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Abstract

Model-Driven Engineering (MDE) has become an im-
portant development framework for many large-scale soft-
ware. Previous research has reported that as in traditional
code-based development, cloning also occurs in MDE.
However, there has been little work on clone detection in
models with the limitations on detection precision and com-
pleteness. This paper presents ModelCD, a novel clone
detection tool for Matlab/Simulink models, that is able to
efficiently and accurately detect both exactly matched and
approximate model clones. The core of ModelCD is two
novel graph-based clone detection algorithms that are able
to systematically and incrementally discover clones with a
high degree of completeness, accuracy, and scalability. We
have conducted an empirical evaluation with various exper-
imental studies on many real-world systems to demonstrate
the usefulness of our approach and to compare the perfor-
mance of ModelCD with existing tools.

1 Introduction

Model-Driven Engineering (MDE) has become an im-
portant development framework. Matlab/Simulink is a pop-
ular MDE tool for designing and modeling software in
many products from small electronic control software to
large-scale flight control systems. Models are the collec-
tion of logical entities which describe a system at multiple
levels of abstraction and from a variety of perspectives.

Previous study by Deissenboeck et al. [8] showed that
with the nature of using graphical editors for models, cloned
fragments in Simulink models often appear. Cloned frag-
ments are the exactly matched or similar fragments in
Simulink models. Similar to traditional code clones, clones
in Simulink models require additional efforts for mainte-
nance and management. For example, changes to one place
must be carried out multiple times for all occurrences of
clones. Thus, detecting clones in models plays the same
important role as in traditional software development [8].

Unfortunately, there have been very few work on detect-
ing clones in models. CloneDetective represents the state-
of-the-art of clone detection in MDE. However, it has sev-
eral limitations. The important limitations are its inaccuracy
and low degree of completeness in detection. The authors
reported that several clones were not detected (e.g. small
clones are covered in larger clone pairs) [8]. It was also re-
ported that many detected clones by CloneDetective are not
interesting to the developers even though they are clones
according to CloneDetective’s definition. Several detected
clone groups are inaccurate and do not carry much mean-
ing for developers. Another key limitation is that CloneDe-
tective algorithm tends to find as large clones as possible.
They are sometimes too large and not useful, and do not
correspond well to copy-pasted fragments. Users are easily
confused when CloneDetective reports such large clones in
a graphical editor. Most importantly, CloneDetective could
not detect approximate clones in which two parts of a model
have slight differences. These cases occur often when users
make a copy of a fragment and then modify it.

2 Approach Overview

In this paper, we introduce a novel clone detection tool
for Matlab/Simulink models, named ModelCD, that is able
to detect both exactly matched and approximate model
clones. The core of ModelCD is two respective model clone
detection algorithms: eScan and aScan. We develop dif-
ferent algorithms for exact-matched and approximate clone
detection because by taking into consideration the nature of
each kind of clones, we were able to design different op-
timization techniques for each algorithm to gain both effi-
ciency and completeness.

The key ideas of our method are as follows. A Simulink
model is represented as a sparse, labeled directed graph.
Clones in that model are considered as its weakly con-
nected and non-overlapping subgraphs. Two algorithms de-
tect clones through three steps: generating, grouping, and
filtering. They first generate candidate clones, then group
them into clone groups, and finally filter those groups to re-
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move the redundant ones. To efficiently generate candidate
clones, ModelCD is based on an observation that if two sub-
graphs are cloned, they must contain two cloned subgraphs
of a smaller size (size is measured by the number of edges).
Thus, the algorithms generate candidate cloned subgraphs
from the smallest to the largest size. By doing that way, the
algorithms could systematically discover the clones with a
high degree of completeness and precision. This also al-
lows each algorithm to apply appropriate optimization and
heuristic techniques to reduce the candidate sets. For ex-
ample, to avoid combinatorial explosion, aScan applies a
pruning technique that prohibits un-cloned subgraphs from
being used in further generating of candidates.

In the grouping step, different techniques are used in two
algorithms. Since eScan aims to detect exactly-matched
clones, i.e. isomorphic non-overlapping weakly connected
subgraphs, it uses canonical labeling [17], an advanced
graph isomorphism technique to check the isomorphism of
the subgraphs in a sparse graph. Then, it puts them into
groups of isomorphic subgraphs, and uses those grouped
subgraphs to generate larger isomorphic candidates with the
extension of one edge. In contrast, aScan aims to detect ap-
proximate clones, i.e. non-overlapping weakly connected
subgraphs that are similar in structure. It uses our novel
vector-based technique, Exas [24], to approximate the struc-
ture of a subgraph by a counting vector of the sequences of
nodes/edges’ labels. Clone grouping is done by using hash-
ing and maximal clique cover methods for those vectors.

ModelCD was integrated into ConQAT [8], an open-
source software maintenance for programs and Simulink
models. The front-end editor and visualization for models
are provided by ConQAT. Users are able to specify the min-
imum and maximum desired clone sizes or a detecting time
limit. An interesting feature of ModelCD is its ability of in-
cremental operation. If users want more results (says, larger
clones) after the first run, ModelCD is able to continue its
execution without re-running the whole process. The stor-
age cost for an incremental mode is reasonable.

We have performed an extensive empirical evaluation on
several open-source Simulink systems and compared the
performance of ModelCD with that of CloneDetective, the
model clone detection tool within ConQAT. Experimental
results show that both eScan and aScan are efficient and
scalable to the very large models with reasonable time costs.
Compare to CloneDetective, eScan has larger running time
but produces more complete and accurate clone results with
higher quality and much more quantity. Importantly, the
running time of eScan for large models of several thousands
of nodes and edges is only in the range of a few hundred sec-
onds. aScan also has a high degree of completeness, preci-
sion, and time efficiency in clone detection.

