
The Secret Life of Bugs:
Going Past the Errors and Omissions in Software Repositories

Jorge Aranda
Department of Computer Science

University of Toronto
10 King’s College Road

Toronto, Ontario, M5S 3G4, Canada
jaranda@cs.toronto.edu

Gina Venolia
Microsoft Research
One Microsoft Way

Redmond, WA, 98052, USA
gina.venolia@microsoft.com

Abstract

Every bug has a story behind it. The people that
discover and resolve it need to coordinate, to get
information from documents, tools, or other people,
and to navigate through issues of accountability,
ownership, and organizational structure. This paper
reports on a field study of coordination activities
around bug fixing that used a combination of case
study research and a survey of software professionals.
Results show that the histories of even simple bugs are
strongly dependent on social, organizational, and
technical knowledge that cannot be solely extracted
through automation of electronic repositories, and that
such automation provides incomplete and often
erroneous accounts of coordination. The paper uses
rich bug histories and survey results to identify
common bug fixing coordination patterns and to
provide implications for tool designers and
researchers of coordination in software development.

1. Introduction

Modern large-scale software development demands
managing huge quantities of bugs on a daily basis.
Fixing them is one of the most common and time
consuming activities of developers [16]. When bugs
number in the thousands, it is unfeasible for both team
members and researchers to keep their details present
in their minds. Abstraction becomes necessary: project
health is measured by bug counts, for instance, and
productivity by the rate of bugs closed.

Amid such abstractions it is easy to forget that every
bug has a story behind it. The people that discover and
resolve it need to coordinate, to get information from
documents, tools, or other people, and to navigate

through issues of accountability, ownership, and
organizational structure. There are awareness
requirements, inefficiencies, and opportunities for
improved productivity and quality at every step in the
process, yet these only become apparent when we go
beyond the abstracted numbers and into the rich,
detailed history of coordination in each bug.

As researchers, we often rely on repositories of
software project information as the main or only source
of evidence to extract the histories of bugs and other
work items. They are usually stored in the form of
tickets or records in a bug database. They provide a
convenient compartmentalization of work. We use
project management systems’ features such as audit
trails and data fields that keep track of ownership and
of the context of each work item. Sometimes we enrich
the histories in ticketing systems with records of
electronic communication among team members, and
with organizational structure data extracted from
human resources databases. However, to this point the
use of these electronic repositories as reliable and
sufficient accounts of the history of bugs or work items
has not been properly validated, and we do not have a
description of the common coordination dynamics
underlying bug histories.

This paper reports on a field study of coordination
activities around bug fixing that used a combination of
case study research and a survey of software
professionals. The study goes beyond the electronic
repositories of software activity by talking directly to
the key actors on the bugs to discover the patterns of
group work that are commonly used to fix bugs. It
discusses the reliability of electronic repositories as the
basis of research into the coordination of software
projects, and provides some implications for the design
of coordination and awareness tools.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 298

2. Related Work

Research on coordination of software professionals
faces the problem of having too many possible events
and variables to observe and too limited observation
and analysis resources. The need to be selective
permeates our data collection and analysis strategies.
To address this, and as a broad generalization,
empirical studies of coordination in software
development tend to follow three approaches.

First, as discussed earlier, there are reports based
primarily on electronic traces of team activity. These
electronic traces are used as a substitute for the
observation of software development work. For
instance, Herbsleb and Mockus [11] use source code
change management system data (as well as a survey)
to model distributed software development. Cataldo et
al. [5] use automatically extracted archival data to
compute coordination requirements. Valetto et al. [20]
mine software repositories to establish a measure of the
socio-technical congruence of an organization.

Second, there are detailed, rich accounts of the
activity of one or a few software professionals. These
are usually the result of ethnographic observations and
fly-on-the-wall studies, such as the work of Chong and
Hurlbutt on coordination of programming pairs [6] and
of Ko et al. [14] on information needs of collocated
teams.

Third, there are broader, abstracted reports of a
number of software projects. These tend to be detailed
and nuanced as well, but they focus on trends and
patterns of what went right or wrong at the group or
project level. This is the case of Brooks’ classic
postmortem of the OS/360 [4], and of the identification
of cognitive, team, and organizational dynamics by
Curtis et al. [7]. Recently, de Souza and Redmiles have
used this approach to characterize the coordination of
software professionals [8].

All of these approaches are necessary, and they have
given us quite useful information about coordination in
software projects. But, to our knowledge, a work-unit-
centric approach to study coordination has not been
explored in our field.

There is precedent for the work-unit-centric study of
coordination in other disciplines. Common examples
are the studies of root cause analyses (RCA) [21],
which explore a number of process failures to uncover
and fix their root causes. Our methodology differs from
RCA in many ways; most importantly in that it is not
interested in locating the main points of failure in a
process (there does not even need to be a failure), but
in describing and characterizing the process itself.

