
Succession: Measuring Transfer of Code and Developer Productivity

Audris Mockus
Avaya Labs Research

233 Mt Airy Rd, Basking Ridge, NJ
audris@avaya.com

Abstract

Code ownership transfer or succession is a crucial ingre-
dient in open source code reuse and in offshoring projects.
Measuring succession can help understand factors that af-
fect the success of such transfers and suggest ways to make
them more efficient. We propose and evaluate several meth-
ods to measure succession based on the chronology and
traces of developer activities. Using ten instances of off-
shoring succession identified through interviews, we find
that the best succession measure can accurately pinpoint
the most likely mentors. We model the productivity ratio
of more than 1000 developer pairs involved in the succes-
sion to test conjectures formulated using the organizational
socialization theory and find the ratio to decrease for in-
stances of offshoring and for mentors who have worked pri-
marily on a single project or have transferred ownership for
their non-primary project code, thus supporting a theory-
based conjectures and providing practical suggestions on
how to improve succession.

1. Introduction

Present software development business practices are try-
ing to emulate the success of manufacturing process by off-
shoring software development to countries with lower la-
bor costs and higher availability of workers. The relatively
more complex domain of software development is making
it difficult to achieve cost savings comparable to offshored
manufacturing. In this work we investigate possible rea-
sons for that challenge. Our primary goal is to create meth-
ods to identify instances of succession under the assump-
tion that simpler and direct but intrusive approaches, such
as interviews, are too costly, impractical, or impossible in
many real-life scenarios. A second goal is to investigate the
effects of succession on developer productivity given that
cost-reductions is a common reason to implement succes-
sion.

At the conceptual level, the code ownership transfer,

among other impacts, may lead to a change in the orga-
nizational structure without the corresponding change in
the product structure. Therefore, we expect to see some
changes in the product structure (or a change in the structure
of the receiving organization) as a result of such transfers.
Finding such organizational and product structure evolution
may provide insights and recommendations related to code
ownership transfer in particular and for improvements of or-
ganizational and technical structure in general. More gener-
ally, such transfers are manifest examples of organizational
socialization [20] and, according to that theory, are crucial
ways in which organizational knowledge and culture related
to software development is preserved.

Our analysis primarily focuses on ramifications of code
ownership transfer for commercial and open source soft-
ware. However, we validate our succession measures in the
offshoring context, therefore some aspects of the findings
are likely to be specific to that context. We chose offshoring
succession for validation because of its significance to busi-
ness and society and because offshoring succession is often
easier to verify due to the deep emotional impact it often im-
prints on the participants. Succession within organizations
is often quite informal, is less readily recognized by partic-
ipants, and, therefore, is much harder to be unequivocally
established in an empirical investigation.

Given the difficulty of defining and measuring succes-
sion, we focus on reframing the concepts to reflect the same
or similar phenomena and be subject to measurement, and
on techniques that demonstrate its impact on products and
organization. The first concept involves implicit or virtual
teams and it represents undirected relationships among indi-
viduals based on the affinity to the parts of the product they
are working or have worked on. Implicit team members
may know each other and communicate if they are working
on the same part of the product at the same time. However,
if they are separated temporally or are working on cloned
versions of the product, they may be unaware of each other’s
existence. Thus, they may not form a team in the ordinary
sense of the word and, consequently, we use the term im-
plicit team.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 67

The second concept is needed to define the transfer of
responsibilities to maintain and enhance a part of a prod-
uct and involves directed (often temporal) relationships be-
tween individuals within the implicit teams reflecting the
chronological order in which different individuals were en-
gaged with (owned) a particular part of a product. We call it
succession1. There are various types of succession: we are
primarily concerned with offshoring and refer to receiving
party as followers and to the transferring party as mentors.

Our first objective is to create measures of implicit teams
and of the succession in them. The second objective of
this work is to relate succession to outcomes that motivate
the practice in the first place: the reduction of development
costs. To achieve that, we first develop reliable measures of
organizational dynamics that reflect succession. Then, we
use these measures to identify multiple instances of succes-
sion and to compare mentor and follower productivity under
a variety of scenarios. The hypotheses are based on con-
jectures from the theory of organizational socialization [20]
that investigates how individuals learn established organi-
zational practices and values.

We start from a description of the approach we took in
Section 2 and continue with the description of the context
for our study in Section 3. The measurement framework for
succession is described in Section 4 and evaluated in Sec-
tion 5. Section 6 evaluates the impact of succession on de-
veloper productivity, related work is discussed in Section 7,
and conclusions are presented in Section 8.

2. Methodology

Briefly, the overall approach we take starts from the gen-
eral assumption that succession is reflected in developer’s
source code commits and similar digital artifacts. We use
our experience and intuition to formulate hypotheses postu-
lating various forms of this relationship. We then refine and
validate these hypotheses based on interviews that identified
several actual instances of succession. We examine whether
the measures of succession derived from source code com-
mits can predict these known succession relationships. We
then use the best measure of succession in other parts of the
product and in other projects and investigate how produc-
tivity of developers changes as a result of the succession.

