual tool usage
was lower than the median estimate in the professional ag-
ile developer survey. This suggests that either programmers
overestimate their tool usage (perhaps refactoring is often
not a conscious activity) or that expert programmers pre-
fer to refactor manually.

This analysis suffers from two main limitations. First,
it is possible that some tool usage data may be missing. If



programmers used multiple computers during development,
some of which were not included in the data set, this would
result in under-reporting of tool usage. Given a single com-
mit, we could be more certain that we have a record of all
refactoring tool uses over code in that commit if we have
a record of at least one refactoring tool use applied to that
code since the previous commit. If we apply our analysis
only to those commits, then 73% of refactorings (also 73%
when normalized) cannot be linked with a tool usage. Sec-
ond, refactorings that occurred at an earlier time might not
be committed until much later; this would inflate the count
of refactorings found in CVS that we could not correlate to
the use of a tool, and thus cause us to underestimate tool us-
age. We tried to limit this possibility by looking back sev-
eral days before a commit to find uses of refactoring tools,
but may not have been completely successful.

3.9. Different Refactorings are Performed
with and without Tools

Some refactorings are more prone than others to being
performed by hand. We have recently identified a surpris-
ing discrepancy between how programmers want to refac-
tor and how they actually refactor using tools [10]. Pro-
grammers typically want to perform EXTRACT METHOD
more often than RENAME, but programmers actually per-
form RENAME with tools more often than they perform EX-
TRACT METHOD with tools. (This can also be seen in all
three groups of programmers in Table 1.) Comparing these
results, we inferred that the EXTRACT METHOD tool is un-
derused: the refactoring is instead being performed man-
ually. However, it is unclear what other refactoring tools
are underused. Moreover, there may be some refactorings
that must be performed manually because no tool yet ex-
ists. We suspect that the reason that some kinds of refac-
toring — especially RENAME — are more often performed
with tools is because these tools have simpler user inter-
faces.

To validate this hypothesis, we examined how the kind
of refactorings differed between refactorings performed by
hand and refactorings performed using a tool. We once
again correlated the refactorings that we found by manu-
ally inspecting Eclipse CVS commits with the refactoring
tool usage in the Toolsmiths data. In addition, when inspect-
ing the Eclipse CVS commits, we identified several refactor-
ings that currently have no tool support.

The results are shown in Figure 2. Tool indicates how
many refactorings were performed with a tool; Manual indi-
cates how many were performed without. The figure shows
that manual refactorings were performed much more of-
ten for certain kinds of refactoring. For example, EXTRACT
METHOD is performed 9 times manually but just once with
a tool; REMOVE PARAMETER is performed 8 times manu-
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ally and once with a tool. However, a few kinds of refactor-
ing showed the opposite tendency; RENAME METHOD, for
example, is most often performed with a tool. We can also
see from the figure that many kinds of refactorings were per-
formed exclusively by hand, despite having tool support.

30 refactorings did not have tool support; the most popu-
lar of these was MODIFY ENTITY PROPERTY, performed 8
times, which would allow developers to safely modify prop-
erties such as static or £inal. The same limitations ap-
ply as in Section 3.8.

4. Discussion

How do the results presented in Section 3 affect future
refactoring research and tools?

Tool-Usage Behavior Several of our findings have re-
flected on the behavior of programmers using refactoring
tools. For example, our finding about how toolsmiths dif-
fer from regular programmers in terms of refactoring tool
usage (Section 3.1) suggests that most kinds of refactor-
ings will not be used as frequently as the toolsmiths hoped,
when compared to the frequently used RENAME refactor-
ing. For the toolsmith, this means that improving the under-
used tools or their documentation (especially the tool for
EXTRACT LOCAL VARIABLE) may increase tool use.

Other findings provide insight into the typical work flow
involved in refactoring. Consider that refactoring tools are
often used repeatedly (Section 3.2), and that programmers
often do not configure refactoring tools (Section 3.3). For
the toolsmith, this means that configuration-less refactor-
ing tools, which have recently seen increasing support in
Eclipse and other environments, will suit the majority of,
but not all, refactoring situations. In addition, our findings
about the batching of refactorings provides evidence that
tools that force the programmer to repeatedly select, initi-
ate, and configure can waste programmers’ time. This was
in fact one of the motivations for Murphy-Hill and Black’s
refactoring cues, a tool that allows the programmer to select
several program elements for refactoring at one time [8].

Questions still remain for researchers to answer. Why is
the RENAME refactoring tool so much more popular than
other refactoring tools? Why do some refactorings tend to
be batched while others do not? Moreover, our experiments
should be repeated in other projects and for other refactor-
ings to validate our findings.

