
How Tagging helps bridge the Gap between
Social and Technical Aspects in Software Development

Christoph Treude, Margaret-Anne Storey
Dept. of Computer Science, University of Victoria

ctreude@uvic.ca, mstorey@uvic.ca

Abstract

Empirical research on collaborative software develop-
ment practices indicates that technical and social aspects of
software development are often intertwined. The processes
followed are tacit and constantly evolving, thus not all of
them are amenable to formal tool support. In this paper,
we explore how “tagging”, a lightweight social comput-
ing mechanism, is used to bridge the gap between technical
and social aspects of managing work items. We present the
results from an empirical study on how tagging has been
adopted and adapted over the past two years of a large
project with 175 developers. Our research shows that the
tagging mechanism was eagerly adopted by the team, and
that it has become a significant part of many informal pro-
cesses. Our findings indicate that lightweight informal tool
support, prevalent in the social computing domain, may
play an important role in improving team-based software
development practices.

1. Introduction and Motivation

Software development processes are among the most
complicated tasks performed by humans. In a typical soft-
ware development process, developers perform several dif-
ferent activities: they use numerous tools to develop soft-
ware artifacts ranging from source code and models to doc-
umentation and test scenarios, they use other tools to man-
age and coordinate their development work, and they spend
a lot of time communicating with other members on their
teams. Most tools used by software developers in their daily
work are tailored towards individual developers and hardly
support team work. However, software is rarely developed
by individuals and the success of software projects largely
depends on the effectiveness of communication and coordi-
nation within teams [22].

In recent years, the focus of tools for software developers
has shifted towards team-aware tools that support communi-
cation and cooperation in one way or another. Among those

tools, there are comprehensive development environments,
such as IBM’s Jazz [11], and tools that only focus on certain
aspects, such as groupware (e.g. INCOME/STAR [26]). As
these tools are brought into the mainstream, the tension of
balancing support for formal engineering practices with the
social informal aspects of a team becomes obvious. Indeed,
a key finding from the Computer Supported Cooperative
Work (CSCW) research community is that tools that ignore
emergent work practices and social aspects of a tool’s use
frequently fail (for examples, see [16]). Thus, a challenge
for the software engineering tool community is to develop
tools that support both aspects.

Balancing formal and informal user needs is particularly
important for task management in a socio-technical system.
Tasks are important cogs in the development process ma-
chine that need to be carefully aligned with one another,
both in what they achieve and in their timing. Since tasks
crosscut both technical and social aspects of the develop-
ment process, how they are managed will have a significant
impact on the success of a project.

Software development environments typically have ex-
plicit tool support for managing tasks. For example, Jazz
has tool support for managing “work items”, where a work
item is a generalized notion of a development task (see
Fig. 1). Work items are assigned to developers, are clas-
sified using predefined categories, and may be associated
with other work items. Jazz work items also have informal
tool support to address social aspects. Specifically, Jazz
supports a discussion thread and a lightweight “tagging”
mechanism. Using this latter feature, developers can freely
associate user defined keywords with work items.

In our earlier research, we have been investigating tool
support for task management, paying particular attention to
the social aspects of task management [32, 33, 34]. Here,
we report the results from an empirical study on the prac-
tice of tagging work items within Jazz. In our case study,
we examine how a software development team uses tags
for work items, both for individual use and for collabora-
tion. We gathered data through the inspection of the project
repositories and by conducting interviews with developers

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 12

on the team. Our main contribution is the identification of
different ways in which tags support informal processes in
software development and thus fill the gap between social
and technical aspects of artifacts. Furthermore, we exam-
ine how tagging was adapted by software developers to suit
their needs and we identify potential tool enhancements.

Figure 1. Work items in Jazz

The remainder of the paper is structured as follows. In
Section 2, we discuss related work on informal processes in
software development and provide background on tagging.
Our research questions and methodology are presented in
Section 3. Section 4 comprises the main part of this research
and describes how tagging of work items has been adopted,
how it supports informal processes, and how it differs from
tagging of web content. Subsequently, Section 5 discusses
the implications of our findings on tool design and the lim-
itations of our study. Our work is concluded in Section 6.

2. Background and Related Work

Work related to our research can be divided into two
main areas: research on the social aspects of software de-
velopment, and research on tagging and its adoption in soft-
ware engineering. Our work can be interpreted as the in-
tersection of these two areas: using tags to support social
aspects in software development.

2.1. Social Aspects in Software Develop-
ment

Software development is recognized to be one of the
most challenging management tasks performed by humans
[22]. The larger systems get and the more complicated the
compositions of the developing teams are, the more obsta-
cles there are on the way to the release of a software sys-
tem. Since most software systems are developed by teams,
effective coordination and communication are crucial to the
success of software projects.

There are at least three strands of research that have con-
sidered the impact of social aspects in software develop-
ment: global software development, open source develop-
ment and knowledge management. Researchers of these
topics recognize that software development processes are
more than writing source code, and that “articulation work”
[24] must be supported in a software engineering project.
According to Gerson and Star [13]: “Articulation consists
of all tasks needed to coordinate a particular task, includ-
ing scheduling sub tasks, recovering from errors, and as-
sembling resources.” Other examples of articulation work
include discussions about design decisions, assigning bug
fixing tasks to developers and deciding on interfaces.