Studies of coordination in software development
have often portrayed it as an informal, complex and
context-dependent phenomenon. The prominence of
informal and undocumented coordination activities has
been mentioned several times (notably by Kraut et al.
[15], Perry et al. [18], and Herbsleb and Grinter [10]).
Documentation, a centerpiece of formal process
proposals, has been studied by Lethbridge et al., who
report that it is often out of date and rarely consulted by
developers [17]. This does not mean that developers do
not need to acquire project information constantly:
according to Singer et al. [19] search is one of the
primary kinds of developer work. Rather, as Hertzum
points out [12], engineers are interested in finding
trustworthy information, which often leads them to
their colleagues or other familiar sources rather than
documents.

Finally, previous studies on coordination around
bug repositories have studied them from different
angles. They are the main data source of the work on
automatic assignment of bug ownership by Anvik et al.
[1]. Bettenburg et al. [3] use them to improve the
quality of bug reports. And De Souza et al. [9] studied
approaches to manage interdependencies at a project at
NASA, and describe “problem reports” as boundary
objects, which are used by different groups of software
professionals for different purposes.

3. Study Design and Execution

The goal of our study is to provide a rich,
contextualized, work-item-centric account of
coordination in bug fixing tasks. We had two main
research questions:

First, how is the process of fixing bugs coordinated
in software teams? What is the lifecycle of bugs? What
are the most common patterns of coordination involved
in this work? How does their resolution play out over
time and over the socio-technical network of the teams
that work on them?

Second, do electronic traces of interaction provide a
good enough picture of coordination, or is non-
persistent knowledge necessary to understand the story
of each bug fix?

We executed a field study in two parts. The first was
a multiple-case exploratory case study [22] of bug
histories. The second aimed to validate our case study
findings with a survey of software professionals
(developers, testers, and program managers). In both
cases our data comes from software development at
Microsoft’s product divisions. The following sections
describe both parts of our study separately.

299

3.1 Multiple-case case study

The unit of analysis of our case study was the
history of a closed bug. We defined it as the collection
of conceptually related activities that at some point in
the life of their project were summarized as at least one
entry in a bug database. Some records in bug databases
are not bugs in the strict sense; we still treated them as
such since our teams did. Some bugs have duplicate
records; we considered all of the duplicates as part of
the same conceptual entity. Some bugs exhibit
symptoms that are initially seen as different bugs and
recorded separately; we treated them as part of the
same defect whenever possible.

Bugs do not necessarily begin their life when the
entry is created in the bug database or end when they
are marked as “Closed”. Some of them extend further
in both directions; this extended life is part of our unit
of analysis.

We selected our cases from three major product
divisions at Microsoft. Our selection criteria were:

� The bug was filed in a bug database, and some
elementary information about its nature was
posted in its data fields.

� The bug was marked as “Closed” at the start of
our observations.

� The bug was fresh (it was closed within two
weeks of the start of our observations).

Our cases were selected randomly. Other data, such
as the bug’s resolution mechanism, were not part of our
selection criteria, and we did not control for them.

To get a better picture of the path that user-reported
bugs follow, we deviated from our selection criteria in
one case: we contacted a Customer Support escalation
engineer and requested a pointer to a bug that had
come from Microsoft's escalation channels (that is, a
bug that was reported by a customer to support staff).

All of our cases followed the same methodology.
First, we queried a product division’s bug database to
find a case fulfilling our criteria. We obtained as much
information as we could from its electronic records,
including the events in its audit trail, all the bug
record’s data fields, data on its owners and on
everybody that had participated in any action related to
the bug, and links to source code repositories.

From that point, we traced backwards by contacting
the people that had last touched or were referenced by
the bug record. If they were not relevant to the history
(a common case, due to bulk edits of bugs), we kept
tracing back to find agents that were relevant for the
bug.

Once found, we interviewed them to get their
understanding of the history of the bug and of the

participants and artifacts from which they obtained
information or with which they coordinated to close it.
When we were pointed to an artifact, such as a
specification document, we analyzed it and traced back
to its creators. When we were pointed to other people,
we contacted them if possible, and repeated the process
with them. When we were pointed to a persistent
communication medium, such as an email, we obtained
a copy, analyzed it, and traced back to its originators.

In some cases this process would reach a dead end
but we knew there was more information to be found
(because, for instance, we had yet to reach the point
where the bug had been originally discovered). If that
was the case, we jumped to the next relevant
participant in the bug record and continued
reconstructing the bug history from that point. We
always made sure to reach the beginning of the story.

In other cases our inquiries would lead us to people
and artifacts so far along the chain of events that they
had little or no relevance to our bug’s history. In those
cases we made a subjective judgment call and stopped
exploring those branches.