Notably, the overall approach we take is quite similar
to archaeology, except for the fact that we study a narrow
aspects of human culture reflected in organizational rela-
tionships and recover, document, and analyze digital (not
material) remains. Because observations available to us
involve only projections of the organizational structure on

1We borrow the meaning from ecology where succession means the
gradual and orderly process of change in an ecosystem brought about by
the progressive replacement of one community by another until a stable
climax is established.

the work product and support systems, the attempt to re-
construct organizational structure is analogous to image to-
mography (image, often three-dimensional, reconstruction
from multiple projections), thus the term organizational to-
mography may be suitable to describe methods reconstruct-
ing organizational structure from the projections or traces
in version control, problem tracking, and other supporting
systems. The amount and complexity of available data in
such systems necessitates the use of analysis tools except,
possibly, in the smallest projects. Therefore, we rely on
methods described in [11]. The following steps are applied
iteratively until data of sufficient quality to perform desired
analysis is obtained:
1. Retrieve the raw data from the underlying systems via
access to the database used in the project support tools or
by ”scraping” relevant information from the web interfaces
of these systems.
2. Clean and process raw data to remove artifacts intro-
duced by underlying systems. Verify completeness and va-
lidity of extracted attributes by cross-matching information
obtained from separate systems.
3. Construct meaningful measures (of succession) and
use them to assess and model various aspects of software
projects.
4. Analyze data and present results and collect feedback for
further validation.

In this project we rely on data that have passed through
the first two levels of the pipeline and we will focus primar-
ily on the elaboration of the remaining two steps. The suc-
cession measure defined on the domain of developer pairs
can be thought of as a likelihood function reflecting the
probability that the first developer has taken over some (or
all) of the responsibilities of the second developer. The pairs
with the highest likelihood can then be expected to repre-
sent instances of succession. To determine how well var-
ious measures capture the phenomena of interest we com-
pare the succession liklihood of the actual mentor with the
succession likelihood of other developers.

Once we identify the most suitable succession measure,
we use it to identify succession on a larger sample of de-
velopers. We could not use more intrusive means, such
as, interviews because in many cases the relevant people
have left the project. This larger and more diverse sam-
ple of follower-mentor pairs was then used to study fol-
lower/mentor productivity ratio in Section 6.

3. Context

We investigate software development in Avaya with
many past and present projects of various sizes and types
involving more than two thousand developers. As described
above, we conduct two empirical studies: one involving
the validation of succession measures and another involv-

68

ing modeling of the productivity ratio. In the first study we
identified actual instances of succession in a medium sized
project having around three Million of Non-Commentary
Source Lines (MNCSL) that has used offshoring for sev-
eral years and has built a substantial expertise in offshoring.
In broad strokes, the offshoring practice identifies the tasks
and individuals (mentors) whose work is a candidate for
offshoring and obtains their cooperation by assigning them
different responsibilities or by providing a separation bonus
contingent on expertise transfer. At the same time, a small
team of developers in the offshore location is identified and
their team lead is brought to the mentor’s location to fol-
low (shadow) mentor’s work by participating in meetings,
phone calls, and other business related activities together
with the mentor. After a few weeks of shadowing, the team
lead returns to the offshore location and trains remaining
members of the team. Even though the commonly used term
is shadow, we do not believe it properly reflects the seman-
tics of what is going on2. We, therefore, propose to use the
term follower, because it captures the aspect of shadowing
by following the mentor around, and the aspect of learning:
one that follows the opinions or teachings of another.

Using interviews, we have identified 14 mentors and
their followers to evaluate measures of code ownership
transfer. Four of these individuals were not involved in de-
velopment tasks, therefore we had only ten pairs represent-
ing succession of development work.

The second study involves more than one thousand fol-
lowers for thirteen major products having from 29 to 252
developers residing in five US and five international loca-
tions having from 12 to 482 followers. The primary offshore
location had 182 followers. The remaining international lo-
cations were either no longer a destination for offshoring
work or were there because of a prior acquisition of another
company. This set of followers was selected from a much
larger set of all Avaya developers and software projects to
exclude numerous smaller, not affected by offshoring, or no
longer active projects.

Two primary sources of data were utilized in the study.
The changes to the source code were obtained from a va-
riety of version control systems used in Avaya, including
SCCS, ClearCase, CVS, and SubVersion. The data were
cleaned to eliminate administrative changes (changes made
for the purpose other than to enhance or fix the product) us-
ing a variety of techniques appropriate for each system and
each project. For example, the initial delta for branches in
SCCS or in CearCase that do not change the source code
were excluded. The data cleaning and validation was done
to support project measurement and prior studies, for ex-
ample, [8, 13] and, therefore is not described in more de-
tail here. We used developer login making the change, the

2For example, the mentor would need to be called obscurer even though
she enlightens the shadow with her expertise.

date of change, and the filename (including path) of the
changed source code file. Because several projects have
changed source code repositories over the considered pe-
riod, we have normalized the pathnames of files in such
projects to be independent of the repository. Furthermore,
we have mapped the pathnames to product names to asso-
ciate each file with a software product where it was used.

The second source of data was an organizational
database (POST) that lists individuals, their organization,
and contact information. We had collected frequent snap-
shots of this data over a period of seven years. The primary
purpose of this data was to establish the identity and the
physical location for each developer. As with any other
source of data, it had its share of anomalies and issues.
First, developer logins were not always identical to email
handles in POST. Second, logins have changed over time
for some developers because a recent policy required lo-
gins to match email handles. Third, the email handles and
even organizational IDs have changed for some developers.
For example, offshore developers who started at a US lo-
cation and later went back to their permanent offshore site
got a new ID at their home site. To deal with these issues
we used a NIS database (snapshots of which we have also
collected over seven years) that mapped login to the orga-
nizational ID and the full name of the person authorized
to use the login. This extra piece of information allowed
us to establish the identities of developers over time de-
spite changes in the organizational ID’s, email handles, and
sometimes even names (for example, as a result of a mar-
riage). We have used these sources of data to map logins
and organizational IDs to unique numeric IDs identifying
each participant. These unique IDs were then substituted
for logins in the code change data and for organization IDs
in the POST data to normalize identity information and to
provide more privacy (some developers could be recognized
from their login). We have excluded several developers who
moved across non-offshore locations from further analysis
and used only the primary offshore location for the follow-
ers who were mentored elsewhere.