Challenges that arise in global software development in-
clude dealing with strategic and cultural issues [20], longer
development times when coordinating with remote col-
leagues [19], dealing with communication breakdowns such
as unclear dependencies, circular dependencies and sched-
ule changes [5], and managing plan failures [30]. In open
source projects, the motivation that keeps a project going
is not only of a technical nature, but may also be organi-
zational or ritual [25]. In distributed projects, managing
implicit knowledge [23], maintaining awareness [17] and
leveraging expertise [10] can also impact the success of a
project. These many challenges that arise in team-based
software development can be addressed by better aware-
ness tools and processes, improved communication prac-
tices, implicit and explicit knowledge management, as well
as support for articulation work.

A key result that has an implication when designing im-
proved tools or processes, is that technical artifacts are often
intertwined and overloaded with social artifacts during a de-
velopment project. For example, de Souza et al. [7] claim
that source code is both a social and a technical artifact and
that dependencies do not only exist between artifacts but
also between developers. In a previous study on source code
annotations, Storey et al. [34] report on how annotations are
used to document both technical and articulation activities.
Grinter [15] also describes how configuration management
tools are sometimes co-opted for articulation work, despite
the fact that they have significant shortcomings in support-
ing articulation work. She notes insufficient support for in-
dividual developers and teams, and reports challenges from
a lack of representation of the work itself leading to inap-
propriate built-in assumptions about the work flow.

Several researchers have studied how teams use issue
tracking systems1 for managing articulation work. Many
of these studies focus on mining and analyzing quantitative
data to reveal information about the evolution of the sys-
tem [21] or to predict future behaviours [2, 27]. Ellis et
al. [9] report results from an interview of how developers
use Bugzilla, a popular bug tracking system. The motiva-

1Such systems are also referred to as defect or bug tracking systems.

13

tion for their study was the design of a visualization tool for
tasks. One of their key findings was that Bugzilla played a
key role in managing the project. Sandusky et al. conducted
a qualitative analysis of an open source bug repository to
describe how negotiation plays a role in coordination activ-
ities [31]. Bettenburg et al. also report a study to evaluate
the effectiveness of bug reports [3].

Although researchers have considered how bug reposi-
tories and issue tracking systems are used for coordinating
work, researchers have not thus far considered how tagging
can be used to support informal activities by a team coordi-
nating tasks. De Souza et al. [8] conducted an ethnography
with a software development team and found that tools of-
ten create a distinction between private and public aspects of
development. To close this gap, several informal practices
are adopted in order to manage interdependencies between
both perspectives. Similarly through this paper, we wish to
consider how tagging is used to bridge the gap between the
technical and social aspects of work item management. But
first we review related research on tagging, specifically how
tagging is currently used in software development.

2.2. Tagging and Software Development

The concept of tagging, as it is currently used, comes
from the social computing domain. Social computing
technologies, sometimes referred to as Web 2.0, are see-
ing rapid adoption by emergent communities on the web.
Key examples include Facebook (facebook.com), YouTube
(youtube.com) as well as community based recommender
systems such as CiteULike (citeulike.org), TripAdvisor (tri-
padvisor.com) and flickr (flickr.com). Tagging is used by
many of these systems and is often referred to as social
bookmarking. The success of tags is closely related to their
bottom-up nature: tags do not have to be pre-defined, ev-
ery user can choose their own tags, and the number of tags
per item is arbitrary. Based on these characteristics, tags are
used to classify items in an informal way, and they stand in
contrast to formal top-down classification mechanisms.

Golder et al. [14] and Hammond et al. [18] provide
overviews of tagging systems and classify the main reasons
for user tagging. A more detailed study was done with the
photo sharing website flickr [1]. A common finding across
these studies is that users tag to provide information on
an artifact (e.g. what an artifact is or to refine a category)
and for organizing artifacts. Part of the success of tagging
comes from allowing users to define their own vocabulary
[12]. Information retrieval is also enhanced by community
tagging.

The introduction of tags into software development
raises the question of how the informality of tagging af-
fects the process of developing software and how a typ-
ical software development process can take advantage of

the characteristics of tags. Tagging is not a new concept
to software engineering. Tags have been used for decades
for annotating check-in and branching events in software
version control systems, as well as for documenting bugs in
bug tracking systems. Also, Brothers’ ICICLE was an early
exploration of tag-like structures with a limited, controlled
vocabulary during code inspection [4]. Many early uses of
the word tagging in software engineering systems relied on
a preexisting controlled vocabulary, thus this earlier form
of tagging is not consistent with the social computing no-
tion of tagging today. Due to these inconsistencies on the
term tagging, we define a tag as follows: A tag is a freely-
chosen keyword or term that is associated with or assigned
to a piece of information. In the context of software devel-
opment, tags are used to describe resources such as source
files or test cases in order to support the process of finding
these resources.

Tagging, as defined here, has not been extensively re-
searched in a software engineering context. Some sys-
tems support social bookmarking, for example Code Snip-
pets (bigbold.com/snippets) and ByteMycode (bytemy-
code.com). They support social tagging of source code, but
require the user to post code fragments on public servers be-
fore tags can be applied. A recent tool that intersects social
tagging with software development is described by Storey
et al. [32]. Their tool TagSEA (Tags for Software Engi-
neering Activities) is a collaborative tool to support asyn-
chronous software development and uses the ideas of social
tagging to support coordination and communication. A case
study [33] showed that TagSEA provides the user-defined
navigation structures that are lacking in traditional task an-
notations. Opposite to this bottom-up approach, the tools
Concern Graphs [28] and ConcernMapper [29] enable de-
velopers to associate parts of source code with high level
concerns.