Our methodology was theoretically inspired in the
focus on people, artifacts, and information flow of
Hutchins' Distributed Cognition framework [13].
However, as we had expected [2], we found so many
instances of information flow that executing our case
studies at the computational and representational level
of Hutchins’ studies was not feasible. We tried to strike
a balance between richness and contextual detail on
one hand, and replication and generalization power on
the other. We stopped collecting data on a chain of
events when we had reconstructed it in full, or when we
had reconstructed it partially, but proceeding further
was unfeasible due to a lack of participation from some
of its actors or due to our time constraints.

Our data collection was semi-structured. For each
case we collected the following information:

� A list of primary and secondary actors in the
history and their contributions.

� A list of relevant artifacts and tools.
� A chronological list of the information flow and

coordination events in the bug’s history.
� Pieces of evidence as required by the

particularities of each case.
� The history of the bug as reconstructed by its

record in the bug database.
� The history of the bug as reconstructed by the

full collection of electronic traces we obtained
� The history of the bug as reconstructed from

making sense of all available evidence,
including our interviews with participants.

300

Table 1 – Cases Summary

Case Type of Case
How

Found Resolution
Direct
Agents

Indirect
Agents

Other
Listeners

Lifespan
(days)

Days
w/Events Events

C1 Documentation Ad-hoc test Fixed 6 4 179 320 12 19
C2 Code (security) Ad-hoc test Fixed 21 6 3 408 49 138
C3 Build test failure Automated Fixed 42 8 291 59 21 141
C4 Code(functionality) Ad-hoc test Fixed 6 1 0 7 5 16
C5 Code (install) User (Beta) By Design 2 3 0 2 2 12
C6 Code(functionality) Automated Fixed 2 4 11 29 6 20
C7 Build test failure Automated Fixed 6 7 197 14 6 34
C8 Code(functionality) Dog food Won’t Fix 2 7 0 2 2 5
C9 Code(functionality) Automated Not Repro 5 2 1 2 2 12
C10 Code(functionality) Escalation Fixed 23 18 13 35 20 220

In total, we studied ten bugs (including the

escalation case). We interviewed 26 people. A brief
summary of our cases is provided in Table 1. Direct
Agents are those who executed tasks in the process of
resolving the bug; Indirect Agents were addressed by
Direct Agents, but did not intervene.

3.2 Survey

We validated our case study results with a 54-
question survey of software professionals at Microsoft.
We sent it to 1,500 randomly selected Microsoft
employees divided evenly between developers, testers,
and program managers. We offered participants a
chance to win a $500US gift card. We received 110
responses (7.3% response rate); all responses were
optional but for all questions we received at least 100
responses. We did not control for the product division
of the respondents or for demographic criteria.

The survey asked each respondent about the history
of the last recently closed bug that they had played a
primary role in resolving. It asked them to go over the
corresponding record in the bug database and to bring
up and re-read any emails pertaining to the bug, so as
to have the history of the bug fresh in their minds.

The survey had three main parts. In the first,
respondents gave us general data about the bug in
question. In the second we questioned about the
coordination patterns that we will present in Section 5.
In the third, we probed the extent to which the record in
the bug database told the full story of their bug.

Results from some of the general data questions
appear in Figures 1-3. Although it is not appropriate to
compare the case studies with the survey responses
using statistical means, the two are mostly in
agreement, with one exception: the number of direct

agents identified in the case studies versus those
reported in the survey. The quartiles for directly
involved agents in the survey are 3 (25%), 4 (50%), 6
(75%) and 15 (100%). In contrast, three of our ten
cases had more than 15 directly involved agents. We
believe the difference suggests that our investigation
revealed a much bigger bug footprint than our
respondents perceive.

Figure 1 - How was this bug found?

Figure 2 - Kind of bug

301

Figure 3 - How was this bug closed?

4. Errors and Omissions

The most striking lesson from our cases is the deep
unreliability of electronic traces, and particularly of the
bug records, which were erroneous or misleading in
seven of our ten cases, and incomplete and insufficient
in every case. In fact, even considering all of the
electronic traces of a bug that we could find
(repositories, email conversations, meeting requests,
specifications, document revisions, and organizational
structure records), in every case but one the histories
omitted important details about the bug.

Before discussing the errors and omissions in these
cases, we need to note that we believe this problem is
not a consequence of a carelessness or lack of
discipline particular to Microsoft. The repositories and
documents we reviewed seem to be as thorough as
those of comparable companies, or more. We discuss
this in greater detail in our Limitations section.

