
The Secret Life of Bugs:                                                                    
Going Past the Errors and Omissions in Software Repositories 

 
 

Jorge Aranda 
Department of Computer Science 

University of Toronto 
10 King’s College Road 

Toronto, Ontario, M5S 3G4, Canada 
jaranda@cs.toronto.edu 

Gina Venolia 
Microsoft Research 
One Microsoft Way 

Redmond, WA, 98052, USA 
gina.venolia@microsoft.com

 
 

Abstract 
 

Every bug has a story behind it. The people that 
discover and resolve it need to coordinate, to get 
information from documents, tools, or other people, 
and to navigate through issues of accountability, 
ownership, and organizational structure. This paper 
reports on a field study of coordination activities 
around bug fixing that used a combination of case 
study research and a survey of software professionals. 
Results show that the histories of even simple bugs are 
strongly dependent on social, organizational, and 
technical knowledge that cannot be solely extracted 
through automation of electronic repositories, and that 
such automation provides incomplete and often 
erroneous accounts of coordination. The paper uses 
rich bug histories and survey results to identify 
common bug fixing coordination patterns and to 
provide implications for tool designers and 
researchers of coordination in software development. 
 
1. Introduction 
 

Modern large-scale software development demands 
managing huge quantities of bugs on a daily basis. 
Fixing them is one of the most common and time 
consuming activities of developers [16]. When bugs 
number in the thousands, it is unfeasible for both team 
members and researchers to keep their details present 
in their minds. Abstraction becomes necessary: project 
health is measured by bug counts, for instance, and 
productivity by the rate of bugs closed. 

Amid such abstractions it is easy to forget that every 
bug has a story behind it. The people that discover and 
resolve it need to coordinate, to get information from 
documents, tools, or other people, and to navigate 

through issues of accountability, ownership, and 
organizational structure. There are awareness 
requirements, inefficiencies, and opportunities for 
improved productivity and quality at every step in the 
process, yet these only become apparent when we go 
beyond the abstracted numbers and into the rich, 
detailed history of coordination in each bug. 

As researchers, we often rely on repositories of 
software project information as the main or only source 
of evidence to extract the histories of bugs and other 
work items. They are usually stored in the form of 
tickets or records in a bug database.  They provide a 
convenient compartmentalization of work. We use 
project management systems’ features such as audit 
trails and data fields that keep track of ownership and 
of the context of each work item. Sometimes we enrich 
the histories in ticketing systems with records of 
electronic communication among team members, and 
with organizational structure data extracted from 
human resources databases. However, to this point the 
use of these electronic repositories as reliable and 
sufficient accounts of the history of bugs or work items 
has not been properly validated, and we do not have a 
description of the common coordination dynamics 
underlying bug histories. 

This paper reports on a field study of coordination 
activities around bug fixing that used a combination of 
case study research and a survey of software 
professionals. The study goes beyond the electronic 
repositories of software activity by talking directly to 
the key actors on the bugs to discover the patterns of 
group work that are commonly used to fix bugs. It 
discusses the reliability of electronic repositories as the 
basis of research into the coordination of software 
projects, and provides some implications for the design 
of coordination and awareness tools. 
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2. Related Work 
 

Research on coordination of software professionals 
faces the problem of having too many possible events 
and variables to observe and too limited observation 
and analysis resources. The need to be selective 
permeates our data collection and analysis strategies. 
To address this, and as a broad generalization, 
empirical studies of coordination in software 
development tend to follow three approaches. 

First, as discussed earlier, there are reports based 
primarily on electronic traces of team activity. These 
electronic traces are used as a substitute for the 
observation of software development work. For 
instance, Herbsleb and Mockus [11] use source code 
change management system data (as well as a survey) 
to model distributed software development. Cataldo et 
al. [5] use automatically extracted archival data to 
compute coordination requirements. Valetto et al. [20] 
mine software repositories to establish a measure of the 
socio-technical congruence of an organization. 

Second, there are detailed, rich accounts of the 
activity of one or a few software professionals. These 
are usually the result of ethnographic observations and 
fly-on-the-wall studies, such as the work of Chong and 
Hurlbutt on coordination of programming pairs [6] and 
of Ko et al. [14] on information needs of collocated 
teams. 

Third, there are broader, abstracted reports of a 
number of software projects. These tend to be detailed 
and nuanced as well, but they focus on trends and 
patterns of what went right or wrong at the group or 
project level. This is the case of Brooks’ classic 
postmortem of the OS/360 [4], and of the identification 
of cognitive, team, and organizational dynamics by 
Curtis et al. [7]. Recently, de Souza and Redmiles have 
used this approach to characterize the coordination of 
software professionals [8]. 