4. Measurement

To infer code transfer patterns from version control data
we postulated four intuitive measures of succession and
ranked all present and former developers based on how
close they were to each follower. The rank of the real men-
tor would be high if the measure approximates the likeli-
hood of succession. To define these measures we consider
how the succession may be projected onto the development
support systems. First, the responsibilities to maintain and
enhance the code leave evidence of code changes in a ver-
sion control system. Second, the chronological order of en-
gagements by mentors and followers should be reflected in

69

the temporal order of these changes. The reconstruction or
tomography problem is then to reconstruct implicit teams
and succession from such change records. Implicit teams
may then be measured by linking developers that are chang-
ing the same packages, files, methods, or even lines of code,
for example, by counting the number of files both devel-
opers have changed in the past. Succession may be mea-
sured by selecting pairs of developers with the most clear
succession signature reflecting the location in the code and
chronological order of the changes. The measures of suc-
cession were constructed so that for a developer a the men-
tor b is determined by finding the developer who maximizes
the succession measure S:

b = arg max
b∈{Developers}

S(a, b) (1)

Denote files as fi, i = 1, . . . , N , developers as dj , j =
1, . . . , M , and the time of changes as ck(fi, dj), k =
1, . . . , Kij . The idea behind the first measure is to cap-
ture the temporal aspect of succession when one developer
changes the file after another developer. The first mea-
sure S0 counts files3 where the first4 change a developer
dj0 made occurred after the first change a developer dj1

made. Denote the time of such first change as FC(fi, dj) =
mink ck(fi, dj). The first measure of succession is the car-
dinality of the subset of files both developers changed, but
developer dj0 made the first change later than developer dj1 :

S0(dj0 , dj1) =| {fi : FC(fi, dj0) > FC(fi, dj1)} |

This measure treats all files equally, though some files may
be more relevant to the succession.

The idea behind the second measure S1 is to take the
temporal aspects of S0 into account and weights each file
by the fraction of changes developers made on that file so
that the files a developer changes most frequently get more
weight. Denote the number of changes developer j made to
file i as nij , then:

S1(dj0 , dj1) =
∑

i∈

j
nij0

, nij1
> 0

F C(fi, dj0
) > F C(fi, dj1

)

(
nij0∑
l nlj0

+
nij1∑
l nlj1

)
.

This way the files central to each developer get more
weight and have a large effect on the overall measure. If
developers overlap only on files they tend to change infre-
quently, the measure S1 would be low. The measure may
take values in the interval [0, 2], with S1 = 0 indicating
no overlap in files that were first touched later by devel-
oper j0 and with S1 = 2 indicating that developers changed

3For finer or coarser granularity it may make sense to count individual
lines, methods, or packages.

4We also considered median and last changes, for all four measures of
succession, but they did not perform well identifying succession.

the same files with developer j0 making first change always
later than developer j1.

The third measure S2 also combines aspects of succes-
sion and implicit teams, but this time the weight is based
on the relative number of changes the two developers made
to a file. Files changed mostly by others where the two de-
velopers had contributed little would not contribute much
to the measure, but files where at least one developer made
significant fraction of changes would contribute a lot.

S2(dj0 , dj1) =
∑

i∈

j
nij0

, nij1
> 0

F C(fi, dj0
) > F C(fi, dj1

)

ff
nij0 + nij1∑

j nij

S2 also ranges from zero to two, with the value zero indicat-
ing no overlap and the value two indicating a perfect overlap
as in measure S1.

The fourth measure S3 combines aspects of all three pre-
vious measures. It weights by how frequently a file was
modified by the developer and by the fraction of developer’s
changes devoted to that file:

S3(dj0 , dj1) =
∑

i∈

j
nij0

, nij1
> 0

F C(fi, dj0
) > F C(fi, dj1

)

n2
ij0P

l nlj0
+

n2
ij1P

l nlj1∑
j nij

.

Measures Si, i = 0, 1, 2, 3 would be symmetric if the
condition FC(fi, dj0) > FC(fi, dj1) was eliminated,
making them suitable to measure implicit teams, not just
code transfer phenomena.

Figure 1 illustrates the measures on a trivial example of
two developers, two files and six changes. Patterns rep-
resent files and colors represent developers with squares
representing changes. Curves link developers to files for
each change. Because S0(d1, d2) = S0(d2, d1) = 1 the
first measure can not identify which developer is a men-
tor. The second measure indicates that d2 is a mentor
for d1: S1(d1, d2) = 1

2
+ 2

3
= 7

6
and S1(d2, d1) =

1

2
+ 1

3
= 5

6
. The third and fourth measures show the op-

posite, that d1 is a mentor for d2: S2(d1, d2) = 1

4
+ 2

4
= 3

4
,

S2(d2, d1) = 1

2
+ 1

2
= 1, S3(d1, d2) =

12

2 + 22

3

4
= 11

24
,

S3(d2, d1) =
12

2 + 12

3

2
= 5

12
.

5. Evaluation of succession measures

To evaluate these four measures we need to considered
how close the best fitting mentor defined by Equation 1 is to
the actual mentor. For each measure Si and each follower
dj we ordered all remaining developers dk according to the
magnitude of Si(dj , dk) in decreasing magnitude, so that
k0 = arg maxk Si(dj , dk), k1 = arg maxk �=k0

Si(dj , dk),
and so on. For each follower we thus obtained a list of

70

Figure 1. Illustration of how succession mea-
sures are calculated.

values for each measure sorted by magnitude in decreas-
ing order. In other words, each follower/measure pair was
matched with an ordered list of all potential mentors. The
first developer in this list represents the best mentor for that
follower/measure pair. The rank (position in this ordered
list) of the actual mentor indicates how well the measure
predicts succession. These ranks (starting from zero) are
presented in Table 1. If dk0

is the actual mentor, then Ta-
ble 1 contains zero, if dk1

is the actual mentor, then Table 1
contains one, and so forth.