Apart from these studies, there is little research on how
the lightweight mechanism of tagging can play a role in sup-
porting informal activities in software development. The re-
search described in this paper examines the current use of
tags for task management in a software development project
with the aim to identify potential tool enhancements. For
a more general discussion of lightweight tool support for
work activities, we refer to work by Churchill and Bly [6].

3. Research Questions and Methodology

This section identifies our research questions, the setting
of the study, and our data collection methods.

3.1. Research Questions

The research questions below encompass the main
themes of our research: the adoption of tags by software

14

developers, the role of tagging in team-based software de-
velopment, and the adaptation of the tagging feature.

1. How is the social tagging mechanism adopted by de-
velopers for annotating work items?

(a) How does the frequency of tag use vary over the
lifetime of the project?

(b) How many different tags are used, and which tags
are used more frequently?

(c) How many users tag and how does this number
of users vary over time?

2. What role does the tagging feature play in the work
practices of individuals and team developers?

(a) Why do developers tag work items?

(b) How do developers use tags for work items?

(c) Which role do tags play in collaboration?

3. How does work item tagging compare to social tagging
on the Internet?

(a) What are the differences between work items and
web content?

(b) How are tags adapted to meet the needs of soft-
ware developers?

3.2. Methodology

In the following paragraphs, we outline the setting of
our research as well as the two data collection methods we
used: inspection of archival data available in repositories
and semi-structured interviews with software developers.

3.2.1. Research setting. Our study took place with a pro-
fessional development team from IBM. The team consists
of approximately 175 contributors and about 30 functional
teams, with some teams acting as sub-teams of larger teams
and some contributors assigned to multiple teams. The team
members are located at 15 locations worldwide, primarily in
North America and Europe. The developers of the team use
IBM’s Jazz to develop software and they follow the “Eclipse
Way” development process [11]. This process, developed
by the Eclipse Development Team, is an agile, iteration-
based process with a focus on consistent, on-time delivery
of quality software through continuous integration, testing,
milestones, and incremental planning.

Developers using Jazz organize their work around so-
called work items which can be interpreted as development
tasks. A typical work item consists of a unique number,
summary, description, state, work item type, severity and
priority, the component it was filed against, the version it
was found in, the creator, and several other details that are

optional. As can be seen in Figure 1, there is an optional
tag field in which developers can insert an arbitrary number
of tags per work item. The Jazz content assistant suggests
tags with a common prefix that have been used before. If a
developer adds a tag that has not been used before, a popup
window appears and asks if this tag should be added to the
vocabulary.

3.2.2. Data collection. Our methodology follows a mixed
method approach, collecting both quantitative and qualita-
tive data. In order to gather quantitative data on the use of
tags in the project, we accessed the repositories of the de-
velopment team and extracted all relevant information. The
amounts of data extracted for the time period from May
2006 to April 2008 are shown in Table 1. The data cov-
ers the complete development process up to the 1.0 release
of the team’s product including six milestone and three beta
releases. The team were working on the 1.1 release at the
time of our data collection.

Table 1. Data extracted from repository
data object amount
Work items 37,590
Number of tags applied to work items 13,902
Number of tags removed from work items 1,200

Qualitative data was collected through a series of inter-
views with developers. All interviews were semi-structured
allowing for follow-up questions and clarifications. Most
of the questions were aimed at understanding the details of
why and how developers use tags. In total, four interviews
were conducted. Three participants worked on the same
component, one participant worked on a different one. The
interviews were conducted in person at an IBM location and
lasted about 30 minutes each. Three participants had been
members of the team for about two years and thus experi-
enced the introduction of the tagging feature two years ago.
The other participant joined the team about 10 months ago.

The quantitative nature of our repository analysis and the
qualitative nature of the interviews provided insights for all
our previously posed research questions. In particular, the
data inspection was used to help answer question 1. This
data was also used during the design of the subsequent in-
terviews. The interview data were used to answer the re-
maining research questions.

4 Findings

This section presents the findings from our case study.
The research questions presented in the previous section are
addressed in turn by the following subsections.

15

4.1. Adoption of Tagging

To answer our first research question, we performed an
analysis of tag usage over time, looking at both the number
of tags that are applied to work items and the number of
individuals tagging work items. We note that both of these
metrics increased substantially over the two year period of
our study. The details are given below.

4.1.1. Frequency of tag use. Figure 2 shows how the num-
ber of tags added per day evolves over time from May 2006
to April 2008. The grey line depicts the actual numbers per
day, the black line gives the value averaged over the last
30 days at any point of time. Apart from the initial import
in June 2006, the number of tag uses per day is increasing
over time. The peaks in the grey line mark extensive use of
lifecycle related tags around beta releases of the product.

Figure 2. Tag uses per day

4.1.2. Most frequently used tags. About one fourth of all
work items have been tagged at least once. The distribution
of tags is shown in Figure 3. 682 different keywords have
been used. Table 2 shows the ten most frequently used tags.

