
Automatically Capturing Source Code Context
of NL-Queries for Software Maintenance and Reuse ∗

Emily Hill, Lori Pollock and K. Vijay-Shanker
Department of Computer and Information Sciences

University of Delaware
Newark, DE 19716 USA

{hill, pollock, vijay}@cis.udel.edu

Abstract

As software systems continue to grow and evolve, lo-
cating code for maintenance and reuse tasks becomes in-
creasingly difficult. Existing static code search techniques
using natural language queries provide little support to
help developers determine whether search results are rel-
evant, and few recommend alternative words to help devel-
opers reformulate poor queries. In this paper, we present
a novel approach that automatically extracts natural lan-
guage phrases from source code identifiers and categorizes
the phrases and search results in a hierarchy. Our contex-
tual search approach allows developers to explore the word
usage in a piece of software, helping them to quickly identify
relevant program elements for investigation or to quickly
recognize alternative words for query reformulation. An
empirical evaluation of 22 developers reveals that our con-
textual search approach significantly outperforms the most
closely related technique in terms of effort and effectiveness.

1. Introduction

When performing software maintenance or reuse tasks,
developers must first identify the relevant code fragments
to be modified or reused. As software systems continue to
grow and evolve, identifying code relevant to a particular
task within millions of lines of code becomes increasingly
difficult. Thus, there is a critical need for automated support
to help developers work effectively and minimize mainte-
nance and reuse costs.

To identify code relevant to the task, developers typically
use an iterative refinement process [8, 10] as shown in Fig-
ure 1. In this process, the developer enters a query into

∗This material is based upon work supported by the National Science
Foundation under a Graduate Research Fellowship and Grant No. CCF-
0702401.

a source code search tool. Depending on the relevance of
the results, the user will reformulate the query and search
again. This process continues until the user is satisfied with
the results (or gives up). In this process, the user has two
important tasks: (1) query formulation and (2) determining
whether the search results are relevant.

Challenges. Studies show that formulating effective nat-
ural language queries can be as important as the search al-
gorithm itself [10]. During query formulation, the devel-
oper must guess what words were used by the original de-
veloper to implement the targeted feature. Unfortunately,
the likelihood of two people choosing the same keyword
for a familiar concept is only between 10-15% [9]. Specif-
ically, query formulation is complicated by the vocabulary
mismatch problem [10] (multiple words for the same topic),
polysemy (one word with multiple meanings), and the fact
that queries with words that frequently occur in the software
system will return many irrelevant results [20].

It is very difficult to overcome these challenges by au-
tomatically expanding a query on the user’s behalf. For
polysemy and word frequency, the user needs to add addi-
tional query words about the feature to restrict the search re-
sults. Such detailed knowledge about the feature exists only
in the developer’s mind. Further, automatically expanding
a query with inappropriate synonyms can return worse re-
sults than using no expansion [32]. Thus, we believe the
role of automation is not to automatically expand the query,
but to provide information about the underlying word us-
age in the code that will enable the human user to quickly
formulate an effective query. Currently, few systems rec-
ommend alternative words to help developers reformulate
poor queries [27, 30].

Another challenge in the iterative refinement process is
discriminating between relevant and irrelevant search re-
sults. Presentation of the search results is not always ad-
equate to determine relevance, forcing the user to further
examine the code. If users cannot quickly determine that

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 232

Figure 1. Iterative Query Refinement and
Search Process

results are irrelevant, they could waste significant time in-
vestigating irrelevant code. Existing static code search tech-
niques using natural language queries [21, 28] provide little
support to help developers determine whether search results
are relevant beyond ranking the results [26, 30].