There are several patterns visible in the table. Surpris-
ingly, the purely temporal first measure S0 appears to per-
form quite well in detecting mentor-follower relationships.
Another surprise is that, arguably, the most intuitive mea-
sure S1 where the weighting is done according to the frac-
tion of developer’s changes on a file, has the worst perfor-
mance. Weighting by the fraction of file’s changes made
by a developer (S2) performs uniformly better than the re-
maining measures. This suggests that succession and own-
ership are mostly related to the fraction of file’s changes
performed by a developer, and not based on the fraction of
developer’s changes performed on a file. In other words,
what matters most is who owns the file, not which files a
developer spends most of their time changing. This is true
to the extent that the measure S3 incorporating both weights
appears to be inferior to measure S2 that incorporates only
one weight.

The second observation concerns several followers (2, 3,
4, and 9) for whom none of the measures have top ranks
for the actual mentors. A closer look at these instances re-
veals that actual mentors were senior developers who have
previously transferred ownership of the code taken over by
the follower to other developers. These earlier followers
occupy the top mentor rankings, leaving the actual mentor
further down in the ranking list. We illustrate this point in

Figure 2 where Follower 2 is shown connected with the top
two mentor candidates according to S2. The highest value
of S2 is represented by a solid edge and the second highest
value with a dashed edge. Edge thickness reflects the value
of S2. Black (dark) edges show the top mentor candidates
and the orange (light) edges show the top follower candi-
dates. The shortest solid edge (top candidate) path from
Follower 2 to the actual mentor has three edges including
developer 1 and developer 11 (developer numbers are unre-
lated to the follower numbers in Table 1).

Follower 2

Dev01 Dev02

mentor

Dev03Dev04 Dev11

Dev12

Dev08

Dev09Dev05 Dev06Dev07

Dev10

Dev14

Dev13 Dev15

Figure 2. Illustration of top-two mentor candi-
date graph for Follower 2 and measure S2.

This suggests that the succession measures may be im-
proved by constructing an ownership transfer graph and de-
termining ownership transfers utilizing properties (shortest
paths) of that graph. Other possible improvements may be
achieved by considering traces of communication among
developers. It is nearly impossible to obtain such communi-
cation information based on email or instant messaging for
companies operating in countries with strong privacy rules.
Fortunately, workflow systems, such as bug tracking sys-
tems and discussion boards prevalent in software projects,
provide an alternative source of communication patterns.

The best possible sum of the ranks in Table 1 is zero, but
it is not realistic given a large number of candidates. The
worst possible sum of ranks would be > 20K if the true
mentor was ranked last from all developers in the sample. A
more reasonable worst-case score would have the true men-
tor rank last among developers who changed at least one file
in common with the follower (shown in the row labeled “V-
Team” in Table 1). That would lead to a rank sum of 1033,
and an average rank sum for a random selection of mentors
would be around 500. For comparison, S2 has a rank sum
of 82 (the sum is only 11 if we exclude followers 2, 3, 4,
and 9). The comparison with random selection can be for-
mulated as a statistical test calculating the probability that
the observed or lower rank could have been obtained purely

71

Follower 1 2 3 4 5 6 7 8 9 10 Total
V-Team 127 158 161 160 129 165 162 129 177 154 1522
S0 2 20 11 56 0 9 10 0 8 2 118
S1 0 51 9 126 5 44 81 9 35 39 399
S2 1 23 20 19 2 5 3 0 9 0 82
S3 1 25 7 111 4 4 39 0 13 0 204
Total 4 119 57 312 11 48 110 17 82 41 803
p-val S2 0.008 0.146 0.124 0.119 0.016 0.03 0.0185 0.008 0.051 0.0061 0.054

Table 1. The ranks (starting from 0) of interview-derived mentors according to four measures for 10
followers.

by chance. The null hypothesis is that the rank of the actual
mentor has a uniform distribution on integers from zero up
to the number of developers who changed files touched by
the follower. The test calculates the probability of observ-
ing the rank of the actual mentor or a smaller number under
the null hypothesis. These probabilities (commonly known
as p-values) are shown in Table 1 for measure S2 and indi-
cate that measure S2 differs from a random choice for most
mentors selected from a population that changed the same
files as the follower. The p-value calculated for all follow-
ers simultaneously is in column labeled “Total”. Ranks that
have their p-value above 0.05 are shown in lighter color in
Table 1.

More generally, given that teams of four to five devel-
opers are taking over the tasks of an individual, it is not
unreasonable to have ranks larger than zero, because code
ownership transfer is a group activity. Therefore, the score
of 11 for 6 followers (excluding 2, 3, 4, and 9) is probably
close to the best we can expect for any measure of succes-
sion, while the scores for the remaining followers may be
improved through better measures that take into account the
entire succession graph as suggested above.