Next section presents our formulation of the model clone
detection problem. Sections 4 and 5 explain eScan and

aScan algorithms. Additional improvements to both algo-
rithms are in Section 6. Evaluation is in Section 7. Related
work is discussed in Section 8. Conclusions appear last.

3 Graph Representation and Formulation

3.1 Representation of Simulink Models

To model a system with Matlab/Simulink, developers
use basic Simulink blocks and then the system will be gen-
erated from the model. Simulink blocks can be instantiated
from many basic types such as gains, adders, comparisons,
switches, etc. Each block can be associated with attributes,
depending on the block’s type. Inputs and outputs of blocks
are connected together via signal lines. Basic blocks can be
combined to form a composite block or a subsystem. More
details on Matlab/Simulink are in [20].

This first phase of our tool is carried out in the same man-
ner as in ConQAT [8]. Basically, it consists of three tasks:
(1) parsing the model into a directed graph where a node
represents a block and an edge represents a signal connec-
tion, (2) flattening all subsystems and converting them into
graphs (this step is optional), and (3) labeling nodes and
edges with the labels depending on their attributes. For ex-
ample, the label for a node includes its block type, while
other information are discarded. As in ConQAT, the label
of an edge includes the labels of the source and target ports.

The output of this phase is a labeled, directed graph G
in which the set of nodes V represents Simulink blocks, the
set of directed edges E represents the signal lines, and the
labeling function T assigns the labels to nodes and edges. G
is a multi-graph because in a model, there might be multiple
signal connections between two blocks.

3.2 Formulation

Given G = (V, E, T ) as the representation graph of a
model M , let us formulate the clone detection problem.

Definition 1 (Fragment) A fragment f is a set of edges of
G which forms a weakly connected subgraph.

A fragment f with k edges is called a k-fragment and is
denoted by fk, i.e. with the subscript as its size.

Definition 2 (Clone Pair) Two fragments are called a
clone pair if they are sufficiently similar with respect to a
given similarity measure.

We call them cloned fragments and say that they are
clones of each other.

Definition 3 (Clone Group) A clone group is a set of at
least two fragments in which any two fragments form a
clone pair.
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Thus, a clone group contains only cloned fragments. By
definition, a clone pair is also a clone group. To model the
non-redundancy in detected clone groups, we use the fol-
lowing concept:

Definition 4 (Covered Group) A clone group P is said to
be covered by another group Q if and only if each member
of P is a subgraph of at least one member of Q.

If a clone group is covered by another group, it is redun-
dant because the information of its member clones is also
contained in the group covering it.

Definition 5 (Clone Detection in Graph-based Models)
Given a graph G and a similarity measure. Find a set CG
of clone groups satisfying:

1. Any clone pair existing in G is covered by at least a
group in the set CG.

2. CG has no covered group.

Condition 1 means the completeness of CG, because it
contains clone information of all clones in the graph. That
is, every clone pair of G is either contained in a clone group
of CG or is “covered” by another pair in another clone
group. Each fragment in a covered pair is a subgraph of
a fragment in the covering pair. Condition 2 means that CG
has no redundant group. Remember that by definition, all
clone groups in CG contain only cloned fragments. It im-
plies that CG is also fully precise.

4 Exact Model Clone Detection

Let us describe eScan algorithm, which aims to find ex-
actly matched clones in models. In this case, the similarity
measure for a pair of fragments is defined as follows:

Definition 6 (Exact Clone Pair) Two fragments f1 and f2,
with two corresponding subgraphs (V1, E1) and (V2, E2) in
G = (V, E, T ) are a clone pair if and only if

1. Non-overlapping: V1 ∩ V2 = ∅,
2. Label-isomorphic: there exist two bijections m: V1 →

V2 and p : E1 → E2 such that ∀v ∈ V1 : T (v) = T (m(v))
and ∀e ∈ E(u, v)∩E1 : p(e) ∈ E(m(u),m(v))∩ E2 and
T (e) = T (p(e)). We use E(u, v) to denote the set of edges
between two nodes u and v in graph G.

In other words, a clone pair is two non-overlapping sub-
graphs of G that are isomorphic regarding the labeling func-
tion T . Thus, to check if two fragments are a clone pair, one
needs to solve the problem of labeled graph isomorphism.
Currently, it is not known to be in P or NP-hard [17]. How-
ever, for the sparse graphs, we use an efficient technique,
called canonical labeling [26], to solve that problem.

In brief, for each subgraph, a canonical label is computed
based on its structure (topology) and the labels of its nodes

and edges. This label is invariant with respect to isomor-
phism. In other words, all isomorphic labeled subgraphs
have the same canonical label. Hence, to check whether
two fragments are cloned or not, we only need to compare
their canonical labels. More information about canonical
labeling can be found in another document [26].

Therefore, in eScan, an exact clone group is a set of
non-overlapping fragments having the same size and canon-
ical label. Taking the union of all clone groups of size k, we
have the set of all cloned k-fragments. This set is called a
clone layer of size k, denoted by Lk.

Observation 1 In G and clone layers:
1. Every k-fragment can be generated from a (k − 1)-

fragment by adding a relevant edge.
2. If two k-fragments are a clone pair, there exists two

cloned (k − 1)-fragments (i.e. subgraphs) within them.
3. Every clone pair of Lk must be generated from a clone

pair of Lk−1.
Fact 1 is easy to see. For fact 2, we remind that two

isomorphic graphs must have two isomorphic subgraphs. If
they are non-overlapping, so are their subgraphs. Fact 3 can
be easily derived from the first two facts.

Those facts imply that Lk can be generated from Lk−1

by extending all cloned fragments in Lk−1 by one edge, col-
lecting those resulting fragments into a candidate set, keep-
ing only the cloned k-fragments, and then grouping them
into clone groups. By gradually generating L1, L2,..., Lk,
we could find all clone groups precisely and completely.