4.1 Levels of data collection and analysis

We found there are several levels at which one can

investigate the history of bugs, roughly corresponding
to the amount of time one needs to invest in each of
them. Each level incorporates all of the information
acquired in the previous, plus additional findings from
a deeper analysis:

 Level 1: Automated analysis of bug record data. At
the first level, one can use automation to obtain a list of
agents that were involved in a bug’s history, as well as
information such as a bug’s lifespan, its resolution, its
changes of state, how was it found, who were its
owners, which code change-sets correspond to the bug,
and a chronological list of its events.

Level 2: Automated analysis of electronic
conversations and other repositories. Traces of
electronic conversations can be used to construct a
social network of electronic interaction, and assume
that it corresponds in structure and intensity to the real
communication events of the participants. These data
can be filtered by participants, keywords and
timestamps to locate the electronic interactions that are
(probably) related to the bug in question.

Level 3: Human sense-making. Automation is still far
short of a human’s capability to infer every connection
in the data and reason about the evidence.

First, there is often a wealth of information in the
electronic repositories described above, but it is not
formally linked–discovering it requires a semantic,
unstructured analysis of the evidence. For instance, a
note by person A in a bug record could state that a fix
“will not address group X’s performance concerns,
which will be filed in a separate bug”. An adequately
motivated human could conclude that there probably
was a discussion between A and representatives of X,
extract the list of people that are part of group X from a
different database, match it with email records to
identify the relevant conversation and agents involved,
and, through trial-and-error queries (since no bug ID is
provided), locate the follow-up bug in the database.

Second, and posing an even greater challenge for
automation, if we want to understand and improve
coordination dynamics we need our bug histories to
include the social, political, and otherwise tacit
information that is also part of the bread and butter of
software development. This is often subtle, not always
apparent, and it must be read between the lines of the
evidence collected.

Level 4: Direct accounts of the history by its
participants. Interviewing the participants of a bug
history seems to be the best gateway to obtain the
information that was not documented, or it is
disconnected, or erroneous. Interviews enrich
significantly the data of the previous levels, as long as
they take place before the history of the bug is
forgotten. Although they are not guaranteed to provide
us a complete account of the bug’s history, they allow
us to validate earlier conclusions, and to detect events
that are not stored in the records, but that are essential
to understand it.

4.2 The levels in practice

We conducted our case study at the last of the four
levels we listed. However, throughout its execution, we

302

kept parallel bug histories corresponding to every
previous level of analysis of the evidence, in an effort
to determine how much of the real histories of bugs is
gained or corrected at each level.

The differences between levels were stark,
quantitatively and qualitatively. The following tables
help to contrast them. Table 2 shows the number of
events we could log, for each level, in the bug histories.
Similarly, Table 3 shows the total number of agents
(direct and indirect) found at each level.

Table 2 – Events

Case Level 1 Level 2 Level 3 Level 4

C1 8 16 17 19
C2 11 11 138 138
C3 19 119 119 141
C4 11 14 15 16
C5 8 11 11 12
C6 12 18 19 20
C7 6 33 34 34
C8 4 4 5 5
C9 7 11 12 12
C10 17 78 149 220

Table 3 – Agents

Case Level 1 Level 2 Level 3 Level 4

C1 7 9 9 10
C2 5 5 27 27
C3 12 38 38 50
C4 5 5 7 7
C5 4 5 2 5
C6 7 7 5 6
C7 7 14 12 13
C8 6 6 15 9
C9 6 7 7 7
C10 8 25 41 41

Although the numbers support our claims, they

cannot show the extent to which the bug histories
diverge among levels. It is not just that higher levels
produce longer stories; rather, they change qualitatively
in ways that are deeply relevant to the study of
coordination. The following paragraphs describe the
most important kinds of divergence that we observed.

4.2.1 Erroneous data fields. Basic data fields in bug
records were sometimes incorrect. C9 was a Test bug,
but it was marked as a Code bug. Some duplicates of
C2 and of C4 had the wrong Status (they were still
marked as “Resolved” when their duplicates had been
marked as “Closed”). C8 was resolved as “Won’t Fix”,
when it should have been resolved “By Design”.

Our survey asked participants regarding about the
Resolution field of their bugs, and their responses
support our finding. 10% of the respondents stated that
the Resolution field of their bug was inaccurate.

4.2.2 Missing data in bug record. Among the
important bits of data missing from bug records were
links to the source code repository in C7 and C10, links
to duplicate and related records of bug C2, links to a
bug that was found in the process of resolving the
original in C9, any links to specification documents
(especially for case C5, resolved By Design),
reproduction steps (C3), a statement of the corrective
actions taken to fix the bug (C2, C4, C7), and a
statement of the root cause of the bug (C7, C9).

The missing link to source code change-sets is one
of the most problematic omissions. For the last bug of
70% of our survey respondents, the fix involved
committing code to a repository. But 23% of those
cases had no link from the bug record to the source.