All of these approaches are necessary, and they have 
given us quite useful information about coordination in 
software projects. But, to our knowledge, a work-unit-
centric approach to study coordination has not been 
explored in our field. 

There is precedent for the work-unit-centric study of 
coordination in other disciplines. Common examples 
are the studies of root cause analyses (RCA) [21], 
which explore a number of process failures to uncover 
and fix their root causes. Our methodology differs from 
RCA in many ways; most importantly in that it is not 
interested in locating the main points of failure in a 
process (there does not even need to be a failure), but 
in describing and characterizing the process itself. 

Studies of coordination in software development 
have often portrayed it as an informal, complex and 
context-dependent phenomenon. The prominence of 
informal and undocumented coordination activities has 
been mentioned several times (notably by Kraut et al. 
[15], Perry et al. [18], and Herbsleb and Grinter [10]). 
Documentation, a centerpiece of formal process 
proposals, has been studied by Lethbridge et al., who 
report that it is often out of date and rarely consulted by 
developers [17]. This does not mean that developers do 
not need to acquire project information constantly: 
according to Singer et al. [19] search is one of the 
primary kinds of developer work. Rather, as Hertzum 
points out [12], engineers are interested in finding 
trustworthy information, which often leads them to 
their colleagues or other familiar sources rather than 
documents. 

Finally, previous studies on coordination around 
bug repositories have studied them from different 
angles. They are the main data source of the work on 
automatic assignment of bug ownership by Anvik et al. 
[1]. Bettenburg et al. [3] use them to improve the 
quality of bug reports. And De Souza et al. [9] studied 
approaches to manage interdependencies at a project at 
NASA, and describe “problem reports” as boundary 
objects, which are used by different groups of software 
professionals for different purposes. 

 
3. Study Design and Execution 
 

The goal of our study is to provide a rich, 
contextualized, work-item-centric account of 
coordination in bug fixing tasks. We had two main 
research questions: 

First, how is the process of fixing bugs coordinated 
in software teams? What is the lifecycle of bugs? What 
are the most common patterns of coordination involved 
in this work? How does their resolution play out over 
time and over the socio-technical network of the teams 
that work on them? 

Second, do electronic traces of interaction provide a 
good enough picture of coordination, or is non-
persistent knowledge necessary to understand the story 
of each bug fix? 

We executed a field study in two parts. The first was 
a multiple-case exploratory case study [22] of bug 
histories. The second aimed to validate our case study 
findings with a survey of software professionals 
(developers, testers, and program managers). In both 
cases our data comes from software development at 
Microsoft’s product divisions. The following sections 
describe both parts of our study separately. 
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3.1 Multiple-case case study 
 

The unit of analysis of our case study was the 
history of a closed bug. We defined it as the collection 
of conceptually related activities that at some point in 
the life of their project were summarized as at least one 
entry in a bug database. Some records in bug databases 
are not bugs in the strict sense; we still treated them as 
such since our teams did. Some bugs have duplicate 
records; we considered all of the duplicates as part of 
the same conceptual entity. Some bugs exhibit 
symptoms that are initially seen as different bugs and 
recorded separately; we treated them as part of the 
same defect whenever possible. 

Bugs do not necessarily begin their life when the 
entry is created in the bug database or end when they 
are marked as “Closed”. Some of them extend further 
in both directions; this extended life is part of our unit 
of analysis. 

We selected our cases from three major product 
divisions at Microsoft. Our selection criteria were: 

� The bug was filed in a bug database, and some 
elementary information about its nature was 
posted in its data fields. 

� The bug was marked as “Closed” at the start of 
our observations. 

� The bug was fresh (it was closed within two 
weeks of the start of our observations). 

Our cases were selected randomly. Other data, such 
as the bug’s resolution mechanism, were not part of our 
selection criteria, and we did not control for them. 

To get a better picture of the path that user-reported 
bugs follow, we deviated from our selection criteria in 
one case: we contacted a Customer Support escalation 
engineer and requested a pointer to a bug that had 
come from Microsoft's escalation channels (that is, a 
bug that was reported by a customer to support staff). 

All of our cases followed the same methodology. 
First, we queried a product division’s bug database to 
find a case fulfilling our criteria. We obtained as much 
information as we could from its electronic records, 
including the events in its audit trail, all the bug 
record’s data fields, data on its owners and on 
everybody that had participated in any action related to 
the bug, and links to source code repositories. 