Figure 3. Distribution of tags (log scale)

4.1.3. Number of tag users. Similarly to the number of
tag uses, the number of tag users also increases over time.

Table 2. Most used tags
tag # uses
polish 724
testing 495
ux 483
svt 396
errorhandling 313
beta2candidate 306
usability 301
editor 286
performance 257
m6candidate 236

As shown in Figure 4, there are peaks of up to more than
30 different individuals applying tags on the same day and
the only major discontinuities in distinct users per day occur
around the Christmas holidays.

Figure 4. Distinct tag users per day

Out of 178 contributors who owned work items in the
last two years, 112 applied at least one tag to a work item.
In addition, the project has a web portal that allows clients
to submit new work items. There were 45 individuals from
outside the company applying tags through this web portal.
However, the main tag users were team members from in-
side IBM. The top 25 most prolific taggers applied between
180 and up to more than 2,500 tags, using about 100 differ-
ent keywords.

These statistics indicate that tags were used continuously
after their initial introduction and that software developers
found them helpful enough to keep using them over a pe-
riod of two years. More details on tag usage in support of
informal processes and collaboration are given below.

4.2. Tagging supports Informal Processes

In this section, we discuss the findings on our second
research question: why software developers tag work items

16

and what role tags play in the work practices of individuals
and teams.

4.2.1. Reasons for tag use. The predominant reason for
the use of work item tags is categorization. As one of our
participants put it: “Mainly as a kind of categorization.
[...] Tags are useful for identifying cross-cutting concerns
like performance or accessibility or scalability or respon-
siveness, things like that, or testing.”

While the Jazz interface already provides an opportunity
to categorize work items (Filed Against field in Figure 1),
tags are more flexible. The category tree can be altered,
but this would change the available categories for the whole
team and is still only one-dimensional and thus not appro-
priate for cross-cutting concerns. One of our participants
identified this disadvantage of the top-down classification:
“The problem is its very administrative side feeling, which
is fine, except it’s not as flexible to just ad hoc make things.”

Tags are also seen as a way to organize work items: “[I
use tags] because I feel like [work items] should be orga-
nized. I feel like they’re there and so I should use them. [...]
I don’t know if they do organize work items, but it makes me
feel like I’m doing something when I associate a tag with it.
In theory, I’d like to believe that tags draw work items that
have a similar area together. That’s my hope.”

The main use case for tags is finding work items later:
“I use [tags] to categorize things basically, so I can have
queries and find things. I’m afraid of losing work items if
they aren’t [tagged].”

4.2.2. Individual tag use. Even though tags are seen as be-
ing helpful, especially due to their ad hoc and cross-cutting
characteristics, the use of tags to search for work items is
limited and not always part of the daily routine. However,
the following quotes give exemplary scenarios in which tags
have been used to find work items:

“During the polish phase of [a release], we had two
weeks to polish. It’s like, what polish things do we do? So
we had tags like polish and usability, and I use that to kind
of guide what work items we could work on.”

“I used them the other day, trying to search for [...] a
list of bugs against [a related product]. Thinking that, you
know, I was probably a good boy and had tagged any [prod-
uct] related issues with the [product] tag, I did a search for
[product] tags and that actually found very few. [Laughs]
’Cause I hadn’t been a very good boy and tagging my Jazz
work items with the [product] tag.”

It should be noted that tagging behaviour differs from de-
veloper to developer, based on their individual preferences.
In addition, we found that planning-related tags are more
likely to be created by team leads.

Another frequent use case emerges from design deci-
sions regarding the structure of work items in Jazz. For ex-

ample, work items do not have an Operating System field.
Thus, tags like linux or windows are used to mark work
items that are specific to an operating system.

Most tags are created soon after the corresponding work
items: About half of the tags (50.2%) were created on the
same day as the work item was created; and 75.6% of all
tags were created at most 30 days after the work item.

4.2.3. Tags and collaboration. Tags play an important role
in collaboration. In almost half of all the cases of applying a
tag to a work item, the developer who applied the tag is not
the one who created the work item, and in only less than one
third of all cases, the developer applying the tag owns the
work item. In other words, most tags are created for work
items owned by somebody else.

Often, developers tag work items that are relevant to the
work in their sub team: “Most of the tags I mentioned be-
fore, like workspaceeditor, aspects, are tags that I would
expect other people in the team to assign if they find issues
in that area.”

In that context, tags are applied to help other developers
on the same team with the management of their work and to
make them aware of particular incoming work items. If not
meant for other developers directly, tags are usually at least
helpful for other developers indirectly. In our interviews,
we did not find a need for private tags: “I haven’t really
had much need to introduce sort of personal tags, usually
between a combination of the tags to describe the area as
well as the cross-cutting tags like performance etc. I can
usually get by just with those.”

However, tags are rarely used for direct communication.
Usually, the developer who applies a tag does not expect
other developers to take actions based on a new tag: “It’s
more for querying later on – I don’t expect people to act on
the tags that I put in.”

In terms of the tag vocabulary, the number of keywords
that are applied by just one developer is 329, which is al-
most half of all keywords. The remaining 353 keywords
have been applied by at least two different developers. Ta-
ble 3 shows the ten most shared tags.

The fact that 353 keywords have been applied by more
than one developer raises the question of how this vocab-
ulary is formed and if there are any naming conventions
among the developers to ensure a consistent vocabulary.
The basic rules for choosing keywords for tags are cap-
tured by the following quote: “I make sure I don’t use too
many acronyms, so that people can understand what the tag
means. Apart from that, I try to make it somewhat descrip-
tive, so [...] I wouldn’t use perf, instead use performance.”