The survey supports the rest of our findings too.
Reproduction steps were marked as incomplete,
inaccurate, or missing, 18% of the time. Corresponding
percentages for the root cause of bugs and the
corrective actions taken are 26% and 35%.

4.2.3 People. Obtaining the lists of primary and
secondary participants in a bug’s history was a constant
source of errors and omissions. People that took
actions concerning the bug were often not mentioned in
the record or in email communications (C2, C3, C7,
C9, C10). The purported owners of a bug sometimes
had no activities or stake in its resolution (C6, C7, C8,
C9). The extent of a participant’s contribution was easy
to misjudge based on electronic traces: high frequency
and intensity of interaction did not imply high level of
contribution. And in at least two occasions, the
geographic location of our interviewees was incorrect
in the employee database.

In the survey, the people marked as “owners” of the
bug were driving its resolution only in 34% of the time.
In 11% they had nothing to do with the bug.

Furthermore, according to our responses, in 10% of
the time the primary people that worked on a bug are
not easy to spot by looking at the bug record, and in
10% they do not even appear in the record. The list of
people that edited the bug’s fields and history includes
only some of its primary participants 40% of the time,
and none of them 4%. Corresponding numbers for
secondary participants are 39% and 38%. All of the
people in the bug’s history and fields are fully
irrelevant in 7% of the cases.

303

4.2.4 Events. It is unrealistic to expect all events
related to a bug to be found in its record or through its
electronic traces. Naturally, most face-to-face events
left no trace in any repository. But in some occasions,
the key events in the story of a bug had left no
electronic trace; the only way to discover them was
through interviews with the participants. At the same
time, some events logged in the bug records of all of
our cases were noise or junk (for instance, bulk edits
and mistakes with their later corrections). The
chronological order of events was also problematic:
Bugs were sometimes resolved even before their record
had been created (C7), or closed long after they had
been resolved because they’d been forgotten by the
person that needed to close them (C2, C4).

In the survey, 3% of the bugs had been discussed at
least a month before they were first filed, and an
additional 6% at least a week before being filed.

4.2.5 Groups and politics. As we moved further from
the raw data and into broader patterns of coordination,
we saw that most of the important information at the
team and division levels could only be found through
higher levels of analysis. In C4 we found a pocket of
people with a culture and practices different than those
of their division, in the process of assimilation after an
acquisition. The status of a group with respect to
milestones and releases bore significant consequences
to the kind and speed of the decisions made as new
bugs were found (for instance, for C5 the team was
undergoing a “bug bash” and having face-to-face triage
meetings daily; most bugs were only given a minute of
air time or less). Sometimes, as in C3 and C7,
ownership of a bug falls in a gray zone, and inter-team
or inter-division struggles to determine ownership and
accountability ensue. These issues usually impact the
history of bugs considerably, yet we could not have
learned about them without interviewing its participants
and paying close attention to the details in the
electronic record.

4.2.6 Rationale. Probably the hardest questions to
answer without human sense-making and participant
collaboration were the “why” questions: In C4, why did
a developer choose another as a required code
reviewer, but a third as an optional reviewer? In C10,
why was there no activity in a bug record for weeks
after a few bouts of minute-by-minute updates and
frantic emails? Why were the Status or Resolution
fields in C2, C4, and C8 incorrect? Why in C5 did a
triage group conclude that the bug would not be fixed?
Why did a tester file a bug, C9, even though she
suspected the failure was most likely a false alarm?

We found that the answers to these questions,
discovered during interviews, would often unlock the
whole explanation of the events in the history of a bug.

4.2.7 Miscellaneous. Other facts that could only be
found at higher levels of analysis resist categorization,
but still tend to be at the heart of a bug’s history. In C6,
a bug was found independently by a tester and a
developer in different groups; the developer produced a
fix without knowledge that the bug had been already
documented. In C4, a developer committed hundreds of
new lines of code to fix a bug shortly after it was
found; he did not write them all at a blazing speed, but
rather copied them from the code of his old company,
now acquired by Microsoft, and “stitched it” to the
relevant interfaces. In two cases (C3 and C7), early and
correct diagnoses were promptly ignored in a flurry of
emails to get an urgent bug resolved. In general, the
bugs in our case pool had far richer and more complex
stories than would appear by automatically collecting
and analyzing their electronic traces.

5. Coordination Patterns

In the end, our bug histories were rich, varied, and
context dependent. They did not follow a uniform path
or lifecycle. This posed a problem: our first research
goal was, precisely, to describe the lifecycle of bugs
and the process of fixing them.

Instead of attempting to formulate a process for all
bug histories, we chose to describe the menu of
coordination patterns that we observed. We selected
the patterns that seemed to be the most recurrent and
those that occurred rarely but had a great impact in the
history of a bug. Table 4 lists them.