However, this generating strategy is in the breadth-first
order, which requires much memory cost to maintain all the
groups and candidates. To increase efficiency, eScan fol-
lows a depth-first order on a graph called clone lattice.

Clone lattice is a layered graph built on the clone lay-
ers L1, L2,..., Lk,... Each node of the clone lattice is a
cloned fragment and the kth layer of clone lattice contains
the members of Lk. We use the subscript to a node to de-
note its layer index. If fk is a subgraph of fk+1, there will
be an edge from fk to fk+1 in the clone lattice. That edge
represents the generating relationship between fk and fk+1.
To find all cloned fragments of all possible sizes in G, is in-
deed to discover the nodes of the clone lattice by traversing
from the nodes of the first level. The grouping and filtering
process is applied to all cloned fragments (Section 4.2). The
technique of using this kind of lattice is adapted from vSi-
GraM [17]. However, the details of each steps are different.
The remaining of this section describes eScan in details.

4.1 Cloned Fragments Generation

Pseudo-code of eScan (Figure 1) uses the followings:

• Clones(fk) is the set containing fk and all of its
clones (i.e. all fragments which are non-overlapping
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1 f u n c t i o n eScan (G = (V, E , T ) )
2 L1 ← { a l l c l o n e d 1− f r a g m e n t s }
3 f o r each f1 ∈ L1 do D i s c o v e r (f1 ,Clones(f1) )
4 f o r each Lk do CG ← CG ∪Group(Lk)
5 F i l t e r (CG)
6 r e t u r n CG
7
8 f u n c t i o n D i s c o v e r (fk, Clones(fk))
9 f o r each gk ∈ Clones(fk) do

10 Ck+1 ← Ck+1 ∪ {gk ⊕ e | e ∈ E}
11 f o r each ck+1 ∈ Ck+1 do
12 i f GeneratingParent(ck+1) = fk then
13 Find(Clones(ck+1))
14 i f |Clones(ck+1)| > 1 then
15 Lk+1 ← Lk+1 ∪ Clones(ck+1)
16 D i s c o v e r (ck+1, Clones(ck+1))

Figure 1. Exact Clone Detection

with and are label-isomorphic to fk). Section 4.4 will
explain how to find this set (line 13).

• ⊕ is the extension operation: that is, g ⊕ e returns the
fragment generated by adding an edge e to fragment g.

• GeneratingParent(ck+1) returns the generating par-
ent of ck+1, i.e. the unique fragment that is used to
generate ck+1. This will be discussed later.

eScan first discovers L1, the set of all cloned 1-
fragments, i.e. all repeated edges of G (line 2). Then,
eScan uses each fragments in L1 as the starting point of
a discovery process (function Discover) that traverses the
clone lattice in the depth-first order (line 3). When visit-
ing a cloned k-fragment fk, eScan generates a candidate set
Ck+1 of (k + 1)-fragments which can be obtained from a
fragment in Clones(fk) (i.e. fk and its clones) with an ex-
tension of only one edge (lines 9-10). For each candidate
fragment ck+1 ∈ Ck+1, if it is a cloned fragment (line 14),
its clones and itself are added into Lk+1 (line 15) and it is
used in the next iteration of discovery (line 16).

A candidate ck+1 can be generated by several cloned k-
fragments (at most k + 1). That is, ck+1 might be explored
and processed many times. To avoid these redundant visits,
eScan uses the generating parent technique to ensure that
each cloned fragment is explored only once. The idea is to
assign for each cloned fragment ck+1 a unique fragment fk

which is used to generate ck+1. fk is called the generating
parent of ck+1 (Section 4.3). Then, while discovering fk, a
cloned fragment ck+1 will be used for next discovery if and
only if fk is the generating parent of ck+1 (line 12).

Since ck+1 has only one generating parent, it is discov-
ered exactly once. The recursion terminates if the candi-
date set is empty, and the traversal will backtrack. After the

traversal finishes, all cloned fragments are contained in the
clone layers L1, L2, ..., Lmax. They are grouped layer-by-
layer into clone groups (line 4). Then, resulting groups are
filtered to remove covered, i.e. redundant, groups (line 5).

4.2 Clone Grouping and Filtering

Remind that all the isomorphic fragments have the same
canonical label. Therefore, the first step of grouping in eS-
can is to partition each clone layer into subsets of fragments
having the same canonical label. The result of this step is a
collection of smaller subsets of isomorphic fragments.

Despite of being isomorphic, the fragments in a sub-
set might not be cloned to all others because of the non-
overlapping condition. Thus, the next phase of grouping
task is to find the groups of non-overlapping fragments. Let
us give an example. Assume that a subset S has four frag-
ments a, b, c and d isomorphic to one another. However,
c overlaps with both b and d. By our definition, S is not
a clone group. One can detect in S the following clone
groups: (a, b), (a, b, d), (a, c), (a, d), (b, d). Those groups
cover all clone pairs in S. However, (a, b), (a, d), and (b, d)
are redundant because they are covered by (a, b, d). The
most desirable result is two groups (a, b, d) and (a, c).

Therefore, our goal is to find a set of non-redundant
clone groups that cover all clone pairs of S and each group
has a size as large as possible. To achieve this, eScan rep-
resents S as a graph in which nodes are fragments and two
nodes have an edge if they are not overlapped. Each clone
group is a clique of the graph, i.e. a set of nodes such that
any two nodes are connected by an edge. Then, eScan ap-
plies Bron-Kerbosch, a maximal clique cover algorithm [7],
on the graph to find the desired clone groups.

After grouping that way for all subsets of all layers, we
have a set CG of all clone groups for the graph G. The fil-
tering step is required to remove all covered groups in CG.
A group is removed from CG if it is covered by another
remaining group (see Definition 4 for covered groups).