Official naming conventions are very rare and if they oc-
cur, they are usually mentioned in one of the team’s internal
wiki entries. Most of the conventions are implicit and hap-
pen through the work item feeds that are built into Jazz:

17

Table 3. Most frequently shared tags
tag distinct users
performance 38
errorhandling 36
beta2candidate 35
usability 33
polish 32
ux 29
m5candidate 25
beta1candidate 23
adoption 21
review 19

“You just sort of see it happening in the work item’s feeds.”
Using these feeds, developers see which tags are applied by
their team members and are thus aware of the introduction
of new keywords. Before introducing new keywords, most
developers make sure that a similar keyword does not exist
yet or refrain from adding new keywords to the vocabulary
completely. The implicit dissemination of new keywords
through the work item feeds results in a mostly consistent
vocabulary that includes only a small number of synony-
mous keywords.

4.3. Work Item Tagging vs. Tagging on the
Internet

While tagging originated in the social computing do-
main, it is being adapted to suit the daily needs of software
developers for work items. This section addresses our third
research question by highlighting the differences between
tagging of work items and tagging of web content, and by
describing the different kinds of tags that have emerged in
the software engineering domain.

4.3.1. Differences. We noted the following differences be-
tween work items and web content in the social computing
domain, e.g. on flickr:

• The properties of work items change significantly
within hours or even minutes whereas pictures up-
loaded on flickr do not change after their initial upload.

• Work items have a firm expiry time as when the work
item is closed it is usually no longer tagged. We found
that 92% of all tags were assigned while the corre-
sponding work item was still open. Moreover, we
noted that some tags that were associated with specific
milestones were no longer used once the relevant mile-
stone passed by (see Section 4.3.2).

These differences have implications for the way devel-
opers tag work items and what can be inferred from tags.

For one, idiosyncratic keywords can be used for tags that
only have a short life time. There is no explicit need to un-
derstand those keywords after the period of interest. Since
tags are not required for work items, the use of the tag field
is a lot more informal and flexible than the use of other,
more rigid properties of work items. This enables devel-
opers to use tags for their own benefits without having to
worry about tool-related consequences.

The ephemerality of work items and process cycles leads
to differences in how tags for work items are used and how
they should be interpreted. In our research, we were eas-
ily able to infer specific themes of tagging that are unique
to software development work item management. These
themes are described in the following section.

4.3.2. Development-specific tags. Both our quantitative
and our qualitative analysis revealed that different types of
tags have evolved over the duration of the project. These
different types can be distinguished by their intentions, their
use, their users, their time of use, and to a certain degree
their naming conventions.

Based on our analysis, we discovered the existence of
lifecycle related tags. These tags are used extensively only
for a specific period of time as they are related to a milestone
in the development process and usually have the name of
this release in their name, e.g. beta2candidate. Figure 5
shows the time lines of all tags that have been applied at
least 100 times during the two year period. The time lines
show the first and last days that a particular tag was applied
to work items. The tags in the figure are ordered by the
length of their time line. The lifecycle related tags such as
rc2candidate appear at the top of the figure as they have
a relatively short time line which is bound to the specific
milestone, in this case release candidate 2. Compared to the
other kinds of tags, lifecycle related tags are transient.

The vocabulary that emerged from two years of tagging
comprises 682 different tags. As can be seen in Figure 6, the
rate at which new keywords are added to the vocabulary re-
mains fairly constant over the two year period and averages
approximately one new keyword per day. This is another
indicator that new tags are frequently needed depending on
the lifecycle of the software system, and that not all tags are
introduced early on.

As mentioned before, the tag field is also used to refine
the work item categories that Jazz already provides. Com-
pared to the categories, component-specific tags can be in-
troduced without any effort or official conventions: “He
could’ve made another heading for each of [the sub cat-
egories]. But, for some reason I guess, the tagging was
probably more open. I guess when you go and modify
something like the spec, something like that; it feels very
administrative, where this tagging is supposed to be more
fluid.” Component-specific tags are usually used to catego-

18

Figure 5. Time line lengths of most used tags

rize work items and their use depends largely on the pres-
ence of other categorization mechanisms.

Unlike component-specific tags, cross-cutting tags cap-
ture aspects of work items that cross cut the hierarchy of
categories for work items: “[Cross-cutting tags] are or-
thogonal to categories, they are – that’s the beauty of tags,
that they are cross-cutting. It’s not about grouping, when
we have grouping then things can only be in one.”

These cross-cutting tags frequently describe non-
functional requirements such as performance, accessibility,
scalability, or responsiveness, and thus such tags facilitate
searching of cross-cutting concerns.

The last group of tags are idiosyncratic tags. These tags
are neither related to a milestone, nor are they used to orga-
nize work items according to components or cross-cutting
concerns. They are used for various reasons and are usually
only used by very few developers. However, they support
certain individual and collaborative processes. The follow-
ing examples reveal a broad range of idiosyncratic tags:

Figure 6. Addition of new tags to vocabulary

• quickie. This tag helps prioritizing a developer’s task
list: “I’ve also been tagging things as quickie for
things that should be fast and easy to fix.”

• adoption. This tag supports communication in be-
tween teams: “Adoption means that there’s a work
item that’s in our bucket or another bucket for which
there’s a change set attached that someone in another
team has to adopt.”