Some of the patterns have negative implications. For
instance, we saw several cases of “snowballing
threads” and “rapid fire email in public” that were
clearly inefficient, yet they seemed to be routine for our
participants. The only “summit” we observed
corresponded to a bug (C3) that was described to us as
“very important” and “threatening to move our ship
date” by the release manager in charge. We added one
pattern for completeness (video conferences), though
we observed no instances of it. Another pattern,
“forgotten”, was pointed to us by one of our survey
respondents; it was not included in our original list.

We asked our survey respondents whether those
patterns had occurred for their last bug, and if so,
whether they had been essential for the resolution of
the bug. Figure 4 provides their responses. The last
column represents the perceived usefulness of a pattern
in relation to its frequency.

304

Table 4 - Coordination patterns

Communication media

Broadcasting emails Sending a manual or automatic notification to a number of mailing lists to inform their members
of an event.

Shotgun emails Sending an email to a number of mailing lists and individuals in the hope that one of the
recipients will have an answer to the current problem

Snowballing threads Adding people to an ever-increasing list of email recipients.

Probing for expertise Sending emails to one or few people, not through the “shotgun” method, in the hope that they will
either have the expertise to assist with a problem or can redirect to somebody that will.

Probing for ownership Sending emails to one or few people, not through the “shotgun” method, requesting that they
accept ownership of the bug or can redirect to somebody that will.

Infrequent, direct email Emails sent privately and infrequently among a handful of people.

Rapid-fire email Bursts of email activity in private among a few people in the process of troubleshooting the issue.

Rapid-fire email in public Like the above, but with tens or hundreds of people copied as recipients of the email thread, most
of them unconnected to the issue.

IM discussion Using an instant messaging platform to pass along information, troubleshoot, or ping people.

Phone Phone conversations used to pass along information, troubleshoot, or ping people.

Bug database

Close-reopen A bug that is reopened because it had been incorrectly diagnosed or resolved, or because there is
disagreement on its resolution or on the team's ability to postpone addressing it.

Follow-up bugs filed Other bugs were found and filed in the process of fixing this one, or a piece of this bug was filed
in a different record as follow-up.

Forgotten A bug record that goes unnoticed and unattended for long periods.

Working on code

Code review The fix for this bug was reviewed and approved by at least one peer.

Two birds with one stone The fix for this bug also fixed other bugs that had been discovered and filed previously.

While we’re there The fix for this bug also fixed other bugs that had not been discovered previously.

Meeting

Drop by your office Getting a piece of information, or bouncing some ideas regarding the issue, face to face informally
with a coworker in a nearby office.

Air time in status meeting The issue was discussed in a regular group status meeting.

Huddle The issue called for a team meeting exclusively to discuss it.

Summit The issue called for a meeting among people from different divisions exclusively to discuss it.
Meeting with remote
participants

Any meeting where at least one member is attending remotely (could be a huddle or summit
meeting).

Video conferences Any meeting where video was used to communicate with at least one attendee (could be a huddle
or summit meeting.

Other patterns

Ignored fix/diagnosis A correct diagnosis or fix that was proposed early on and was temporarily ignored by the majority.

Ownership avoidance Bouncing ownership of the bug or code.

Triaging Discussing and deciding whether this is an issue worth addressing.

Referring to the spec At least one concrete and specific reference to a spec, design document, scenario, or vision
statement, to provide guidance to solve or settle the issue.

Unexpected contribution New information or alternatives that come from people out of the group discussing the issue.

Deep collaboration Two or more people working closely (face to face or electronically) and for a sustained period to
unravel the issue.

305

Figure 4 - Usefulness and frequency of patterns

We do not claim that our list of patterns is
comprehensive. But using them to characterize bug
histories may provide enough relevant information
about their coordination events while ignoring
irrelevant details. Furthermore, as we discuss in the
next section, some of them could be supported (or in
the case of negative patterns, prevented) by software
tools.

6. Implications

6.1 For tool designers

Although the set of states commonly used in bug
databases (Active, Assigned, Resolved, etc.) may be
helpful to manage software development, our data
shows that they are poor approximations of the true
lifecycle of a bug. We believe it is more useful, for
understanding coordination and for designing tools for
developers, to think of bug fixing activities not as

belonging to a stage of a bug’s life or a workflow, but
as striving for the satisfaction of one or several goals.

We formulated a list of goals based on the activities
of the people in our case study. Table 5 describes them.
Not all of the goals occur for every case, and they do
not occur strictly sequentially.

These goals provide a framework to analyze the
effectiveness of coordination and project management
tools and practices. For instance, Assignment of
Ownership is often problematic, especially if there is
no clear owner of the seemingly buggy code. In the
case study this happened more often with test scripts
than with feature code, and with developers leaving
their posts without tying loose ends. Tools and
practices that ensure that every artifact has an active
owner would reduce this problem.