From that point, we traced backwards by contacting 
the people that had last touched or were referenced by 
the bug record. If they were not relevant to the history 
(a common case, due to bulk edits of bugs), we kept 
tracing back to find agents that were relevant for the 
bug. 

Once found, we interviewed them to get their 
understanding of the history of the bug and of the 

participants and artifacts from which they obtained 
information or with which they coordinated to close it. 
When we were pointed to an artifact, such as a 
specification document, we analyzed it and traced back 
to its creators. When we were pointed to other people, 
we contacted them if possible, and repeated the process 
with them. When we were pointed to a persistent 
communication medium, such as an email, we obtained 
a copy, analyzed it, and traced back to its originators. 

In some cases this process would reach a dead end 
but we knew there was more information to be found 
(because, for instance, we had yet to reach the point 
where the bug had been originally discovered). If that 
was the case, we jumped to the next relevant 
participant in the bug record and continued 
reconstructing the bug history from that point. We 
always made sure to reach the beginning of the story. 

In other cases our inquiries would lead us to people 
and artifacts so far along the chain of events that they 
had little or no relevance to our bug’s history. In those 
cases we made a subjective judgment call and stopped 
exploring those branches. 

Our methodology was theoretically inspired in the 
focus on people, artifacts, and information flow of 
Hutchins' Distributed Cognition framework [13]. 
However, as we had expected [2], we found so many 
instances of information flow that executing our case 
studies at the computational and representational level 
of Hutchins’ studies was not feasible. We tried to strike 
a balance between richness and contextual detail on 
one hand, and replication and generalization power on 
the other. We stopped collecting data on a chain of 
events when we had reconstructed it in full, or when we 
had reconstructed it partially, but proceeding further 
was unfeasible due to a lack of participation from some 
of its actors or due to our time constraints. 

Our data collection was semi-structured. For each 
case we collected the following information: 

� A list of primary and secondary actors in the 
history and their contributions. 

� A list of relevant artifacts and tools. 
� A chronological list of the information flow and 

coordination events in the bug’s history. 
� Pieces of evidence as required by the 

particularities of each case. 
� The history of the bug as reconstructed by its 

record in the bug database. 
� The history of the bug as reconstructed by the 

full collection of electronic traces we obtained  
� The history of the bug as reconstructed from 

making sense of all available evidence, 
including our interviews with participants. 
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Table 1 – Cases Summary 
 

Case Type of Case 
How 

Found Resolution 
Direct 
Agents 

Indirect 
Agents 

Other 
Listeners 

Lifespan 
(days) 

Days 
w/Events Events 

C1 Documentation Ad-hoc test Fixed 6 4 179 320 12 19 
C2 Code (security) Ad-hoc test Fixed 21 6 3 408 49 138 
C3 Build test failure Automated Fixed 42 8 291 59 21 141 
C4 Code(functionality) Ad-hoc test Fixed 6 1 0 7 5 16 
C5 Code (install) User (Beta) By Design 2 3 0 2 2 12 
C6 Code(functionality) Automated Fixed 2 4 11 29 6 20 
C7 Build test failure Automated  Fixed 6 7 197 14 6 34 
C8 Code(functionality) Dog food Won’t Fix 2 7 0 2 2 5 
C9 Code(functionality) Automated Not Repro 5 2 1 2 2 12 
C10 Code(functionality) Escalation Fixed 23 18 13 35 20 220 

 
In total, we studied ten bugs (including the 

escalation case). We interviewed 26 people. A brief 
summary of our cases is provided in Table 1. Direct 
Agents are those who executed tasks in the process of 
resolving the bug; Indirect Agents were addressed by 
Direct Agents, but did not intervene. 

 
3.2 Survey 
 

We validated our case study results with a 54-
question survey of software professionals at Microsoft. 
We sent it to 1,500 randomly selected Microsoft 
employees divided evenly between developers, testers, 
and program managers. We offered participants a 
chance to win a $500US gift card. We received 110 
responses (7.3% response rate); all responses were 
optional but for all questions we received at least 100 
responses. We did not control for the product division 
of the respondents or for demographic criteria. 

The survey asked each respondent about the history 
of the last recently closed bug that they had played a 
primary role in resolving. It asked them to go over the 
corresponding record in the bug database and to bring 
up and re-read any emails pertaining to the bug, so as 
to have the history of the bug fresh in their minds. 