Providing Automated Support. In this paper, we present
a novel approach that provides automated support to the de-
veloper both in formulating queries and discriminating be-
tween relevant and irrelevant search results. Our key insight
is that the context of words surrounding the query terms in
the code is important to quickly determine result relevance
and reformulate queries. For example, online search en-
gines such as Google display the context of words when
searching natural language text. We automatically capture
the context of the query words by extracting and gener-
ating natural language phrases, or word sequences, from
the underlying source code. By associating and displaying
these phrases with the program elements they describe, the
user can see the context of the matches to the query words,
and determine the relevance of each program element to the
search. Because we provide word context for the occur-
rences of query words in the source code during the iterative
refinement process, we call our approach contextual search.

For example, consider the search results for the query
“convert” in Figure 2. Extracted phrases are to the left, fol-
lowed by the matching signatures. By skimming the list of
words occurring with “convert”, we notice that convert can
behave as a verb which acts on objects such as “result,”,
“arg”, or “parameter”; or convert can itself be acted upon
or modified by words such as “can” and “get args to.” If
the user were searching for code related to “converting ar-
guments”, they could quickly scan the list of phrases and
identify “convert arg” as relevant. Thus, understanding this
context allows the user to quickly discard irrelevant results

Figure 2. Example results for “convert”
query. Phrases are to the left, followed by the num-
ber of matching signatures, and signatures follow ‘::’.

without having to investigate the code, and focus on groups
of related signatures that are more likely to be relevant.

The phrases, which are extracted from source code, nat-
urally form a hierarchy of related phrases. At the top of the
hierarchy are more general phrases, and at the bottom are
the most specific phrases, which contain the most words.
Continuing with the “convert” example, the most general
phrase is the query, “convert”, and more specific phrases in-
clude “convert result”, “can convert”, and “get args to con-
vert”. Further, the phrase “convert result” is more general
than “generate convert result”, which occurs below it in the
hierarchy. The leaf nodes of the hierarchy are the specific
program elements that match the phrases. This phrase hier-
archy allows the developer to quickly identify relevant pro-
gram elements by reducing the number of relevance judg-
ments, while the natural language phrases help the devel-
oper to formulate effective queries.

Why Phrases? Our contextual approach is motivated by
insights gained from Shepherd et al.’s approach to query
expansion and code search [30]. The approach by Shep-
herd et al. uses <verb, direct object> (V-DO) pairs from
method signatures and comments to find actions that cross-
cut object-oriented systems. The previous experimental
study showed that by capturing specific word relations in
identifiers, such as V-DO pairs, users were able to pro-
duce more effective queries more consistently than with two
competing search tools. However, strict V-DO queries can-
not be used to search for every feature. For example, V-DO
cannot search for features expressed as noun phrases with-
out a verb, such as “reserved keyword” or “mp3 player”.

One potential approach to go beyond V-DO pairs is
to capture all word relation pairs in software by using
co-occurrences [19]. Although co-occurrences can find
meaningful word relationships, in our investigation, we
found that co-occurrences did not consistently find relation-
ships that would aid in query reformulation. We tried co-
occurring terms within identifiers, within methods, in com-
ment to method mappings, from the method name to meth-

User

Source Code

Search Method
Search Results

Determine Relevance of Results

Query

(Re)formulate Query

233

ods called within the method’s implementation, etc. The
key problem that we observed with co-occurring word pairs
is that word order matters. For example, we observed that
knowing that “item” and “add” co-occurred more often than
due to chance was less useful than simply knowing that the
phrase “add item” frequently occurred.

Contributions. The main contributions of this paper are:

• An algorithm to automatically extract and generate
noun, verb, and prepositional phrases from method and
field signatures, capturing word context of natural lan-
guage queries for software maintenance and reuse
• An approach to automatically categorize extracted

phrases into a hierarchy based on partial phrase match-
ing, to help software maintainers quickly discriminate
between relevant and irrelevant search results and re-
formulate queries
• An empirical evaluation of 22 developers comparing

our contextual search approach to verb-direct object,
the most closely related search technique. Our results
show that contextual search significantly outperforms
verb-direct object in terms of effort and effectiveness.