Search is another problematic area. In our cases it
often resulted in “snowballing threads” and “shotgun
emails,” which sometimes succeed in finding the
people or piece of knowledge necessary, but can be
extremely inefficient if one considers the person-hours
needed by hundreds of email recipients to parse
numerous messages that, more often than not, have no
relevance for them.

For coordination purposes, Awareness was the area
most in need of improvement. However, it is not easy
to figure out how to provide the right level of
awareness in very large companies with interconnected
products. Awareness seems to be most needed not at
the team level, but among the primary and secondary
agents that form the social network around a work item.
Tools that (partially) detect work networks and allow
for their members to be aware of the activities of their
peers should help address this issue.

6.2 For researchers

Our case study and survey results point in the same
direction: Electronic repositories hold incomplete or
incorrect data more often than not. We base this
conclusion on our exploration of bug databases and
email communications; source code repositories are
even more at fault than these data sources as they are
blind to the networks of testers, program managers,
usability experts, and users that are also primary agents
in coordination phenomena.

Some of the concrete discrepancies we found might
be acceptable for large-scale automated analyses of
coordination. Others, such as most of the People issues
in 4.2.3 and the missing links from bug records to
source code change-sets, are far more serious.

306

Table 5 – Stakeholders’ goals during the lifespan of a bug

Discovery Detecting a difference between reality and expectation. The essential first step to record the
unexpected behavior as a bug.

Diagnosis Understanding the nature, cause, and impact of the bug, as well as the actions that will be taken as
a result. We believe it happens in every case, though often tacitly.

Assignment of Ownership Determining who will be responsible and accountable for the resolution of a bug, both at the
group and individual levels.

Search
Finding the appropriate knowledge, resources, and skills. It seems to be often meshed with
Assignment of Ownership activities, so that the expert is the owner of the bug –but even the
owner may need to reach out for other, more specific bits of expertise and knowledge.

Correction What we usually think of as “fixing a bug”. Correcting relevant lines of code, changing
documentation, scripts, or other artifacts so that reality and expectation match again.

Closure Determining that the organization is willing to live with the current state of things as related to the
bug.

Awareness Communicating status to relevant participants. It stretches through the whole history of almost
every bug.

One could take several actions to reduce the

problems posed by electronic repositories. An essential
first step is to connect them. Also important would be
to provide some elementary intelligence to automation
tools to detect and ignore noise activity and bulk edits.
Finally, studying the standard operations of the
participating organization can help researchers
determine whether most coordination events leave
minable electronic traces or not.

But even if all of the above were taken care of,
reaching conclusions about coordination dynamics
exclusively through automation runs the risk of failing
to perceive the personal, social, and political factors of
large scale software development, and thus of missing
the essence of each of the interactions that constitute a
software product.

7. Limitations

During our analysis we worked with several
concepts that do not yet have a consistent definition in
the literature. In particular, one could argue that our
coordination patterns and goals are subjective and have
blurry boundaries–we never specified, for instance, the
difference between “rapid-fire” and “infrequent”
emails. Although this is a valid criticism, our constructs
are a first iteration given the data we collected.
Additional data and further iterations should refine
these constructs, and add others that help convey the
underlying concepts more clearly.

Our data come exclusively from Microsoft, and the
extent to which our results are valid for other
companies is not clear without replications. As is well
known, Microsoft has tens of thousands of employees,
millions of daily users, and many interconnected
products. These are all forces that shape coordination

dynamics. However, the use of software repositories
and communication media at Microsoft seems to be
similar to that of comparable companies. The clearest
finding in our study, the difference between the
minable version and the true version of a bug’s history,
should not be Microsoft-specific, as it depends not on
corporate culture but on the amount and quality of the
information that can be economically and efficiently
captured electronically.

It is possible that for some software development
environments, particularly open source, in which all or
most information is communicated electronically and
persistently, this is less of a problem. Replications of
this study would help resolve that question.

8. Conclusions

This field study found that the histories of even
simple bugs are strongly dependent on social,
organizational, and technical knowledge that cannot be
solely extracted through the automated analysis of
software repositories. Automatically extracted histories
provide factual errors and incomplete and erroneous
accounts of coordination. The paper discusses some
strategies to mitigate this problem.

The study also used rich bug histories to discover a
number of coordination patterns of bug fixing, which
were validated through a survey of software
professionals. From an analysis of the underlying
purpose of the people that engage in these patterns, we
derived eight goals for bug fixing that are useful as a
framework to design better tools and practices.