The survey had three main parts. In the first, 
respondents gave us general data about the bug in 
question. In the second we questioned about the 
coordination patterns that we will present in Section 5. 
In the third, we probed the extent to which the record in 
the bug database told the full story of their bug. 

Results from some of the general data questions 
appear in Figures 1-3. Although it is not appropriate to 
compare the case studies with the survey responses 
using statistical means, the two are mostly in 
agreement, with one exception: the number of direct 

agents identified in the case studies versus those 
reported in the survey. The quartiles for directly 
involved agents in the survey are 3 (25%), 4 (50%), 6 
(75%) and 15 (100%). In contrast, three of our ten 
cases had more than 15 directly involved agents. We 
believe the difference suggests that our investigation 
revealed a much bigger bug footprint than our 
respondents perceive. 

 

 
 

Figure 1 - How was this bug found? 
 

 
 

Figure 2 - Kind of bug 
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Figure 3 - How was this bug closed? 
 

4. Errors and Omissions 
 

The most striking lesson from our cases is the deep 
unreliability of electronic traces, and particularly of the 
bug records, which were erroneous or misleading in 
seven of our ten cases, and incomplete and insufficient 
in every case. In fact, even considering all of the 
electronic traces of a bug that we could find 
(repositories, email conversations, meeting requests, 
specifications, document revisions, and organizational 
structure records), in every case but one the histories 
omitted important details about the bug. 

Before discussing the errors and omissions in these 
cases, we need to note that we believe this problem is 
not a consequence of a carelessness or lack of 
discipline particular to Microsoft. The repositories and 
documents we reviewed seem to be as thorough as 
those of comparable companies, or more. We discuss 
this in greater detail in our Limitations section. 
 
4.1 Levels of data collection and analysis 

 
We found there are several levels at which one can 

investigate the history of bugs, roughly corresponding 
to the amount of time one needs to invest in each of 
them. Each level incorporates all of the information 
acquired in the previous, plus additional findings from 
a deeper analysis: 

 
 Level 1: Automated analysis of bug record data. At 
the first level, one can use automation to obtain a list of 
agents that were involved in a bug’s history, as well as 
information such as a bug’s lifespan, its resolution, its 
changes of state, how was it found, who were its 
owners, which code change-sets correspond to the bug, 
and a chronological list of its events. 

 

Level 2: Automated analysis of electronic 
conversations and other repositories. Traces of 
electronic conversations can be used to construct a 
social network of electronic interaction, and assume 
that it corresponds in structure and intensity to the real 
communication events of the participants. These data 
can be filtered by participants, keywords and 
timestamps to locate the electronic interactions that are 
(probably) related to the bug in question. 
 
Level 3: Human sense-making. Automation is still far 
short of a human’s capability to infer every connection 
in the data and reason about the evidence. 

First, there is often a wealth of information in the 
electronic repositories described above, but it is not 
formally linked–discovering it requires a semantic, 
unstructured analysis of the evidence. For instance, a 
note by person A in a bug record could state that a fix 
“will not address group X’s performance concerns, 
which will be filed in a separate bug”. An adequately 
motivated human could conclude that there probably 
was a discussion between A and representatives of X, 
extract the list of people that are part of group X from a 
different database, match it with email records to 
identify the relevant conversation and agents involved, 
and, through trial-and-error queries (since no bug ID is 
provided), locate the follow-up bug in the database. 

Second, and posing an even greater challenge for 
automation, if we want to understand and improve 
coordination dynamics we need our bug histories to 
include the social, political, and otherwise tacit 
information that is also part of the bread and butter of 
software development. This is often subtle, not always 
apparent, and it must be read between the lines of the 
evidence collected. 

 
Level 4: Direct accounts of the history by its 
participants. Interviewing the participants of a bug 
history seems to be the best gateway to obtain the 
information that was not documented, or it is 
disconnected, or erroneous. Interviews enrich 
significantly the data of the previous levels, as long as 
they take place before the history of the bug is 
forgotten. Although they are not guaranteed to provide 
us a complete account of the bug’s history, they allow 
us to validate earlier conclusions, and to detect events 
that are not stored in the records, but that are essential 
to understand it. 
 
4.2 The levels in practice 
 

We conducted our case study at the last of the four 
levels we listed. However, throughout its execution, we 
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kept parallel bug histories corresponding to every 
previous level of analysis of the evidence, in an effort 
to determine how much of the real histories of bugs is 
gained or corrected at each level. 