4.3 Generating Parent Identification

We did not use the original technique of generating par-
ent in vSiGraM [17] to avoid its expensive computational
cost. Our procedure to identify the generating parent of a
fragment ck+1 is as follows. After ck+1 is assigned a canon-
ical label, the order of its nodes and edges are uniquely iden-
tified. Then, the last edge in that order which does not dis-
connect ck+1 is identified. If that edge is exactly the edge
that was just added to fk, then fk is the generating parent
of ck+1. Figure 2 displays an example. Suppose that after
canonical labeling, the order of edges in ck+1 is from 1 to 5.
Assume that the fragment (e) is just used to create ck+1 by
adding the edge 5. Thus, it is the generating parent of ck+1.
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Figure 2. Generating Parent
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Figure 3. Detected Hidden Clones

4.4 Finding Clones of a Fragment

Our algorithm involves a step that requires the finding
of the set Clones(fk) for a fragment fk that includes itself
and all of its clones in graph G. In general, it is the sub-
graph isomorphism, an NP-hard problem [11]. However,
in eScan, this task requires a relatively inexpensive com-
putational cost. Let us come back to the context of eScan
(Figure 1) to show that Clones(ck+1) is a subset of Ck+1.

Proof. Assume that c′k+1 is a clone of ck+1. Because
ck+1 is generated from fk, there must exist a cloned frag-
ment f ′k of fk that can generate c′k+1 (see Observation 1
above). Remind that Ck+1 is the set of all of fragments
extended from a fragment in Clones(fk) (i.e. fk and its
clones) with one edge. Therefore, c′k+1 ∈ Ck+1.

From this result, to find Clones(ck+1), we search in
Ck+1 all fragments c′k+1 having the same canonical label
and non-overlapping with ck+1. This search can be done
efficiently by storing Ck+1 as a chaining hash table using
canonical labels as keys. Since calculating canonical labels
for fragments takes time, eScan uses a cache mechanism.

4.5 Detecting Hidden Clones

One interesting feature of eScan over CloneDetective [8]
is the ability to detect smaller size clones in the cases that
the larger clone pairs hide smaller ones. Figure 3 shows an
example that CloneDetective has failed to detect because it
has two separate phases: clone pair detection and pair-to-
group conversion. In Figure 3, it detects two pairs of model
clones (f1, f2) and (g1, g2) (represented as shapes). How-
ever, because it finds clone pairs with the sizes as large as
possible, the clone group of (h1, h2, h3) is missed. In con-

trast, eScan is able to detect that clone group (h1, h2, h3)
first, whose elements have smaller sizes. Then, from cloned
fragments h1, h2, or h3, the fragments f1, f2 and g1,g2 are
extended, thus, the other two groups are discovered.

5 Approximate Model Clone Detection

As in code clones, clones in model should be considered
not only as exactly but also similarly matched. That is, a
fragment of the model is copied from one place and pasted
in another place with small changes of replacing, adding or
removing blocks. In this case, it still maintains almost the
same structure but is no longer isomorphic to the original.
Therefore, the similarity measure that uses the isomorphism
relation and eScan algorithm are not applicable.

To define a new and more appropriate similarity mea-
sure in such cases, we develop Exas [24], a vector-based
representation and feature extraction method that can ap-
proximate the structure within a (sub)graph. A (sub)graph
is characterized by a vector whose elements are the occur-
rence counts of the selected structural features within the
(sub)graph. By doing this way, the changes of the vector,
which can be measured by an appropriate distance function,
can approximately capture the changes to a fragment. If the
distance is sufficiently small (i.e. smaller than a specific
threshold δ), the respective fragments could be considered
as clones. Next, we will discuss about Exas vectors.

5.1 Exas Characteristic Vectors

Exas focuses on two kinds of structural patterns in a
(sub)graph, called (p,q)-node and n-path. A (p, q)-node is a
node having p incoming and q outgoing edges. An n-path
is a directed path of n nodes, i.e. a sequence of n nodes
in which any two consecutive nodes are connected by a di-
rected edge. A special case is an 1-path, which contains
only one node. Structural feature of a (p, q)-node is the la-
bel of the node and two numbers p and q. For an n-path, it
is a sequence of labels of nodes and edges along the path.

Figure 4 shows an illustrated example of a graph and its
two cloned fragments A and B [24]. Table 1 lists all pat-
terns and features extracted from fragment A. It could be
easy to check that fragment B, which is isomorphic to frag-
ment A, has the same set of features as fragment A.

To efficiently describe the feature set of a fragment, Exas
uses the occurrence-count vector of the features extracted
from that fragment as its characteristic vector. That is, each
position in the vector is indexed for a feature and the value
at that position is the number of occurrences of that feature
in the fragment. Table 2 shows the indexes of the features,
which are global across all vectors, and their occurrence
counts in fragment A. The vectors for both A and B are
the same. It is (2,1,1,1,1,2,1,1,1,2,1,1,1,1,1).

280



Figure 4. Example of Fragments

Pattern Features of fragment A
1-path 1 2 5 6 9

in in gain mul sum
2-path 1-5 1-6 2-6 6-9 5-9

in-gain in-mul in-mul mul-sum gain-sum
3-path 1-5-9 1-6-9 2-6-9

in-gain-sum in-mul-sum in-mul-sum
(p,q)-node 1 2 5

in-0-2 in-0-1 gain-1-1
(p,q)-node 6 9

(cont-) mul-2-1 sum-2-0

Table 1. Example of Patterns and Features

In general, it is easy to verify that two isomorphic frag-
ments have the same feature set, thus, have the same vector.
Moreover, in [24], we proved a more generic property.

Theorem 1 If graph edit distance of G1 and G2 is λ, then
‖v1−v2‖ ≤ ‖v1−v2‖1 ≤ (2P+4)λ with P =

∑N
l=1 l.bl−1.