Our contextual approach involves only static analysis of
source code, requiring no execution information, and thus
can be applied to incorrect, incomplete, and unexecutable
legacy programs. The phrase extraction process, currently
implemented for Java, requires less than 10 seconds for 100
KLOC, and can analyze 1.5 million LOC in 3 minutes.

2. Contextual Search Example

Consider hypothetical developer Amanda, who needs to
add a 32-bit signed integer conversion to a new web lan-
guage. She has access to the documentation and implemen-
tation of a JavaScript interpreter with a similar feature. Af-
ter reading the related documentation, Amanda notices that
the words “convert,” “to,” “int,” “integer,” and “32” look
important. She begins her search using our contextual ap-
proach by first entering the query “convert,” shown in Fig-
ure 2. However, none of the results appear to have anything
to do with integers, numbers, or math. Amanda moves on
to the next few words she considers relevant, and tries the
query “to int.” With two clicks, Amanda sees the results
shown in Figure 3, and finds 3 method signatures that look
like promising candidates for further investigation. Without
the natural language phrases and hierarchy, Amanda would
have to make relevance judgments for the entire list of 30
results, rather than just 7.

In this example, Amanda was able to backtrack from the
ineffective query “convert” to try the next best query on her
list, “to int.” Contextual search with backtracking can also
be used to help users overcome vocabulary mismatch. For

Figure 3. Example results for “to int” query.
Indentation indicates level of hierarchy. Phrases are
to the left, followed by the number of matching sig-
natures, and signatures follow ‘::’.

example, if a user searches for “delete item” and sees few
or no results, the user can backtrack to the shorter query
“item.” Upon seeing results for “item,” the user can view
co-occurring words and determine alternate verbs, such as
“remove” in the phrase “remove item.”

3. Approach: Capturing Context with Phrases

Figure 4 illustrates our contextual search process. There
are two main components to our approach: (1) extracting
and generating natural language phrases from source code,
followed by (2) search and hierarchical categorization of the
phrases. Each subsection describes the challenges to be ad-
dressed, followed by our approach and detailed algorithm.

3.1. Information Extraction

Challenges. The first challenge we faced in developing a
phrase extraction process was deciding what phrases should
be extracted that best capture word context. We used ex-
ploratory data analysis techniques [19] to cluster groups of
related signatures and develop phrase extraction rules for
each subgroup. For example, we developed extraction rules
for static methods and fields, methods with and without pa-
rameters, and methods and fields with verbs and objects
in the name. We analyzed methods with different return
types [16], as well as prepositions in the beginning, end and
middle of names. When possible, we generalized common
rules. For instance, the same rule to extract direct objects
from formal parameters was developed independently for
static and non-static methods. We also dropped any rule
that extracted meaningful phrases for only some signatures,
if we could not determine under what conditions the rule
should be applied. In general, we expect our rules to work
well for about 75-95% of method and field signatures.

The quality of our extraction rules depends on the vari-
ety of signatures under study and their naming conventions.
We endeavored to study a diverse set of Java signatures and

234

Source Code
Information
Extraction
Process

Search &
Hierarchical

Categorization
Search Results

Search Method

User

Determine Relevance of Results(Re)formulate Query

Preprocessing

Query

NL Phrase Mapping

phrase 1 :: signature A
phrase 2 :: signature A
phrase 3 :: signature B
phrase 1 :: signature C

 Books boolean addItem(BookItem biNew)
 Books boolean addItem(BookItem biNew)
 Books boolean addItem(BookItem biNew)
 PlaylistFileManager void update(Event event)
 PlaylistFile int compareTo(Object o)
 History static void load()

add item ::
add book item ::

bi new ::
update event ::

compare playlist file to object ::
load history ::

Examples of NL Phrase Mapping

Figure 4. The Contextual Search Process

naming conventions by analyzing the most frequently oc-
curring identifiers in a set of 9,000 open source Java pro-
grams downloaded from sourceforge.net. This set of
programs contains over 18 million signatures, with 3.5 mil-
lion unique names consisting of over 200 thousand unique
words. Algorithm 1 is the culmination of our detailed anal-
ysis of thousands of unique method and field signatures.