The differences between levels were stark, 
quantitatively and qualitatively. The following tables 
help to contrast them. Table 2 shows the number of 
events we could log, for each level, in the bug histories. 
Similarly, Table 3 shows the total number of agents 
(direct and indirect) found at each level. 

 
Table 2 – Events 

 
Case Level 1 Level 2 Level 3 Level 4 

C1 8 16 17 19 
C2 11 11 138 138 
C3 19 119 119 141 
C4 11 14 15 16 
C5 8 11 11 12 
C6 12 18 19 20 
C7 6 33 34 34 
C8 4 4 5 5 
C9 7 11 12 12 
C10 17 78 149 220 

 
 

Table 3 – Agents 
 
Case Level 1 Level 2 Level 3 Level 4 

C1 7 9 9 10 
C2 5 5 27 27 
C3 12 38 38 50 
C4 5 5 7 7 
C5 4 5 2 5 
C6 7 7 5 6 
C7 7 14 12 13 
C8 6 6 15 9 
C9 6 7 7 7 
C10 8 25 41 41 

 
Although the numbers support our claims, they 

cannot show the extent to which the bug histories 
diverge among levels. It is not just that higher levels 
produce longer stories; rather, they change qualitatively 
in ways that are deeply relevant to the study of 
coordination. The following paragraphs describe the 
most important kinds of divergence that we observed. 

 
4.2.1 Erroneous data fields. Basic data fields in bug 
records were sometimes incorrect. C9 was a Test bug, 
but it was marked as a Code bug. Some duplicates of 
C2 and of C4 had the wrong Status (they were still 
marked as “Resolved” when their duplicates had been 
marked as “Closed”). C8 was resolved as “Won’t Fix”, 
when it should have been resolved “By Design”. 

Our survey asked participants regarding about the 
Resolution field of their bugs, and their responses 
support our finding. 10% of the respondents stated that 
the Resolution field of their bug was inaccurate. 

 
4.2.2 Missing data in bug record. Among the 
important bits of data missing from bug records were 
links to the source code repository in C7 and C10, links 
to duplicate and related records of bug C2, links to a 
bug that was found in the process of resolving the 
original in C9, any links to specification documents 
(especially for case C5, resolved By Design), 
reproduction steps (C3), a statement of the corrective 
actions taken to fix the bug (C2, C4, C7), and a 
statement of the root cause of the bug (C7, C9). 

The missing link to source code change-sets is one 
of the most problematic omissions. For the last bug of 
70% of our survey respondents, the fix involved 
committing code to a repository. But 23% of those 
cases had no link from the bug record to the source. 

The survey supports the rest of our findings too. 
Reproduction steps were marked as incomplete, 
inaccurate, or missing, 18% of the time. Corresponding 
percentages for the root cause of bugs and the 
corrective actions taken are 26% and 35%. 

 
4.2.3 People. Obtaining the lists of primary and 
secondary participants in a bug’s history was a constant 
source of errors and omissions. People that took 
actions concerning the bug were often not mentioned in 
the record or in email communications (C2, C3, C7, 
C9, C10). The purported owners of a bug sometimes 
had no activities or stake in its resolution (C6, C7, C8, 
C9). The extent of a participant’s contribution was easy 
to misjudge based on electronic traces: high frequency 
and intensity of interaction did not imply high level of 
contribution. And in at least two occasions, the 
geographic location of our interviewees was incorrect 
in the employee database. 

In the survey, the people marked as “owners” of the 
bug were driving its resolution only in 34% of the time. 
In 11% they had nothing to do with the bug. 

Furthermore, according to our responses, in 10% of 
the time the primary people that worked on a bug are 
not easy to spot by looking at the bug record, and in 
10% they do not even appear in the record. The list of 
people that edited the bug’s fields and history includes 
only some of its primary participants 40% of the time, 
and none of them 4%. Corresponding numbers for 
secondary participants are 39% and 38%. All of the 
people in the bug’s history and fields are fully 
irrelevant in 7% of the cases. 
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4.2.4 Events. It is unrealistic to expect all events 
related to a bug to be found in its record or through its 
electronic traces. Naturally, most face-to-face events 
left no trace in any repository. But in some occasions, 
the key events in the story of a bug had left no 
electronic trace; the only way to discover them was 
through interviews with the participants. At the same 
time, some events logged in the bug records of all of 
our cases were noise or junk (for instance, bulk edits 
and mistakes with their later corrections). The 
chronological order of events was also problematic: 
Bugs were sometimes resolved even before their record 
had been created (C7), or closed long after they had 
been resolved because they’d been forgotten by the 
person that needed to close them (C2, C4). 