G1 and G2 are two subgraphs of G. b is the maximum
degree of nodes in G (i.e. branching factor), and N is the
maximum size of n-paths of interest. (Since there might
exist an infinite number of n-paths of all sizes, Exas is in-
terested only in the n-paths of certain limited sizes.)

This result means that, the vector distance of two frag-
ments is bounded by their edit distance, i.e. similar frag-
ments (having small edit distance) will have small vector
distance. Therefore, vector distance could be used as a sim-
ilarity measure of fragments. To normalize the vector dis-
tance with respect to the vectors of different lengths, in aS-
can, we use this measure: d(v1, v2) = ‖v1−v2‖

(‖v1‖+‖v2‖)/2 .
More details on how Exas can efficiently compute and

store the vectors for subgraphs can be found in [24].

5.2 Design Strategies

Due to the nature of similar clones, two cloned fragments
have to share at least some isomorphic core part. Those

Feature Index Counts Feature Index Counts
in 1 2 in-gain-sum 9 1
gain 2 1 in-mul-sum 10 2
mul 3 1 in-0-1 11 1
sum 4 1 in-0-2 12 1
in-gain 5 1 gain-1-1 13 1
in-mul 6 2 mul-2-1 14 1
gain-sum 7 1 sum-2-0 15 1
mul-sum 8 1

Table 2. Vector Indexing and Counting

above insights are formalized in our definition for approxi-
mate (similarly matched) model clones as follows:

Definition 7 (Similar Clone Pair) Two fragments f1
k and

f2
h represented by two subgraphs G1 = (V1, E1) and G2 =

(V2, E2) with two corresponding Exas vectors v1 and v2 are
cloned if and only if: (1) V1 ∩ V2 = ∅, (2) d(v1, v2) ≤ δ,
and (3) there exists a pair of subgraphs Go

1 of G1 and Go
2 of

G2 such that Go
1 and Go

2 are exact clones of the same size s
where s

k ≥ σ and s
h ≥ σ, for two given thresholds δ and σ.

Condition 1 means that two cloned fragments are non-
overlapping. Condition 2 requires them to have similar
characteristic vectors. Condition 3 implies that they have
an isomorphic core common part. The ratio between the
size of the core part and that of each fragment is at least σ.

Observation 2 Because the sizes of those two fragments
are larger than that of the core part, k ≥ s ≥ hσ and h ≥
s ≥ kσ. This implies kσ ≤ h ≤ k/σ. That means a cloned
h-fragment of a k-fragment must have its size h in the range
[l(k), r(k)] where l(k) = dkσe and r(k) = b k

σ c.
Based on those aforementioned observations, we use the

following strategies for our aScan detection algorithm:

Breadth-First Traversal. aScan discovers the candidate
fragments for clones by traversing the clone lattice in the
breadth-first traversal order, rather than depth-first order in
eScan. This allows aScan to efficiently consider candidate
fragments with different sizes to form clone groups.

By Definition 7, two cloned fragments must contain two
isomorphic subgraphs. Checking subgraph isomorphism is
NP-hard. Therefore, in aScan, two fragments are consid-
ered a clone pair if they satisfy those three conditions in
which (1) and (2) mean non-overlapping and small vector
distance. Thus, we sacrifice precision for efficiency.

Candidate Window. Based on Observation 2, we use the
following heuristic to increase precision and performance.
Since any cloned fragment of a k-fragment has its size of
at least l(k). Therefore, at the layer k in the lattice, to
find clones of k-fragments, aScan considers not only the
k-fragment candidates but also the cloned fragments in pre-
vious layers (from layer l(k) to k − 1). Candidate window
is the set of all those layers.

1
in

2
in

5

6
mul

3
in

4
in 7

mul

9
sum

sum

delay

8
gain

10

11

Fragment A

Fragment B

gain
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1 f u n c t i o n aScan(G = (V, E, T ))
2 k ← 1, Lk ← E, CG ← Lk

3 re pe a t
4 k ← k + 1
5 Ck ← Ck ∪ {fk−1 ⊕ e|fk−1 ∈ Lk−1, e ∈ L1}
6 f o r i = l(k) to k − 1 do Ck ← Ck ∪ Li

7 CG ← CG ∪Group(Ck)
8 F i l t e r (CG)
9 Lk ← { a l l d e t e c t e d c l o n e d k−f r a g m e n t s }

10 u n t i l Lk = ∅
11 r e t u r n CG

Figure 5. Approximate Clone Detection

Pruning techniques. The number of candidates for approx-
imate clones could be very large. We apply a pruning tech-
nique that prohibits un-cloned fragments from being used in
further generating of candidates. Our heuristic is that “the
cloned fragments at a small size that can form clone groups
are likely to be sub-fragments of cloned fragments at some
larger sizes”.

From Observation 2, a k-fragment fk cannot be a clone
of the fragments of size larger than r(k). Thus, at step
r(k) + 1, if fk is not a clone of any generated fragments,
it could be removed without reducing the completeness.
However, aScan removes it from consideration right at level
k to prohibit the generating of larger fragments from it.
Therefore, only cloned fragments detected at step k are used
to generate the candidate set of the next step.

Another pruning strategy for aScan is applied as follows.
At a step, the edges whose all the connections to smaller
fragments produce no cloned fragments will not be used in
the next iteration because it will not lead to any clones. This
greatly reduces the number of candidate fragments because
this number is proportional to the number of edges used in
each extension.