Overview. Our guiding principle to phrase extraction is
that providing the user with incorrect or misleading infor-
mation is worse than providing no information at all. There-
fore, we strived to achieve balance between conservatively
extracting information in which we have a high confidence
of accurately portraying word context, and yet still provid-
ing enough information that the system is usable.

Our technique can extract verb, noun, and prepositional
phrases from method and field signatures. A noun phrase
(NP) is a sequence of noun modifiers, such as nouns and
adjectives, followed by a noun, and optionally followed by
other modifiers or prepositional phrases [19]. A verb phrase
(VP) is a verb followed by an NP, and does not usually in-
clude the subject of the verb. A prepositional phrase (PP)
is a preposition plus an NP, and can be part of a VP or NP.

Extracting Phrases from Signatures. We extract
phrases from both method signatures (including class
name, method name, type, and formal parameters) and field
signatures (including class name, type, and field name).
Our extraction process has four major steps: (1) splitting
identifiers into space-delimited phrases; (2) determining
if the (method or field) name should be treated as an
NP, VP, or PP; (3) identifying the verb, direct object,
preposition, and indirect object of the VP, and (4) inferring
arguments for VPs to generate additional phrases. Our

phrase extraction technique is presented in Algorithm 1,
with example extracted phrases shown in Figure 4.

During NP construction and VP generation, we use for-
mal parameter names and types as objects. In line 6 of Al-
gorithm 1, all formal parameter names and non-primitive
formal types are added to args. Primitive types include the
basic types int, void, boolean, etc. as well as String since
it is a very common type. We add non-primitive parameter
types as well as parameter names to account for instances
where a parameter name is an abbreviation or conveys little
meaning.

Splitting Identifiers. Before determining if an identifier
is an NP, VP, or PP, the first step is to process the iden-
tifiers and split them into space-delimited phrases. The
split function takes as input an identifier and outputs a se-
quence of words. In addition to splitting on punctuation
and numbers, we also split based on camel case. For in-
stance, MP3FileFilter would become “mp 3 file filter” and
XYLine3DRenderer “xy line 3 d renderer.” Like Caprile
and Tonella [4], in certain cases we translate “2” into “to.”

To improve readability, some identifiers do not use camel
casing. For instance, XYZtoRGB and getRunMPwithout-
MASC do not follow strict camel casing (“to” and “with-
out” should be capitalized, respectively). We observed that
these cases were mostly prepositions, and added special
splitting rules for the most common ones: to, from, with-
out, by, for, with. We did not add rules for prepositions that
often end legitimate words, such as “in” in HOMEBinDIR.

Identifying NPs and PPs. To check if a method name
should be treated as an NP, we first identify whether the
signature is a constructor in line 8. If so, we consider the
name and each formal argument in args as individual NPs
that each map to the signature. Next, in line 10, we check

235

Algorithm 1 extractPhrasesFromSignature(sig)
1: Input: field or method signature, sig
2: Output: set of phrases for the signature, pset
3: name← split(name(sig))
4: type← split(typeOrReturnType(sig))
5: class← split(declaringClass(sig))
6: args← set of split(formals(sig))
7: pset← ∅
8: if isConstructor(sig) then
9: pset← {name} ∪ args // NPs