In the survey, 3% of the bugs had been discussed at 
least a month before they were first filed, and an 
additional 6% at least a week before being filed. 
 
4.2.5 Groups and politics. As we moved further from 
the raw data and into broader patterns of coordination, 
we saw that most of the important information at the 
team and division levels could only be found through 
higher levels of analysis. In C4 we found a pocket of 
people with a culture and practices different than those 
of their division, in the process of assimilation after an 
acquisition. The status of a group with respect to 
milestones and releases bore significant consequences 
to the kind and speed of the decisions made as new 
bugs were found (for instance, for C5 the team was 
undergoing a “bug bash” and having face-to-face triage 
meetings daily; most bugs were only given a minute of 
air time or less). Sometimes, as in C3 and C7, 
ownership of a bug falls in a gray zone, and inter-team 
or inter-division struggles to determine ownership and 
accountability ensue. These issues usually impact the 
history of bugs considerably, yet we could not have 
learned about them without interviewing its participants 
and paying close attention to the details in the 
electronic record. 
  
4.2.6 Rationale. Probably the hardest questions to 
answer without human sense-making and participant 
collaboration were the “why” questions: In C4, why did 
a developer choose another as a required code 
reviewer, but a third as an optional reviewer? In C10, 
why was there no activity in a bug record for weeks 
after a few bouts of minute-by-minute updates and 
frantic emails? Why were the Status or Resolution 
fields in C2, C4, and C8 incorrect? Why in C5 did a 
triage group conclude that the bug would not be fixed? 
Why did a tester file a bug, C9, even though she 
suspected the failure was most likely a false alarm?  

We found that the answers to these questions, 
discovered during interviews, would often unlock the 
whole explanation of the events in the history of a bug. 
 
4.2.7 Miscellaneous. Other facts that could only be 
found at higher levels of analysis resist categorization, 
but still tend to be at the heart of a bug’s history. In C6, 
a bug was found independently by a tester and a 
developer in different groups; the developer produced a 
fix without knowledge that the bug had been already 
documented. In C4, a developer committed hundreds of 
new lines of code to fix a bug shortly after it was 
found; he did not write them all at a blazing speed, but 
rather copied them from the code of his old company, 
now acquired by Microsoft, and “stitched it” to the 
relevant interfaces. In two cases (C3 and C7), early and 
correct diagnoses were promptly ignored in a flurry of 
emails to get an urgent bug resolved. In general, the 
bugs in our case pool had far richer and more complex 
stories than would appear by automatically collecting 
and analyzing their electronic traces. 

 
5. Coordination Patterns 
 

In the end, our bug histories were rich, varied, and 
context dependent. They did not follow a uniform path 
or lifecycle. This posed a problem: our first research 
goal was, precisely, to describe the lifecycle of bugs 
and the process of fixing them. 

Instead of attempting to formulate a process for all 
bug histories, we chose to describe the menu of 
coordination patterns that we observed. We selected 
the patterns that seemed to be the most recurrent and 
those that occurred rarely but had a great impact in the 
history of a bug. Table 4 lists them. 

Some of the patterns have negative implications. For 
instance, we saw several cases of “snowballing 
threads” and “rapid fire email in public” that were 
clearly inefficient, yet they seemed to be routine for our 
participants. The only “summit” we observed 
corresponded to a bug (C3) that was described to us as 
“very important” and “threatening to move our ship 
date” by the release manager in charge. We added one 
pattern for completeness (video conferences), though 
we observed no instances of it. Another pattern, 
“forgotten”, was pointed to us by one of our survey 
respondents; it was not included in our original list. 

We asked our survey respondents whether those 
patterns had occurred for their last bug, and if so, 
whether they had been essential for the resolution of 
the bug. Figure 4 provides their responses. The last 
column represents the perceived usefulness of a pattern 
in relation to its frequency. 
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Table 4 - Coordination patterns 

 
Communication media  

Broadcasting emails Sending a manual or automatic notification to a number of mailing lists to inform their members 
of an event. 

Shotgun emails Sending an email to a number of mailing lists and individuals in the hope that one of the 
recipients will have an answer to the current problem 

Snowballing threads Adding people to an ever-increasing list of email recipients. 

Probing for expertise Sending emails to one or few people, not through the “shotgun” method, in the hope that they will 
either have the expertise to assist with a problem or can redirect to somebody that will. 