Although we initially considered studying
coordination for feature development along with bug
fixing, a pilot feature case (not reported in this paper)
proved to belong to an entirely different domain, and

307

we chose to focus on bug fixing exclusively. We plan
to explore the differences and interactions between
both kinds of development activities in future work.

Acknowledgements

We thank the HIP team at Microsoft Research, our
anonymous reviewers, and Steve Easterbrook, Greg
Wilson, and Jeremy Handcock for fruitful discussions
throughout the study. We also thank the software
professionals that participated in our study for their
time. The first author was an intern at Microsoft
Research during the summer of 2008.

References

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix
this bug? In ICSE’06: Proceedings of the 28th International
Conference on Software Engineering, pages 361-370,
Shanghai, China, 2006.

[2] J. Aranda and S. M. Easterbrook. Distributed cognition in
software engineering research: Can it be made to work? In
First workshop on Supporting the Social Side of Large Scale
Software Development (SSSLSSD), Banff, Canada, 2006.

[3] N. Bettenburg, S. Just, A. Schroter, C. Weiss, R. Premraj,
and T. Zimmermann. What makes a good bug report? In
Proceedings of the 16th International Symposium on
Foundations of Software Engineering (FSE 2008), Atlanta,
GA, USA, November, 2008.

[4] F. P. Brooks. The Mythical Man-Month. Addison
Wesley, 1995.

[5] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M.
Carley. Identification of coordination requirements:
Implications for the design of collaboration and awareness
tools. In CSCW’06: Proceedings of the 20th conference on
Computer Supported Cooperative Work, pages 353-362,
Banff, Canada, 2006.

[6] J. Chong and T. Hurlbutt. The social dynamics of pair
programming. In ICSE’07: Proceedings of the 29th
International Conference on Software Engineering, pages
354-363, Minneapolis, MN, USA, 2007.

[7] B. Curtis, H. Krasner, and N. Iscoe. A field study of the
software design process for large systems. Communications
of the ACM, 31(11): 1268-1287, 1988.

[8] C. R. B. de Souza and D. F. Redmiles. An empirical
study of software developers’ management of dependencies
and changes. In ICSE’08: Proceedings of the 30th
International Conference on Software Engineering, pages
241-250, Leipzig, Germany, 2008.

[9] C. R. B. de Souza, D. F. Redmiles, G. Mark, J. Penix, and
M. Sierhuis. Management of interdependencies in
collaborative software development. In ISESE 2003:

Proceedings of the 2003 International Symposium on
Empirical Software Engineering, pages 294-303, 2003.

 [10] J. D. Herbsleb and R. E. Grinter. Splitting the
organization and integrating the code: Conway’s Law
revisited. In ICSE’99: Proceedings of the 1999 International
Conference on Software Engineering, pages 85-95, Los
Angeles, CA, USA, 1999.

[11] J. D. Herbsleb and A. Mockus. An empirical study of
speed and communication in globally distributed software
development. IEEE Transactions on Software Engineering,
29(6):481-494, 2003.

[12] M. Hertzum. The importance of trust in software
engineers’ assessment and choice of information sources.
Information and Organization, 12(1): 1-18, 2002.

[13] E. Hutchins. Cognition in the Wild. MIT Press, 1995.

[14] A. J. Ko, R. DeLine, and G. Venolia. Information needs
in collocated software development teams. In ICSE’07:
Proceedings of the 29th International Conference on
Software Engineering, pages 344-353, Minneapolis, MN,
USA, 2007.

[15] R. E. Kraut and L. A. Streeter. Coordination in software
development. Communications of the ACM, 38(3): 69-81,
1995.

[16] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: A study of developer work habits. In
ICSE’06: Proceedings of the 28th International Conference
on Software Engineering, pages 492-501, Shanghai, China,
2006.

[17] T. C. Lethbridge, J. Singer, and A. Forward. How
software engineers use documentation: The state of the
practice. IEEE Software, 20(6): 35-39, 2003.

[18] D. Perry, N. A. Staudenmayer, and L. G. Votta. People,
organizations, and process improvement. IEEE Software,
11(4): 36-45, 1994.

[19] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil.
An examination of software engineering work practices. In
CASCON’97: Proceedings of the 1997 Conference of the
Centre for Advanced Studies on Collaborative Research,
Toronto, ON, Canada, 1997.

[20] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M.
Wegman, and C. Williams. Using software repositories to
investigate socio-technical congruence in development
projects. In MSR’07: Fourth International Workshop on
Mining Software Repositories, Minneapolis, MN, USA,
2007.

[21] P. F. Wilson, L. D. Dell, and G. F. Anderson. Root
Cause Analysis: A Tool for Total Quality Management. ASQ
Quality Press, 1993.

[22] R. K. Yin. Case Study Research: Design and Methods
(3rd Edition). Sage, 2003.

308

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