5.3 Detailed Algorithm

Details of aScan are given in Figure 5. Firstly, aScan
collects all the edges of G into the clone layer L1 (line 2).
Then, at a step k > 1, it generates clone layer Lk (lines
3-10). At this step, all clone layers from L1 to Lk−1 have
been generated. Now, aScan includes into the candidate set
Ck all k-fragments generated by extending a fragment in
Lk−1 by one edge (line 5). The vectors of those fragments
are computed when they are generated. Then, all cloned
fragments in the candidate window, i.e. from layer l(k) to
layer (k− 1) are included in Ck (line 6) since the generated
k-fragments can be clones of those smaller fragments.

After collecting members for the candidate set, aScan
does grouping on them to detect and add new clone groups
into the set of resulting clone groups CG (line 7). Such

grouping gives the resulting clone groups at the level k.
Since the new groups might cover some detected groups in
CG, a filtering process is required (Section 5.4) to remove
the redundant groups (line 8). At last, all detected cloned
k-fragments are added to Lk. If Lk is not empty, the pro-
cess continues and Lk is used to generate the candidates of
size (k + 1) in the next iteration. Otherwise, since no fur-
ther level in the lattice could be explored, aScan stops and
returns the final clone groups.

Note that, a same k-fragment might be generated many
times. To avoid the redundancy, aScan stores candidate set
Ck as a hash set and removes all duplicately generated ones.

5.4 Clone Grouping and Filtering

In principle, to do grouping, all the pairwise comparisons
between fragments’ vectors must be done. With the number
of fragments from tens thousands to hundreds thousands,
the computation cost is high. In aScan, we reduce this com-
putation by partitioning fragments into subsets and cluster-
ing only within these subsets. The partitioning must guar-
antee that any two fragments having similar vectors will
belong to at least one subset. Locality Sensitive Hashing
(LSH) [1] is a scheme satisfying this requirement.

aScan performs clustering on each subset S in the same
manner as in eScan (Section 4.2). A relation graph is cre-
ated in which nodes represent for fragments of S and two
nodes have an edge if the corresponding fragments do not
overlap and have the distance of their vectors no larger than
the threshold δ. Then, Bron-Kerbosch clique detection al-
gorithm is run on that group to find all the cliques. Each
clique corresponds to a clone group.

From Observation 2, when k ≤ ko = b σ
1−σ c, we have

r(k) < k + 1 and l(k) > k − 1. It implies that all cloned
k-fragments must be exact clones when k ≤ ko. Therefore,
aScan generates all clone layers from 1 to ko as in the ex-
actly matched clone detection, by requiring all the clones
of a group to have the same vector. This improves precision
and efficiency of aScan since hashing into subsets just needs
a normal hashing function and produces smaller subsets.

Filtering process is applied to remove the redundant
groups. Because the detected groups increase in term of
the size of their members, aScan performs filtering in an
efficient manner in which at level k, it needs to check re-
dundancy only between the groups created at that level and
the ones at level (k − 1).

6 Additional Improvements

An ideal goal would be to find all the clones and get the
detection completeness (or recall) of 100% while still main-
taining high precision. However, this leads to the problem
of generating all subgraphs to find all candidate fragments.
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In theory, the number of generated subgraphs can be ex-
ponential. Thus, that generation is impossible due to both
time and storage costs. After investigating Simulink, we
have found and applied some improvements using the se-
mantics and nature of Simulink models to achieve a very
high degree of detection completeness in short time.

6.1 Subsystems in Simulink

In Simulink, developers often use subsystems and the
reuse of subsystems produces model clones. The flattening
strategy integrates the subgraphs corresponding to subsys-
tems into the parent system’s graph. A detection tool would
discover the cloned subgraphs corresponding to the re-used
subsystems. However, the detection of re-used subsystems
will be more efficient if it is performed without flattening
because re-used subsystems will have nodes with the same
label. In this case, the re-used subsystems, rather than their
graphical structures, should also be reported as clones.

In ModelCD, the detection is carried out to detect (1) all
cloned subsystems in each (sub)system hierarchical layer,
(2) all clones within each subsystem and between subsys-
tems, and (3) all clones across subsystem hierarchical lay-
ers. Firstly, ModelCD parses a Simulink model and all of
its subsystems. A subsystem is kept as a node with its name
as the label in the representation graph. Then, the struc-
ture of a subsystem is flattened into a subgraph and added
into the representation graph as a disconnected component.
If the subsystem contains within itself another subsystem,
ModelCD processes that subsystem in the same way. How-
ever, to avoid the aforementioned problem, ModelCD does
not flatten a subsystem that was already expanded. Finally,
the algorithm is carried out as normal. This approach al-
lows ModelCD to significantly reduce the amount of con-
sidered subgraphs. In addition, it avoids the detection of
large cloned subgraphs of re-used subsystems, which some-
times are too cumbersome to display in a meaningful way.

6.2 Occurrences of Switches

Another observation is that in a Simulink system, there
are blocks with very high degrees, i.e. having many incom-
ing (e.g. Multiplex) and/or outgoing (e.g. De-multiplex)
edges. Let us call them switches. When the degrees of
switches increase, the number of generated subgraphs in-
creases exponentially. Moreover, when two or more cloned
switches appear, the number of cloned fragments also in-
creases exponentially since for any subgraph in one switch,
there always exists its clone(s) in the other switch(es).

We solve this by a divide-and-conquer approach. Firstly,
we separate from the graph the switches having degrees
higher than some threshold, and find all clones in the re-
maining graph. Then, switches are joint to those cloned

fragments to form a new set of fragments in which the con-
nectivity between fragments’ subgraphs is only the connec-
tivity between the switches. These new fragments are con-
sidered the atomic fragments and used to build bigger can-
didate fragments. Then, the detection from these fragments
is carried out in a normal way as in algorithms.