• included in faq. Tags also help document the process
for certain tasks: “I went through a bunch of things
that were tagged with faqable or faq or something like
that, so then when I was done in order to see what I’ve
done, I tagged it with included in faq.”

• buildstatus. Tags are used to flag work items: “Build-
status is flagging work items that I’ve created while
I’m [release engineer] that have something to do with
the current status of the build. So if it’s broken and I’m
complaining, I flag it with buildstatus.”

All of these examples describe processes for which for-
mal tool support could be developed. However, since the
processes do not occur often, tool support would add over-
head to the system. For these kinds of processes, tags are
frequently used as a way of informally adding meta infor-
mation to work items.

Table 4 shows how the tags are distributed over the dif-
ferent types. The classification was done based on the tag
names and verified through member checking during the in-
terviews. Most of the distinct keywords used for tagging
are component-specific. In contrast, there are comparably
fewer distinct keywords for cross-cutting tags, but those
keywords are used frequently to tag work items.

5. Discussion

One of the goals of our research is to contribute to the de-
velopment of tool support for collaborative software devel-

19

Table 4. Classification of tags
type tag keywords tag instances
component-specific 413 (61%) 4,907 (35%)
lifecycle related 105 (15%) 2,505 (18%)
cross-cutting 88 (13%) 5,105 (37%)
idiosyncratic 76 (11%) 1,385 (10%)
sum 682 13,902

opment, especially with regard to tagging. In this section,
we discuss how tool support for tagging could be broadened
for other social and technical artifacts, and how such tool
support could be improved. We also discuss the limitations
of our research.

5.1. Implications on Tool Design

While tags have already been adopted by the software
developers in our study, there are still areas in which tool
support for tags can be improved. However, the eagerness
with which tags have been adopted and the experiences of
our interviewees suggest that the lightweight nature of tags
has to remain intact: “Tags are interesting in that, I think,
part of their value is that they are loosely defined. I think if
you start trying to give them stronger semantics, then they
start to have a different flavour, more like categories.”

Therefore, enhancements of tool support should recog-
nize the current benefits of tags and the main theme of any
changes to tool support should be to help developers use
tags. We suggest the following tool enhancements:

• Using the same lightweight approach as with tags for
work items, a tag property could be added to other
kinds of artifacts, especially source files, test cases,
and requirement documents. Tags can also be im-
plemented on a fine-grained level, e.g. for methods
and fields. This would enable tagging across different
types of content and thus would further support col-
laborative organization of artifacts. Similar ideas have
been successfully tried and tested in TagSEA [32].

• Display tag authors along with the tags. During our
interviews, we showed our interviewees a list of tags
that were used on their work items but that they did
not apply themselves. We discovered that our partic-
ipants used the tag authors that we revealed to them
to understand the tags. Adding the author information
of tags is not obtrusive as the information is collected
anyway and could just be displayed on mouse-over.

• Apart from author information, the only meta data
property that should be added to tags is an optional de-
scription. For tags that do not have an obvious mean-
ing such as adoption or buildstatus, a short description

would increase the usefulness as there are keywords
in the vocabulary that may be unfamiliar to some de-
velopers. When a new keyword is introduced to the
vocabulary, a dialog could ask for an optional descrip-
tion instead of just notifying developers that they are
about to introduce a new keyword.

• Current tools do not offer any management for tags
on work items. Useful functions would be changing
all tags with a particular keyword, e.g. to fix spelling
mistakes. For synonymous keywords such as doc and
documentation, folding would be beneficial.

• To increase understanding of how tags are used and
which tags are suitable for work item search, a report-
ing mechanism for tags should be added. Informa-
tion about tags, their authors, the corresponding work
items, and the time of the tag creation is available in the
system, but this information is not used yet by the work
item tooling. In fact, most developers are unaware of
the specific characteristics of their tagging behaviour,
as well as the tagging behaviour of their colleagues.

• Once the tag vocabulary is analyzed, tags for incoming
work items could be suggested. Strong candidates for
suggestions are tags that have extensively been used in
the near past such as lifecycle related tags and tags that
have been applied to work items in the same category.

• The work item search interface in Jazz does not search
tags by default yet. Tags should be included here to
increase their value.

When tags were initially introduced in Jazz, several ad-
ditional features were suggested by developers. However,
over the time of more than two years now, developers
adapted to tags the way they were implemented initially:
“In the beginning, I thought that we should do a lot, have
private tags, have more meta data with them. In the hind-
sight, their simplicity is kind of interesting.”

Being used more and more, tags have developed into a
valued property of work items that has its strength in its
informality and its flexibility.

5.2. Limitations

As with any chosen research methodology, there are lim-
itations with our choice of research methods. The first limi-
tation of our study lies in the small number of interviewees.
However, as it is the nature of a large software develop-
ment project that developers do not have much time to spare
and since for ethical reasons, we did not want the develop-
ers to feel coerced to participate, we were unable to recruit
more participants. On the other hand, one of our researchers

20

spent two months on site frequently having informal dis-
cussions with developers regarding their use of tags and
the answers in the interviews were mirrored in his obser-
vations. Also, the interviewees had different backgrounds,
from team leads to relatively new members of the team.