6. Evaluating the impact of succession

The ultimate objective of any software engineering in-
vestigation is to determine if the phenomena under study
has tangible effects on software effort, quality, or lead-time.
Because succession is crucial to offshoring practices that
tend to be motivated by cost savings, we investigate the im-
pact of succession on developer productivity. To accom-
plish that we needed a measure of productivity and a larger
sample of mentor-follower pairs. We selected the theory of
organizational socialization [20] to pose testable hypotheses
about the outcome of various succession scenarios. We start
with conjectures of how different scenarios of succession
should affect developer productivity in Section 6.1, select
the most suitable measures of productivity in Section 6.2,
discuss the sample selection process in Section 6.3, present
the resulting model of productivity ratio in Section 6.4, and

discuss threats to validity in Section 6.5

6.1. How Succession Affects Developer Pro-
ductivity

The organizational socialization theory [20] investigates
how organizational culture including values, norms, and
practices is transferred and assimilated by participants. In
our context we are focused on development practices spe-
cific to a particular product or a part of product. These prac-
tices, to a large extent, include the knowledge about other
key players in the project, their roles and responsibilities,
and the ways of interacting with them that are more likely
to bring the desired results. Therefore the theory of organi-
zational socialization is a useful tool to analyze succession.

The concept of organization and individuals is based
on [17], which includes functional, hierarchical, and in-
teractional dimensions. Functional dimension defines the
type of tasks individuals perform. We focused on the devel-
oper tasks, so the differentiation was primarily based on the
products or parts of products developers were involved in.
The hierarchical dimension defines reporting structure and
it was primarily reflected in the fact that the line manage-
ment was primarily location specific. Therefore, for devel-
opers spanning location boundary the lowest common su-
pervisor tended to be further up the management hierarchy
than in cases of same-site interactions. The interactional di-
mension defines the centrality of a person in the decision
making process, with more experienced people tending to
have more impact. Thus, a senior developer making major
architectural decisions would be higher in the interactional
dimension than a hypothetical junior developer who is en-
trusted to fix only medium- and low-severity defects.

The organizational socialization theory classifies out-
comes of individual’s adaptation to organizational culture
into roughly two classes. Custodial outcomes represent
complete preservation of organizational culture and job
function. Innovative outcomes range from expanding the
information sources used to make decisions to a redefinition
of job’s mission. In our context, an example of an innova-

72

tive outcome would be a developer assigned to fix defects
starting to use novel debugging tools (expanding informa-
tion sources) or trying to influence development process to
improve the quality of bug reports or to prevent introduc-
tion of defects (changing job’s mission). We assume for the
purpose of our analysis that more innovative outcomes in
software development will lead to higher developer produc-
tivity.

Van Manen and Schiele [20] distinguish, among others,
collective vs. individual, formal vs. informal, sequential
vs. random, fixed vs. variable, and serial vs. disjunc-
tive socializations as major predictors of the socialization
outcome and propose how each may lead from custodial
(preserving organizational traditions) to innovative (chang-
ing the information and mission of the organizational func-
tion) outcomes. We use only a subset of conjectures that are
most salient to succession and that can be measured in our
context. The conjectures are briefly summarized in Table 2.

In particular, we distinguish between succession within
a location and succession that has offshoring as its pur-
pose. In both cases the socialization is individual (men-
torship) and serial (taking over mentor’s responsibilities).
The within-location succession can be characterized as less
formal than across-location succession because the follower
works in the same organization and does not have to travel
for the explicit internship. Within-location succession is
more likely to be random and event driven learning (need-
ing mentor help for a particularly vexing defect) than a more
scripted and sequential offshoring mentorship. Within-
location succession may also have a more variable time-
table than the trip-duration bounded schedule of the off-
shoring followers. However, according to interviews, there
is an indication of continued professional collaborations be-
tween a follower and a mentor even in cases where the men-
tor leaves the organization suggesting that even offshoring
socialization is variable and goal- not schedule-driven. Ac-
cording to conjectures in [20], informal, random, and fixed
time table successions are more likely to lead to innovative
outcomes. Given clear differences in the informal and ran-
dom aspects and less clear distinction in the time table, we
would expect that:
Proposition 1. Offshoring succession leads to less innova-
tion.

In addition to the offshoring, the productivity of mentors
and followers is likely to depend on individuals, organiza-
tions, and the product itself. In particular, we expect that
the breadth of mentor’s expertise is likely to increase the
productivity of the followers. We operationalize it using the
fraction of changes done on the mentor’s primary product.
Higher value of the measure indicates that mentor’s work
is primarily concentrated on a single product, while lower
values indicate that the mentor had substantial experience
in other products. Such breadth of experience is likely to

increase mentor’s understanding of what it takes to master
a new codebase and, therefore, to improve succession:
Proposition 2. Mentors with expertise dispersed over sev-
eral products would provide mentorship that leads to more
innovation.

The focus of mentor’s expertise may differ from the
area of expertise that is transferred from a mentor to a fol-
lower. Mentors tend to be more senior developers who have
worked on several products, but if the succession is done on
a product that is not the primary area of expertise for the
mentor, it may lead to a less effective transition.
Proposition 3. Mentors that transfer expertise of their sec-
ondary products would lead to less innovation by the fol-
lowers.

We operationalize this measure by determining if the
product most changed by the mentor coincides with the
product most changed by the follower.

The mentors with the largest numbers of followers are
likely to be most productive, therefore an average follower
would appear less productive in comparison to their mentor,
thus lowering the productivity ratio. Furthermore, mentors
with the largest numbers of followers are less likely to spend
as much time on mentorship of each follower, potentially
reducing the amount of transferred expertise and resulting
in less innovative followers.
Proposition 4. Mentors with more followers would have
less innovative followers.

To adjust for the possibility of the organizational learn-
ing we also propose that:
Proposition 5. The effectiveness of expertise transfer in-
creases over time as the organization improves its off-
shoring practices.

Finally, we expect that the innovation represented by the
ratio of follower and mentor productivity would also depend
on the complexity of the transferred knowledge. While this
is not explicitly stated in [20], but it can be easily derived
based on the understanding that bigger and older products
have more elaborate rules and traditions and, therefore, re-
quire more custodial responses from the newcomers. Fur-
thermore, this complexity may require more time from new-
comers to become central enough in the organization to be
able to implement their innovations.
Proposition 6. Products with the oldest and largest code
bases are likely to have lower productivity ratios.