6.3 Incrementality

When aScan explores the lattice layer-by-layer, it has the
advantage to detect clones incrementally and stop at any de-
sired size of clones. This is useful in cases where the devel-
opers are interested only in certain sizes of clones or have
limited time of detection. The detection tool could be tem-
porarily stopped, and then resume its operations to detect
larger clones without restarting entire process. ModelCD
enables this by allowing users to specify the maximum size
of clones. The tool would continue to run until all clones
smaller than or equal to the specified size limit are detected
or the users decide to temporarily stop it. The tool reports
the clone groups and stores the information about the cur-
rent state of the process. It needs to store only the infor-
mation about the immediately preceding iteration. With eS-
can, ModelCD also allows the incremental operation with
respect to time. That is, users are able to set the time limit
for detection and resume the execution to find larger clones
without restarting it. All information required to store for an
incremental operation is an array of currently found groups
and edges/branches that eScan has not visited.

7 Implementation and Empirical Evaluation

We have implemented ModelCD with two aforemen-
tioned algorithms for detecting clones in Simulink mod-
els. ModelCD partially re-uses the front-end editor and the
Simulink parser from ConQAT [8].

7.1 Experiment Settings

This section presents an empirical evaluation of Mod-
elCD. We compare it against the state-of-the-art Simulink
model clone detection tool CloneDetective in ConQAT [8].
In all experiments, we used WindowsXP, Intel Pentium 4
2Ghz, 2GB RAM. We evaluate the performance of Mod-
elCD with regard to both algorithms in term of detection
precision, completeness, scalability and incrementality.

We chose several open-source Simulink model-based
systems (Table 3) ranging from small to large-scale sys-
tems in term of total number of blocks (#blk.), connections
(#conn.), used block types (#bt.), the maximum size of con-
nected components (mCC), and the number of connected
components (#CC). The systems are available from Source-
Forge and MATLAB Center. We use the default setting for
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System #blk. #conn. #bt. mCC #CC
simulink labs (SIM) 428 415 39 16 47
multiuav (MUL) 475 576 52 123 24
seminar designs (SEM) 1741 2029 83 283 22
ecwf (ECW) 2312 2274 68 120 151

Table 3. Subject Systems

eScan CloneDetective
System %Clones %Groups %Clones %Groups
SIM 183/183 60/60 6/6 3/3
MUL 117/117 41/41 7/7 3/3
SEM 180/180 46/46 101/121 29/31
ECW 435/435 64/64 354/428 59/64

Table 4. Precision of eScan

CloneDetective (minSize = 5) for good performance. For
comparison, we also set the minimum clone size for both
eScan and aScan to 5. For aScan, the thresholds are δ =
0.05, σ = 0.9, and the maximum size of n-paths is 4.

7.2 Precision

For the clone quality, we use the precision of clone detec-
tion. We inspect each of the resulting clone groups returned
from a tool, and check two criteria (1) whether the group
contains at least a pair of cloned fragments, and (2) whether
all fragments in the group are clones of one another. If one
criteria is not met, we count the group as incorrect.

Firstly, we want to compare the precision of eScan and
CloneDetective. To check the above correctness criteria,
we wrote a simple tool to compare and check the detected
clones and groups. The result is displayed in Table 4.

The result shows that the precision of eScan is 100% in
term of the numbers of correctly detected clones (%Clones)
and correctly detected groups (%Groups) for all subject sys-
tems. Although CloneDetective achieves good precision on
small systems, it finds incorrect clones and groups in large
systems (SEM and ECW). The incorrectly detected clone
groups contain overlapping fragments. This is due to the
CloneDetective’s clustering strategy via union finding al-
gorithm, which does not check the overlapping condition to
avoid the computational cost of pairwise comparison. eScan
is able to use the maximal clique cover algorithm because it
works on small sets of isomorphic fragments (Section 4.2).

Secondly, we evaluate the precision of aScan. To avoid
completely manual checking, we run aScan on the project
SEM, and divide the detected clone groups into two sets:
one having the groups with clone sizes from 5-9 and one
having groups with clone sizes greater than 9. With σ = 0.9
(percentage of the common core part) and the conditions of
a similar clone pair, all the clones in the former set must ac-

tually be exact clones, i.e. they must be isomorphic. This set
is automatically checked via our isomorphic checking tool.
The latter set is checked manually. The result is that among
59 groups in the former set, 4 groups are incorrect, and all
8 groups in the latter set are correct. Thus, the precision is
94%. aScan could not achieve full precision as in eScan due
to the use of Exas. It provides an approximate way to mea-
sure the structural similarity but can not solve the problem
of finding two isomorphic subgraphs in two given graphs.

7.3 Completeness

It is impractical to know the total number of existing
clones and groups in large projects. Therefore, in our exper-
iment, the level of completeness is determined by the num-
bers of correctly detected clones (#Cl) and groups (#Gr),
and the maximum sizes of clones (mCl) and groups (mGr).
We also wrote a tool to check the correctness of groups with
respect to our criteria in Section 3.

We conduct an experiment to compare the degrees of
completeness in exact-matched clone detection of CloneDe-
tective and eScan. In theory, eScan can be proved to be fully
complete in detection. However, our optimization tech-
niques for gaining time efficiency could make it less perfect.

In Table 5, in most subject systems, the numbers of
clones and groups (#Cl and #Gr) correctly detected by eS-
can are much larger than those found by CloneDetective in
reasonable running time. Although detection time is longer,
it is in the range of few hundred seconds for large systems.
CloneDetective is able to find clones and groups with larger
sizes (mCl and mGr). However, many of its large clones
actually correspond to the subgraphs of re-used subsystems
after being flattened. ModelCD reported them as cloned
subsystems, which makes more sense to developers.

We also conducted a similar experiment to evaluate the
completeness in detection of aScan. Among three algo-
rithms, aScan detected the most in the shortest time. This
conforms to the fact that the similar clone relation implies
the exact one and the similar clones should include all exact
clones. The other observation is that the maximum clone
sizes (mCl) are smaller. This is because aScan focuses
mainly on the small clones while the big ones are left for
the detection of cloned subsystems. In this experiment, the
maximum clone size is set to 20. In the rows of SEM and
ECW, the mCl values are the sizes of cloned subsystems.