When the team started on their project, the tagging fea-
ture for work items had not been introduced yet. This might
have influenced the specific tagging behaviour. Also, given
that the team was one of the first adopters of Jazz, their will-
ingness to adopt new technologies might be above-average.
However, we believe that our conclusions regarding how
tagging supports informal processes also apply for less in-
novative teams.

With regard to component-specific tags, it should be
noted that the work item category tree was significantly
altered over the duration of the project. Since the use of
component-specific tags for sub categories largely depends
on which categories are already available, the strength of
our conclusions regarding these tags is limited.

IBM’s Jazz is still new and it is the first software devel-
opment environment supporting tags for development tasks.
Thus, we were only able to get data from one software
project. As more projects adopt Jazz or other development
environments adopt tagging, additional studies should be
conducted to gain further insights into the use of tags in
software development.

6. Conclusions and Future Work

The main contributions of this paper are the identifica-
tion of the various ways in which tagging supports informal
processes in software development as well as concrete sug-
gestions for tool improvements.

While there are many formal processes in place for tech-
nical artifacts, managing social artifacts is only supported
by informal processes if there is any process at all. Tool
support is a lot easier to develop for formal processes, so
that informal processes are usually carried out via commu-
nication mechanisms. In order to understand software de-
velopment as a whole and in order to provide appropriate
tool support, we have to understand both the technical and
the social aspects of software development. Tags are one
way to look at the informal side of software development
in a team setting. Through understanding how developers
use tags in their daily work, we can extend our knowledge
on informal aspects of software development and further-
more understand how a social computing technology, such
as tagging, is adapted by software developers.

Our research has shown how the social computing mech-
anism of tagging has been adopted and adapted by a large
software development team. Not only is tagging used to
support informal processes within the team, it has also been
adapted to the specific needs of software developers. With

lifecycle related tags, tags for sub categories and cross-
cutting concerns, and idiosyncratic tags for processes that
require meta data but are not formalized, different kinds of
tags have emerged over the duration of a software project.
The main advantages of using tags in software develop-
ment are their flexibility and their lightweight, bottom-up
nature. While fields such as operating system, milestone,
level of effort, or cross-cutting concerns could be part of
fixed schemata, this would add overhead. Tags add the same
functionality without implying administrative changes.

With the shift to team-based software development and
the corresponding increasing importance of articulation
work, informal processes and communication mechanisms,
social computing mechanisms such as tagging may play an
important role beyond work items. They may be used to or-
ganize, manage, and categorize software artifacts in general
in an informal and collaborative way. Future work lies in
the examination of the benefits of social computing mecha-
nisms in other areas of software development.

Collaborative tagging implies an underlying social struc-
ture. We are currently exploring which social networks
emerge in software development between authors of work
items, owners of work items, and tag authors. This will in-
crease our understanding of team dynamics in software de-
velopment and may ultimately result in better collaborative
software development tool support.

7. Acknowledgements

We wish to thank the team that granted us access to
their repositories and conducted interviews with us. This
research is supported by a fellowship from IBM. We also
appreciate comments from Lars Grammel, Thomas Maier,
Nick Matthijssen, Peter C. Rigby, Adrian Schröter, and
Nancy Songtaweesin that helped improve the paper.

References

[1] M. Ames and M. Naaman. Why we tag: motivations for
annotation in mobile and online media. In CHI ’07: Proc. of
the SIGCHI Conf. on Human factors in computing systems,
pages 971–980, New York, NY, USA, 2007. ACM.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In ICSE ’06: Proc. of the 28th Intl. Conf. on Software
Engineering, pages 361–370, New York, NY, USA, 2006.
ACM.

[3] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,
and T. Zimmermann. What makes a good bug report? In
SIGSOFT ’08/FSE-16: Proc. of the 16th ACM SIGSOFT
Intl. Symposium on Foundations of Software Engineering,
pages 308–318, New York, NY, USA, 2008. ACM.

[4] L. Brothers, V. Sembugamoorthy, and M. Muller. ICICLE:
groupware for code inspection. In CSCW ’90: Proc. of the

21

1990 ACM Conf. on Computer-supported cooperative work,
pages 169–181, New York, NY, USA, 1990. ACM.

[5] M. Cataldo, M. Bass, J. D. Herbsleb, and L. Bass. On co-
ordination mechanisms in global software development. In
ICGSE ’07: Proc. of the Intl. Conf. on Global Software En-
gineering, pages 71–80, Washington, DC, USA, 2007. IEEE
Computer Society.

[6] E. F. Churchill and S. Bly. It’s all in the words: supporting
work activities with lightweight tools. In GROUP ’99: Proc.
of the Intl. ACM SIGGROUP Conf. on Supporting group
work, pages 40–49, New York, NY, USA, 1999. ACM.

[7] C. de Souza, J. Froehlich, and P. Dourish. Seeking the
source: Software source code as a social and technical ar-
tifact. In GROUP ’05: Proc. of the 2005 Intl. ACM SIG-
GROUP Conf. on Supporting group work, pages 197–206,
New York, NY, USA, 2005. ACM.

[8] C. R. B. de Souza, D. Redmiles, and P. Dourish. ”Breaking
the code”, moving between private and public work in col-
laborative software development. In GROUP ’03: Proc. of
the 2003 Intl. ACM SIGGROUP Conf. on Supporting group
work, pages 105–114, New York, NY, USA, 2003. ACM.