6.2. Measuring Developer Productivity

Conceptually, the productivity of a developer is the num-
ber of product units (output) produced over some unit of ef-
fort (inputs). For commercial developers who are employed
full-time, the inputs may be roughly approximated by devel-
oper time (staff-months) multiplied by salary and other em-
ployment costs. However, unlike in manufacturing, in soft-

73

Innovative Description Custodial Description
Individual Mentorship Collective Learning in groups
Informal The newcomer is a part of the team

and participates in regular development
work.

Formal The newcomer is segregated from the
team and regular work.

Random There is no clear or predetermined or-
der to learn different skills needed for
productive development work.

Sequential The learning progression has a predeter-
mined order.

Fixed The timetable for learning is pre-
specified and fixed

Variable The timetable for learning is determined
by the follower’s progress.

Disjunctive The follower needs to find her own role Serial The follower takes over mentors’ re-
sponsibilities.

Table 2. Summary of socialization dimensions.

ware the product units are typically not well defined. Most
commonly used measures of software output lines of code
(LOC) or Non-Commentary Lines of Code (NCSL) are easy
to obtain but tend to have numerous drawbacks and have to
be adjusted for system size, staffing levels, development ca-
pability, programming language, the extent of reuse, and
the type of development activity (see, e.g., [3, 7]). Another
commonly used measure of output is Function Points [1].
However, it is more difficult to calculate and was not used
in this organization.

Therefore, we chose to use the number of changes per
staff-month as a pragmatic measure of developer productiv-
ity, because it was readily available (similar to NCSL) and
has been successfully used in the past [2, 12]. In particu-
lar, the study in [2] has investigated a relationship between
software features that are sold to customers and the number
of changes needed to implement that feature and found a
strong relationship between changes and sellable function-
ality. The summary of developer experience with respect to
a part of the system expressed in the number of changes was
found to reflect developers’ and managers’ subjective per-
ceptions of expertise [12]. Furthermore, a study of global
development found that it takes more than a year for devel-
opers to reach full productivity (measured in changes per
month) on a large telecommunication system [14].

It is important to note that changes per staff-month may
not be suitable in a performance evaluation of individuals
because it has a fairly large variance and is easy to ma-
nipulate. However, it appears to be adequate in situations
where it is not used for performance evaluation (and there
are no other motivation for developers to make unnecessary
changes), and the sample is large enough to reduce the in-
herently large variances. One of the key assumption here is
that the source code is kept strictly under version control,
as was the case in our study. Furthermore, because mentors
and followers make changes to the same files, the compar-
isons between them automatically adjusts for the inherent
differences in making changes to different applications, us-

ing different programming languages, and other code re-
lated factors.

6.3. Inferring succession

The resulting data including numeric IDs, locations,
dates, and file names was filtered further to remove develop-
ers who were primarily involved in supporting version con-
trol, build, and test environments and other internal tools
that spanned multiple software projects. Finally, followers
that spent less than four months making changes to the code
or made less than 100 changes were excluded to limit the
impact of learning on our results.

Based on the experiences of fitting mentor-follower re-
lationships described in Section 5, we applied the best per-
forming measure S2 on a sample of 1012 potential follow-
ers to find their most likely mentors. All follower-mentor
pairs overlapped in time, suggesting that the followers were
aware of mentor’s existence even if they did not go through
an explicit mentorship relationship.

6.4. Model of Productivity Ratio

To test propositions in Section 6.1 we fitted a regression
model with response being the ratio of productivity as de-
fined in Section 6.2 between the follower and the mentor.
To make the distribution less skewed we have transformed
it using logarithm. The predictors were:
Fr The date of the first change made by the follower ap-
proximating the date they joined the project. It is expressed
as a real number representing calendar years and is intended
to account for possible organizational learning of offshoring
practices stated in Proposition 5.
Off A binary variable indicating if the mentor-follower re-
lationship was offshoring.
Prd A binary variable indicating that the follower’s product
was different from the product where the mentor had the
most expertise.

74

Brdth The concentration of mentor’s expertise represented
by the fraction of changes mentor made for her primary
product.
NF The number of followers for a mentor, representing
mentor’s skill, seniority, and the lack of time to devote
to any particular follower. To make the distribution less
skewed we have transformed it using logarithm.
Lrg A binary variable indicating a very large and very old
system with tens of MLOC.
MdA binary variable indicating a medium size system with
several MLOC.

The model for the regression shown in Table 3 was:

ln(PR) ∼ Fr+Off+Prd+Brdth+Lrg+Md+ln(NF)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 21.85 19.876 1 0.27

Fr −0.01 0.010 −1 0.31
Off −0.63 0.125 −5 0.00
Prd −0.68 0.118 −6 0.00

Brdth −1.41 0.267 −5 0.00
Lrg −1.21 0.166 −7 0.00
Md −0.46 0.099 −5 0.00

ln(NF) −0.53 0.033 −16 0.00

Table 3. The productivity ratio model with
1012 mentor-follower pairs and Adj-R2 = 0.59.

As noted above, we test the propositions using produc-
tivity ratio to measure innovation. For each proposition the
null hypothesis states that the proposed relationship does
not hold. If the operationalization of the concept stated in
the proposition has the regression coefficient significantly
different from zero, we reject the null hypothesis.

Our primary hypothesis in Proposition 1 stating that the
offshoring reduces innovation is supported by the data be-
cause the offshoring indicator Off is significantly less than
zero. In particular, offshoring succession roughly halves the
productivity ratio (e−0.63 ≈ 0.5) with 95% confidence in-
terval of [0.42, 0.67].