7.4 Scalability

Figure 6 shows the running time of eScan on systems
increasing in size (total number of blocks and connections).
When the size of a subject system increases, the running
time also increases. However, the increasing rate of running
time is smaller than that of a system’s size. For example,

284



eScan CloneDetective aScan
System T(s) #Cl mCl #Gr mGr T(s) #Cl mCl #Gr mGr T(s) #Cl mCl #Gr mGr

SIM 120 183 13 60 8 6 6 13 3 2 1.4 272 10 105 8
MUL 132 117 20 41 3 3 7 34 3 3 3 562 18 210 18
SEM 300 180 74 46 8 77 101 253 29 8 6.8 424 74 67 36
ECW 612 435 55 64 16 40 354 109 59 20 6.2 455 55 169 14

Table 5. Completeness

Figure 6. Scalability

T(s) #Cl mCl #Gr mGr
70 16 6 1 16

131 70 10 5 16
300 178 17 25 16
612 435 55 64 16

Table 6. Incrementality

ECW is 6 times bigger than SIM (4586 versus 843 blocks
and connections), but running time is only 5 times longer.
This shows that eScan is scalable and able to process large-
scale systems of thousands blocks in reasonable time.

aScan is also able to scale to large systems. It is much
affected by the size of the maximum connected component.
This explains why the time to run the largest system ECW
(size of 4586 blocks and connections) is shorter than that
of SEM (size of 3770) since ECW has a smaller maximum
connected component (size of 120 versus 283). The reason
is from the nature of aScan’s breath-first traversal. The opti-
mization of separating “switches” helps in this case because
it breaks the large connected components into smaller ones.

7.5 Incrementality

In this experiment, we aim to evaluate ModelCD’s ca-
pability of running in an incremental mode in term of run-
ning time with eScan. The chosen subject system is ECW,
the largest system in our experiment (2312 blocks and 2274
connections). Table 6 shows that (1) eScan can run in the
incremental mode with the time limit set by users (70, 131,
300, and 612s), and (2) the quality and quantity of clones
and groups detected by eScan is better when the time limit
increases. Specifically, when running time in the same

project is increased about four times (70s to 300s), the num-
ber of detected clones increases about 11 times (16 to 178).

8 Related Work

The state-of-the-art tool for clone detection in models
is CloneDetective [8]. There are several significant differ-
ences between ModelCD and CloneDetective. The key dif-
ference is that ModelCD systematically detects the clone
groups with various sizes of clones from the smallest to
largest size. In contrast, CloneDetective first detects all
clone pairs and then performs the grouping process. Its
clone pair detection is more lightweight in which its heuris-
tic method inspects only the first possible mapping of the
nodes’ neighborhoods to one another without backtracking.
Thus, not all clones could be detected. ModelCD addresses
the scalability with its optimization techniques, rather than
sacrificing detection completeness as in CloneDetective.
Moreover, ModelCD could work incrementally, allowing
the completeness level to be improved with more running
time. Importantly, aScan is capable of handling approx-
imate clones. Our vector-based approach, Exas, is light-
weight, scalable, and enables ModelCD to deal with large
graphs and similar clones.

The work by Liu et al. [19] aims to find duplications in
UML sequence diagrams. They represent a sequence dia-
gram as an array and then build a suffix tree for it. Detecting
clones becomes finding common prefixes of suffixes. Ren et
al. [27] propose to detect clones in sequence diagrams and
then to refactor them. However, the detection is not fully
automated. In addition, there are several approaches to sup-
port model evolution including the detection of differences
between models [22, 25, 29], the merging of different mod-
els or different versions [22, 23], and the management of
consistent model changes [30]. The approaches in [25, 29]
represent a UML diagram as a tree. The similarity measure
is based on the matching elements in each tree level.

Many approaches for code clone detection have been
proposed and a survey can be found in [6]. Generally, they
can be classified based on the representation of features ex-
tracted from source code. Text-based approaches [2, 13]
consider two code fragments as clones if their constituent
texts match. Token-based approaches [3, 14, 18] view a
code fragment as a sequence of program tokens. Similar or
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exactly matched sequences of tokens signify clones. Tree-
based approaches [4, 5, 9, 12, 16, 21, 28] represent a code
fragment as a subtree in the program’s AST. Subtrees with
similar features are detected as clones. Deckard [12], a tree-
based approach, extracts characteristic vectors from AST’s
subtrees by counting AST node types. Deckard clusters
the vectors, i.e. the fragments into clone groups. Existing
graph-based code clone detection approaches are not gen-
eral to be applied to models because they rely on structure
and semantics of a program. Komondoor and Horwitz [15]
use program dependence graphs (PDGs) and program slic-
ing, and isomorphic subgraphs signify code clones. To de-
tect semantic clones, Gabel et al. [10] map PDG subgraphs
to related structured syntax and use Deckard approach.

9 Conclusions

As in code-based development, cloning in models cre-
ates many difficulties in software maintenance. However,
existing clone detection tools for models have limitations
on accuracy and completeness. In this paper, we present
two algorithms that are able to systematically detect clones
and clone groups in the graph-based Simulink models with
a high degree of completeness and accuracy. The core ideas
include the systematic generation of the candidate clones
with the optimization techniques, and the precise structural
feature extraction for candidate subgraphs. They have been
implemented into ModelCD. Our empirical evaluation on
large-scale Simulink systems showed that it is able to han-
dle both exact-matched and similar clones. Compared to
CloneDetective, the state-of-the-art detection tool for mod-
els, ModelCD gives detection results with a higher quality
and much more quantity in reasonable running time. Our
algorithms are also general for any graph-based models.
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