[9] J. B. Ellis, S. Wahid, C. Danis, and W. A. Kellogg. Task and
social visualization in software development: evaluation of
a prototype. In CHI ’07: Proc. of the SIGCHI Conf. on
Human factors in computing systems, pages 577–586, New
York, NY, USA, 2007. ACM.

[10] S. Faraj and L. Sproull. Coordinating expertise in software
development teams. Management Science, 46(12):1554–
1568, 2000.

[11] R. Frost. Jazz and the Eclipse way of collaboration. IEEE
Software, 24(6):114–117, 2007.

[12] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Du-
mais. The vocabulary problem in human-system communi-
cation. Commun. ACM, 30(11):964–971, 1987.

[13] E. M. Gerson and S. L. Star. Analyzing due process in
the workplace. ACM Transactions on Information Systems,
4(3):257–270, 1986.

[14] S. Golder and B. A. Huberman. Usage patterns of collab-
orative tagging systems. Journal of Information Science,
32(2):198–208, 2006.

[15] R. E. Grinter. Supporting articulation work using software
configuration management systems. Computer Supported
Cooperative Work, 5(4):447–465, 1996.

[16] J. Grudin. Groupware and social dynamics: eight challenges
for developers. Commun. ACM, 37(1):92–105, 1994.

[17] C. Gutwin, R. Penner, and K. Schneider. Group awareness
in distributed software development. In CSCW ’04: Proc.
of the 2004 ACM Conf. on Computer supported cooperative
work, pages 72–81, New York, NY, USA, 2004. ACM.

[18] T. Hammond, T. Hannay, B. Lund, and J. Scott. Social book-
marking tools (I): A general review. D-Lib, 11(4), 2005.

[19] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grin-
ter. An empirical study of global software development:
Distance and speed. In ICSE ’01: Proc. of the 23rd Intl.
Conf. on Software Engineering, pages 81–90, Washington,
DC, USA, 2001. IEEE Computer Society.

[20] J. D. Herbsleb and D. Moitra. Guest editors’ introduction:
Global software development. IEEE Software, 18(2):16–20,
2001.

[21] H. Kagdi, J. I. Maletic, and B. Sharif. Mining software
repositories for traceability links. In ICPC ’07: Proc. of
the 15th IEEE Intl. Conf. on Program Comprehension, pages
145–154, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[22] R. E. Kraut and L. A. Streeter. Coordination in software
development. Commun. ACM, 38(3):69–81, 1995.

[23] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining men-
tal models: A study of developer work habits. In ICSE ’06:
Proc. of the 28th Intl. Conf. on Software Engineering, pages
492–501, New York, NY, USA, 2006. ACM.

[24] P. Mi and W. Scacchi. Modeling articulation work in soft-
ware engineering processes. Proc. of the First Intl. Conf. on
the Software Process, pages 188–201, 21-26 Oct 1991.

[25] E. Monteiro, T. Osterlie, K. Rolland, and E. Royrvik. Keep-
ing it going: The everyday practices of open source soft-
ware. Norwegian University of Science and Technology
(NTNU), 2004.

[26] A. Oberweis, T. Wendel, and W. Stucky. Teamwork coor-
dination in a distributed software development environment.
In GI Jahrestagung, pages 423–429, 1994.

[27] T. J. Ostrand and E. J. Weyuker. A tool for mining defect-
tracking systems to predict fault-prone files. In Proc. of Intl.
Workshop on Mining Software Repositories, 2004.

[28] M. P. Robillard and G. C. Murphy. Concern graphs: finding
and describing concerns using structural program dependen-
cies. In ICSE ’02: Proc. of the 24th Intl. Conf. on Software
Engineering, pages 406–416, New York, NY, USA, 2002.
ACM.

[29] M. P. Robillard and F. Weigand-Warr. Concernmapper: sim-
ple view-based separation of scattered concerns. In eclipse
’05: Proc. of the 2005 OOPSLA workshop on Eclipse tech-
nology eXchange, pages 65–69, New York, NY, USA, 2005.
ACM.

[30] K. Rönkkö, Y. Dittrich, and D. Randall. When plans do
not work out: How plans are used in software develop-
ment projects. Computer Supported Cooperative Work,
14(5):433–468, 2005.

[31] R. J. Sandusky and L. Gasser. Negotiation and the coordina-
tion of information and activity in distributed software prob-
lem management. In GROUP ’05: Proc. of the 2005 Intl.
ACM SIGGROUP Conf. on Supporting group work, pages
187–196, New York, NY, USA, 2005. ACM.

[32] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby. Shared
waypoints and social tagging to support collaboration in
software development. In CSCW ’06: Proc. of the 2006
20th anniversary Conf. on Computer supported cooperative
work, pages 195–198, New York, NY, USA, 2006. ACM.

[33] M.-A. Storey, L.-T. Cheng, J. Singer, M. Muller, D. Myers,
and J. Ryall. How programmers can turn comments into
waypoints for code navigation. ICSM 2007: Proc. of the
2007 IEEE Intl. Conf. on Software Maintenance, pages 265–
274, 2-5 Oct. 2007.

[34] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer.
Todo or to bug: Exploring how task annotations play a role
in the work practices of software developers. In ICSE ’08:
Proc. of the 30th Intl. Conf. on Software Engineering, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

22

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Christoph Treude
	Also by Margaret-Anne Storey