Probing for ownership Sending emails to one or few people, not through the “shotgun” method, requesting that they 
accept ownership of the bug or can redirect to somebody that will. 

Infrequent, direct email Emails sent privately and infrequently among a handful of people. 

Rapid-fire email Bursts of email activity in private among a few people in the process of troubleshooting the issue. 

Rapid-fire email in public Like the above, but with tens or hundreds of people copied as recipients of the email thread, most 
of them unconnected to the issue. 

IM discussion Using an instant messaging platform to pass along information, troubleshoot, or ping people. 

Phone Phone conversations used to pass along information, troubleshoot, or ping people. 

Bug database  

Close-reopen A bug that is reopened because it had been incorrectly diagnosed or resolved, or because there is 
disagreement on its resolution or on the team's ability to postpone addressing it. 

Follow-up bugs filed Other bugs were found and filed in the process of fixing this one, or a piece of this bug was filed 
in a different record as follow-up. 

Forgotten A bug record that goes unnoticed and unattended for long periods. 

Working on code  

Code review The fix for this bug was reviewed and approved by at least one peer. 

Two birds with one stone The fix for this bug also fixed other bugs that had been discovered and filed previously. 

While we’re there The fix for this bug also fixed other bugs that had not been discovered previously. 

Meeting  

Drop by your office Getting a piece of information, or bouncing some ideas regarding the issue, face to face informally 
with a coworker in a nearby office. 

Air time in status meeting The issue was discussed in a regular group status meeting. 

Huddle The issue called for a team meeting exclusively to discuss it. 

Summit The issue called for a meeting among people from different divisions exclusively to discuss it. 
Meeting with remote 
participants 

Any meeting where at least one member is attending remotely (could be a huddle or summit 
meeting). 

Video conferences Any meeting where video was used to communicate with at least one attendee (could be a huddle 
or summit meeting. 

Other patterns  

Ignored fix/diagnosis A correct diagnosis or fix that was proposed early on and was temporarily ignored by the majority. 

Ownership avoidance Bouncing ownership of the bug or code. 

Triaging Discussing and deciding whether this is an issue worth addressing. 

Referring to the spec At least one concrete and specific reference to a spec, design document, scenario, or vision 
statement, to provide guidance to solve or settle the issue. 

Unexpected contribution New information or alternatives that come from people out of the group discussing the issue. 

Deep collaboration Two or more people working closely (face to face or electronically) and for a sustained period to 
unravel the issue. 
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Figure 4 - Usefulness and frequency of patterns 
 

We do not claim that our list of patterns is 
comprehensive. But using them to characterize bug 
histories may provide enough relevant information 
about their coordination events while ignoring 
irrelevant details. Furthermore, as we discuss in the 
next section, some of them could be supported (or in 
the case of negative patterns, prevented) by software 
tools. 

 
6. Implications 
 
6.1 For tool designers 
 

Although the set of states commonly used in bug 
databases (Active, Assigned, Resolved, etc.) may be 
helpful to manage software development, our data 
shows that they are poor approximations of the true 
lifecycle of a bug. We believe it is more useful, for 
understanding coordination and for designing tools for 
developers, to think of bug fixing activities not as 

belonging to a stage of a bug’s life or a workflow, but 
as striving for the satisfaction of one or several goals. 

We formulated a list of goals based on the activities 
of the people in our case study. Table 5 describes them. 
Not all of the goals occur for every case, and they do 
not occur strictly sequentially. 

These goals provide a framework to analyze the 
effectiveness of coordination and project management 
tools and practices. For instance, Assignment of 
Ownership is often problematic, especially if there is 
no clear owner of the seemingly buggy code. In the 
case study this happened more often with test scripts 
than with feature code, and with developers leaving 
their posts without tying loose ends. Tools and 
practices that ensure that every artifact has an active 
owner would reduce this problem. 

Search is another problematic area. In our cases it 
often resulted in “snowballing threads” and “shotgun 
emails,” which sometimes succeed in finding the 
people or piece of knowledge necessary, but can be 
extremely inefficient if one considers the person-hours 
needed by hundreds of email recipients to parse 
numerous messages that, more often than not, have no 
relevance for them. 

For coordination purposes, Awareness was the area 
most in need of improvement. However, it is not easy 
to figure out how to provide the right level of 
awareness in very large companies with interconnected 
products. Awareness seems to be most needed not at 
the team level, but among the primary and secondary 
agents that form the social network around a work item. 
Tools that (partially) detect work networks and allow 
for their members to be aware of the activities of their 
peers should help address this issue. 