Detecting Refactoring In our experiments we have inves-
tigated the assumptions underlying several commonly used
refactoring-detection techniques. Unfortunately, some tech-
niques may need refinement to address some of the concerns
that we have uncovered. Our finding that commit messages
in version histories are unreliable indicators of refactoring
activity (Section 3.4) is at variance with an earlier finding by



Ratzinger [12]. It also casts doubt on previous research that
relies on this technique [6, 13, 15]. Thus, further replica-
tion of this experiment in other contexts is needed to estab-
lish more conclusive results. Our finding that many refac-
torings are medium or low-level suggests that refactoring-
detection techniques used by Weilgerber and Diehl [18],
Dig and colleagues [4], Counsell and colleagues [3], and to
a lesser extent, Xing and Stroulia [19], will not detect a sig-
nificant proportion of refactorings. The effect that this has
on the conclusions drawn by these authors depends on the
scope of those conclusions. For example, Xing and Strou-
lia’s conclusion that refactorings are frequent can only be
bolstered when low-level refactorings are taken into con-
sideration. On the other hand, Dig and colleagues’ tool was
intended to help automatically upgrade library clients, and
thus has no need to find low-level refactorings. In general,
researchers who wish to detect refactorings automatically
should be aware of what level of refactorings their tool can
detect.

Researchers can make refactoring detection techniques
more comprehensive. For example, we observed that a
common reason for Ratzinger’s keyword-matching to mis-
classify changes as refactorings was that a bug-report title
had been included in the commit message, and this title con-
tained refactoring keywords. By excluding bug-report titles
from the keyword search, accuracy could be increased. In
general, future research can complement existing refactor-
ing detection tools with refactoring logs from tools to in-
crease recall of low-level refactorings.

Refactoring Practice Several of our findings bolster exist-
ing evidence about refactoring practice across a large popu-
lation of programmers. Unfortunately, the findings also sug-
gest that refactoring tools need further improvements be-
fore programmers will use them frequently. First, our find-
ing that programmers refactor frequently (Section 3.7) con-
firms the same finding by Weillgerber and Diehl [18] and
Xing and Stroulia [19]. For toolsmiths, this highlights the
potential of refactoring tools, telling them that increased
tool support for refactoring may be beneficial to program-
mers.

Second, our finding that floss refactoring is a more fre-
quently practiced refactoring tactic than root-canal
refactoring (Section 3.5) confirms that floss refactor-
ing, in addition to being recommended by experts [5],
is also popular among programmers. This has impli-
cations for toolsmiths, researchers, and educators. For
toolsmiths, this means that refactoring tools should sup-
port flossing by allowing the programmer to switch
quickly between refactoring and other development ac-
tivities, which is not always possible with existing refac-
toring tools, such as those that force the programmer’s
attention away from the task at hand with modal dia-
log boxes [10]. For researchers, studies should focus on

296

floss refactoring for the greatest generality. For educa-
tors, it means that when they teach refactoring to stu-
dents, they should teach it throughout the course rather
than as one unit during which students are taught to refac-
tor their programs intensively.

Lastly, our findings that many refactorings are performed
without the help of tools (Section 3.8) and that the kinds of
refactorings performed with tools differ from the kinds per-
formed manually (Section 3.9) confirm the results of our
survey on programmers’ under-use of refactoring tools [10].
Note that these findings are based on toolsmiths’ refac-
toring tool usage, which we regard as the best case. In-
deed, if even toolsmiths do not use their own refactoring
tools very much, why would other programmers use them
more? Toolsmiths need to explore alternative interfaces and
identify common refactoring workflows, such as reminding
users to EXTRACT LOCAL VARIABLE before an EXTRACT
METHOD or finding a easy way to combine these refactor-
ings: the goal should be to encourage and support program-
mers in taking full advantage of refactoring tools. For re-
searchers, more study is needed about exactly why program-
mers do not use refactoring tools as much as they could.

Limitations of this Study In addition to the limitations
noted in each subsection of Section 3, some characteristics
of our data limit the validity of all of our analyses. First,
all the data report on refactoring of Java programs in the
Eclipse environment. While this is a widely-used language
and environment, the results presented in this paper may not
hold for other languages and environments. Second, Users
and Toolsmiths may not represent programmers in general.
Third, the Users and Everyone data sets may overlap the
Toolsmith data set: both the Users and Everyone data sets
were gathered from volunteers, and some of those volun-
teers may have been Toolsmiths. However, the size of the
subject pools limit the impact of any overlap: fewer than
10% of the members of Users and 0.1% of the members of
Everyone could be members of Toolsmiths.

Experimental Details Details of our methodology, in-
cluding our publicly available data, the SQL queries
used for correlating and summarizing that data, the
tools we used for batching refactorings and group-
ing CVS revisions, our experimenters’ notebook,
and our normalization procedure, can be found at
http://multiview.cs.pdx.edu/refactoring/experiments.

5. Conclusions

We have presented an analysis of four sets of data that pro-
vides new insight into how programmers refactor in prac-
tice — particularly when programmers refactor with tools
and when they do not.



Some encouraging results have emerged from these data.
Refactoring has been embraced by a large community of
users, many of whom include refactoring as a constant com-
panion to the development process. We observed how pro-
grammers are using refactoring tools and have found two
immediate ways in which tool designers can improve refac-
toring tools: batching refactorings and limiting the configu-
ration demanded by the tools.

Howeyver, there is still much work to be done. We have
found evidence that suggests that researchers might have
to reexamine certain assumptions about refactorings. Low-
and medium-level refactorings are much more abundant,
and commit messages less reliable, than previously sup-
posed. Refactoring tools themselves are underused, partic-
ularly when we consider refactorings that have a method-
level granularity or above. Future research should investi-
gate why certain refactoring tools are underused and con-
sider how this knowledge can be used to rethink these tools.
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