The individual factors also affect the innovation. Propo-
sition 2 is supported by the data and a hypothetical mentor
that spends 100% of their changes on one product leads to
roughly half (e−1.41/2 ≈ 0.5) of the productivity ratio as
compared to a hypothetical mentor that spends only 50%
of changes on their primary product. The 95% confidence
interval for this ratio is [0.38, 0.64].

Another measure of mentor’s expertise in Proposition 3
also affects the inovation. Transfering products that are not
primary to the mentor roughly halves the productivity ratio
(e−0.68 ≈ 0.5) with 95% confidence interval of [0.4, 0.64].

The number of followers per mentor decrease innova-
tion as stated in Proposition 4. The productivity ratio drops

roughly in proportion to the square root (power of 0.53) of
the number of followers.

We do not observe any organizational learning effects
stated in Proposition 5. The productivity ratio does not ap-
pear to increase over time: the coefficient is not significantly
different from zero. It means that despite multiple years of
offshoring experience, there appears to be no notable im-
provement in the productivity ratio.

Finally, the product size appears to have a significant im-
pact on productivity ratio as stated in Proposition 6. The
largest products (in our case these were both the largest and
the oldest products) have approximately one third (e−1.21 ≈
0.3) of the productivity ratio of small products with the 95%
confidence interval of [0.21, 0.42]. Medium sized prod-
ucts have roughly two-thirds e−0.46 ≈ 0.63 the productiv-
ity ratio of small products with the confidence interval of
[0.52, 0.77]. All products in the sample had at least two ma-
jor releases, with some products having more than ten major
releases.

It is important to note that the model does not imply that
the follower productivity is always lower than the mentor
productivity. In fact, under optimal conditions when the
succession is not offshoring, the product is small, the men-
tor is transfering expertise of their main product, and the
mentor has one follower, the predicted productivity ratio is
bigger than one.

The findings confirm a number of theoretical proposi-
tions based on organizational socialization theory and, more
importantly, provide a method to collect relevant data and
test new conjectures related to the transition of development
work.

These findings also have a number of important practi-
cal implications. First, the offfshoring succession has high
costs. While we could not confirm the need for four to
five ratio of new offshore developers per mentor for smaller
products (the estimate is two to one), it appears that the
ratio needs to be even higher (six to one) for the largest
products. Therefore, offshoring should always start with
smaller, newer projects and cost and other implications
should be carefully considered in the very large and/or very
old projects.

In addition to choosing the right project, choosing the
right mentor may also increase the productivity ratio. The
results suggest that followers with mentors having a broader
base of expertise that spans more than one product have
better productivity ratio than followers with mentors that
worked on a single project.

Mentors appear to have trouble transfering their exper-
tise to a large number of followers, therefore even the best
mentors should limit the number of their followers.

75

6.5. Threats to Validity

Broadly, there are questions about the extent to which
the results for Avaya projects would generalize to the rest
of the industry, questions regarding the ability of the suc-
cession measure to detect the mentor for a given follower,
and questions related to the particular model used to test
hypotheses of organizational socialization.

The set of Avaya projects considered in this analysis is
quite diverse and ranges from embedded devices and high-
availability server software to desktop applications. This
suggests that similar results may be expected in other com-
panies as well.

The ability of the succession measure to point out actual
mentors is another important point. The validation was con-
ducted in the most clear-cut situation of offshoring context
and may be more difficult to validate in less clear cases for
other types of succession. Nevertheless, the fact that the fol-
lowers primarily work on the same code as mentors, points
out the fact that determining the actual formal mentor for a
follower (if one was ever assigned) may not be so impor-
tant. In fact, the measure could be used as a definition of
the “virtual mentor.” We have investigated the sensitivity of
our results to the alternative selection of mentors. In partic-
ular, we fitted the model shown in Table 3 replacing the top
choices of the mentors with the second, third, fourth, and
fifth best choices (according to S2 measure) for each fol-
lower. The same coefficients were significant and had the
same sign, but the model fit went down with each subse-
quent choice from the adjusted R2 of 0.6 for the top choice
to the adjusted R2 of 0.35, 0.26, 0.25, and 0.22 for the sec-
ond, third, fourth, and fifth best choices accordingly. This
shows that the results are not sensitive to the top five mentor
choices.

Given observational nature of the study, there may be
other latent variables that explain variation of productivity
ratio and of predictors. For example, the product phase and
maturity may affect the productivity ratio. In our sample,
all products in our sample were quite mature. Each had at
least two major releases, with some products having more
than ten major releases.

The predictors themselves were not strongly correlated.
Only the predictor number of mentors and the predictor of
largest projects had a Spearman correlation of 0.66. Re-
maining correlations were all below 0.4. The regression
residuals did not appear to have any patterns and were ap-
proximately normal (p-value of 0.07 using Pearson chi-
square normality test).

7. Related work

While there are no published results that are similar to
this investigation, it touches upon multiple established areas

of software engineering research. From the measurement
perspective the interrelationships among parts of a codebase
were investigated in depth in [5]. The fact that expert devel-
opers can be identified by observing code that they change
was exploited in expertise visualization tool [12]. The
relationship among developers using workflow and com-
monly changed codebase was utilized in identifying inter-
dependencies and coordination requirements in, for exam-
ple, [8, 6]. In [14], the code was chunked into independently
changeable pieces of suitable size to fit the capabilities of a
particular offshore development location. A detailed case
study of what a volunteer has to go through to join two
open-source projects is presented in [21]. Succession, on
the other hand, has not been previously measured.