 
6.2 For researchers 
 

Our case study and survey results point in the same 
direction: Electronic repositories hold incomplete or 
incorrect data more often than not. We base this 
conclusion on our exploration of bug databases and 
email communications; source code repositories are 
even more at fault than these data sources as they are 
blind to the networks of testers, program managers, 
usability experts, and users that are also primary agents 
in coordination phenomena. 

Some of the concrete discrepancies we found might 
be acceptable for large-scale automated analyses of 
coordination. Others, such as most of the People issues 
in 4.2.3 and the missing links from bug records to 
source code change-sets, are far more serious. 
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Table 5 – Stakeholders’ goals during the lifespan of a bug 
 

Discovery Detecting a difference between reality and expectation. The essential first step to record the 
unexpected behavior as a bug. 

Diagnosis Understanding the nature, cause, and impact of the bug, as well as the actions that will be taken as 
a result. We believe it happens in every case, though often tacitly. 

Assignment of Ownership Determining who will be responsible and accountable for the resolution of a bug, both at the 
group and individual levels. 

Search 
Finding the appropriate knowledge, resources, and skills. It seems to be often meshed with 
Assignment of Ownership activities, so that the expert is the owner of the bug –but even the 
owner may need to reach out for other, more specific bits of expertise and knowledge. 

Correction What we usually think of as “fixing a bug”. Correcting relevant lines of code, changing 
documentation, scripts, or other artifacts so that reality and expectation match again. 

Closure Determining that the organization is willing to live with the current state of things as related to the 
bug. 

Awareness Communicating status to relevant participants. It stretches through the whole history of almost 
every bug. 

 
One could take several actions to reduce the 

problems posed by electronic repositories. An essential 
first step is to connect them. Also important would be 
to provide some elementary intelligence to automation 
tools to detect and ignore noise activity and bulk edits. 
Finally, studying the standard operations of the 
participating organization can help researchers 
determine whether most coordination events leave 
minable electronic traces or not. 

But even if all of the above were taken care of, 
reaching conclusions about coordination dynamics 
exclusively through automation runs the risk of failing 
to perceive the personal, social, and political factors of 
large scale software development, and thus of missing 
the essence of each of the interactions that constitute a 
software product. 

 
7. Limitations 
 

During our analysis we worked with several 
concepts that do not yet have a consistent definition in 
the literature. In particular, one could argue that our 
coordination patterns and goals are subjective and have 
blurry boundaries–we never specified, for instance, the 
difference between “rapid-fire” and “infrequent” 
emails. Although this is a valid criticism, our constructs 
are a first iteration given the data we collected. 
Additional data and further iterations should refine 
these constructs, and add others that help convey the 
underlying concepts more clearly. 

Our data come exclusively from Microsoft, and the 
extent to which our results are valid for other 
companies is not clear without replications. As is well 
known, Microsoft has tens of thousands of employees, 
millions of daily users, and many interconnected 
products. These are all forces that shape coordination 

dynamics. However, the use of software repositories 
and communication media at Microsoft seems to be 
similar to that of comparable companies. The clearest 
finding in our study, the difference between the 
minable version and the true version of a bug’s history, 
should not be Microsoft-specific, as it depends not on 
corporate culture but on the amount and quality of the 
information that can be economically and efficiently 
captured electronically. 

It is possible that for some software development 
environments, particularly open source, in which all or 
most information is communicated electronically and 
persistently, this is less of a problem. Replications of 
this study would help resolve that question. 
 
8. Conclusions 
 

This field study found that the histories of even 
simple bugs are strongly dependent on social, 
organizational, and technical knowledge that cannot be 
solely extracted through the automated analysis of 
software repositories. Automatically extracted histories 
provide factual errors and incomplete and erroneous 
accounts of coordination. The paper discusses some 
strategies to mitigate this problem. 

The study also used rich bug histories to discover a 
number of coordination patterns of bug fixing, which 
were validated through a survey of software 
professionals. From an analysis of the underlying 
purpose of the people that engage in these patterns, we 
derived eight goals for bug fixing that are useful as a 
framework to design better tools and practices. 

Although we initially considered studying 
coordination for feature development along with bug 
fixing, a pilot feature case (not reported in this paper) 
proved to belong to an entirely different domain, and 
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we chose to focus on bug fixing exclusively. We plan 
to explore the differences and interactions between 
both kinds of development activities in future work. 
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