The investigations of developer productivity have a long
and rich history from early work on cost estimation mod-
els [4] to more recent studies [15] and tool-based ap-
proaches [18] that help address the issues of how individ-
ual developers deal with code understanding: a problem
that is a crucial part of succession. Findings from a more
inclusive study of how individual developers work in large
projects [9] and tools that support awareness through source
control system [16] and code annotations [19] would nicely
complement our higher level recommendations of mentor
selection in succession.

8. Conclusions

We have proposed and validated a method to measure
the phenomena of succession based on the information in
the version control and organization directory systems, pro-
posed six organizational socialization theory derived hy-
potheses on how different types of succession affect de-
veloper productivity. The analysis of more than one thou-
sand developers involved in more than ten products shows
that there are large differences in the productivity ratio.
Larger projects, overloaded mentors, and offshoring suc-
cession significantly reduce the productivity ratio. Breadth
of mentor expertise and succession where mentor’s primary
poduct is transfered significantly increase the productivity
ratio.

The succession becomes more important as the software
development increasingly follows in the offshoring and out-
sourcing footsteps of the manufacturing and as open-source
code reuse in commercial projects becomes more wid-
spread. More generally, the succession is an essential aspect
of organizational dynamics in software projects.

Clearly, despite the large size of the study, the results pre-
sented in this work would benefit from replication in other
environments, yet promise of research in this area is tanta-
lizing. The potential to track the transfer of code owner-
ship in the universe of all software code [10] and the ability
to quantify how the product and organization coevolve are

76

likely to provide numerous lessons and may significantly
improve the way software development organizations and
product are created and structured in the future.

Acknowledgments

We thank R. Hackbarth and J. Palframan for conducting
interviews that provided instances of succession and a better
understanding of the offshoring process.

References

[1] A. J. Albrecht and J. R. Gaffney. Software function, source
lines of code, and development effort prediction: a software
science validation. IEEE Trans. on Software Engineering,
9(6):638–648, 1983.

[2] D. Atkins, T. Ball, T. Graves, and A. Mockus. Using version
control data to evaluate the impact of software tools: A case
study of the version editor. IEEE Transactions on Software
Engineering, 28(7):625–637, July 2002.

[3] V. Basili and R. Reiter. An investigation of human factors
in software development. IEEE Computer, 12(12):21–38,
December 1979.

[4] B. Boehm. Software Engineering Economics. Prentice-Hall,
1981.

[5] L. Briand, P. Devanbu, and W. Melo. An investigation into
coupling measures for c++. In Proceedings of the 19th in-
ternational conference on Software engineering, pages 412–
421, Boston, MA, 1997.

[6] M. Cataldo, P. Wagstrom, J. Herbsleb, and K. Carley. Iden-
tification of coordination requirements: Implications for the
design of collaboration and awareness tools. In Confer-
ence on Computer Supported Cooperative Work CSCW’06,
Banff, Alberta, Canada, 2006.

[7] B. Curtis. Substantiating programmer variability. In Pro-
ceedings of the IEEE 69, July 1981.

[8] J. Herbsleb and A. Mockus. Formulation and preliminary
test of an empirical theory of coordination in software engi-
neering. In 2003 International Conference on Foundations
of Software Engineering, Helsinki, Finland, October 2003.
ACM Press.

[9] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining men-
tal models: a study of developer work habits. In Proceedings
of the 28th international conference on Software engineer-
ing, pages 492–501, Shanghai, China, 2006.

[10] A. Mockus. Large-scale code reuse in open source software.
In ICSE’07 Intl. Workshop on Emerging Trends in FLOSS
Research and Development, Minneapolis, Minnesota, May
21 2007.

[11] A. Mockus. Software support tools and experimental work.
In V. Basili and et al, editors, Empirical Software Engineer-
ing Issues: Critical Assessments and Future Directions, vol-
ume LNCS 4336, pages 91–99. Springer, 2007.

[12] A. Mockus and J. Herbsleb. Expertise browser: A quantita-
tive approach to identifying expertise. In 2002 International
Conference on Software Engineering, pages 503–512, Or-
lando, Florida, May 19-25 2002. ACM Press.

[13] A. Mockus and D. Weiss. Interval quality: Relating
customer-perceived quality to process quality. In 2008 Inter-
national Conference on Software Engineering, pages 733–
740, Leipzig, Germany, May 10–18 2008. ACM Press.

[14] A. Mockus and D. M. Weiss. Globalization by chunking: a
quantitative approach. IEEE Software, 18(2):30–37, March
2001.

[15] M. P. Robillard and W. C. G. C. Murphy. How effective
developers investigate source code: An exploratory study.
tse, 30(12):889–903, 2004.

[16] A. Sarma, Z. Noroozi, and A. van der Hoek. Palan-
tir: Raising awareness among configuration management
workspaces. In 25th International Conference on Software
Engineering (ICSE’03), page 444, 2003.

[17] E. Schein. The individual, the organization, and the carier:
A conceptual scheme. Journal of Applied Behavioural Sci-
ence, 7:401–426, 1971.

[18] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Supporting
navigation in software. In 13th International Workshop on
Program Comprehension (IWPC’05), pages 173–175, 2005.

[19] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby. Shared
waypoints and social tagging to support collaboration in
software development. In Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative
work, Banff, Alberta, Canada, 2006.

[20] J. Van Maanen and E. Schein. Towards a theory of orga-
nizational socialization. In B. Staw, editor, Research in or-
ganizational behavior, volume 1, pages 209–264. JAI Press,
Greenwich, CT, 1979.

[21] G. von Krogh, S. Spaeth, and K. R. Lakhani. Community,
joining, and specialization in open source software innova-
tion: a case study. Research Policy, 32(7):1217–1241, July
2003.

77

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Author