10: else if hasTrailingPastParticiple(name) then
11: pset← {name} // NP
12: else if hasLeadingPreposition(name) then
13: name← {class + name} // NP
14: else if hasLeadingV erb(name) then {// Construct VP}
15: v ← getV erb(name)
16: if hasObjectInName(name) then
17: DO ← getObject(name)
18: else if hasParameters(sig) then
19: DO ← {getF irstFormalName(sig) ∪

getF irstFormalType(sig)}
20: else
21: DO ← class
22: end if
23: if containsPreposition(DO) then {// Generate VPs}
24: for all prepositions p ∈ DO do
25: DOi ← getWordsBeforePrep(DO, p)
26: IO ← getWordsAfterPrep(DO, p)
27: pset← pset ∪ inferArguments(v, DOi, p, IO, args)
28: end for
29: else
30: pset← inferArguments(v, DO, ∅, ∅, args)
31: end if
32: else
33: pset← pset ∪ name // NP
34: if isF ield(sig) then
35: pset← pset ∪ type // NP
36: end if
37: end if
38: return pset

if the signature contains a trailing past participle, such as in
“action performed” or “key pressed.” If so, we consider the
name to be an NP and add it to pset, the set of phrases for
the signature. These cases comprise the NPs for which we
have high confidence of correctness.

We next determine if the name is a PP. In line 12, we
check if the first word is a preposition, and if so, we con-
catenate the class name before the method name, and add
the constructed phrase to pset. For example, toByteArray
in class FileWriter would become “file writer to byte array.”
In contrast to previous work [30], we do not automatically
infer a verb such as “convert” in these situations. Following
our conservative policy, we treat such cases as PPs rather
than potentially erroneous VPs. Next, we attempt to iden-
tify the name as a VP. If we do not successfully identify the
name as VP, we treat the name as an NP in line 33.

Identifying and Constructing VPs. In line 14, we con-
sider the name to be a VP if the first word is a verb. Note

that the behavior of hasLeadingV erb depends on whether
a method or field signature is being analyzed. For fields, the
name must begin with a verb and consist of more than one
word; for methods, the name need only start with a verb.
Since fields are less likely to begin with verbs and have no
parameters, we only process a field name as a VP if there is
also an object in the name, e.g., printWhenExpression.

After extracting the verb, we locate the verb’s arguments,
starting in line 16. First, we determine if there is an object
in the name following the verb, as in getConnectionType.
If not, we use the first formal parameter name as the object
as well as the first parameter’s type if it is not primitive, as
in line 19. Otherwise, we use the class name as the object.

Next, in line 23, we look for any prepositions in the
verb’s object. For every preposition we find, we gather in-
formation about direct and indirect objects and call infer-
Arguments to generate additional phrases. We identify the
direct object from the words before the preposition, and the
indirect object from the words after the preposition. We
continue examining all prepositions in the verb’s object be-
cause not all words that can be prepositions act as such in
identifiers. For example, in “show about dialogue,” “about”
is actually acting as an adjective that modifies “dialogue.”

Generating Additional Phrases. Based on the formal
parameter names and types, we construct additional VPs
that represent the signature without repeating the name. For
example, a method may have a general name, such as ad-
dItem. However, a parameter (name or type) may indi-
cate that only a specific type of item is being added, e.g.,
a BookItem. By inferring the phrase “add book item” in
addition to “add item,” this signature will also be returned
for queries such as “add book.”

To generate new phrases, we look for partial matches to
the direct and indirect objects in the argument list of method
signatures, args. Recall that all formal parameter names
and non-primitive formal types were added to args earlier.
For every phrase in args that overlaps one word in the direct
or indirect object of the VP, we emit all possible combina-
tions of original and inferred direct and indirect objects as
phrases. For example, for the signature Base64 static Ob-
ject decodeToObject(String sourceObject), we would
output the phrase “decode base 64 to source object.” If the
name ends in a preposition, and thus contains no indirect
object, we treat every argument as an indirect object. In
general, no more than 1-2 phrases are added for signatures
with parameters, but we have seen as many as 10 for com-
plicated method names that contain prepositions.

3.2. Search and Hierarchical Categorization

Once natural language phrases have been extracted from
the source code, the second component searches the phrases
associated with each program element and groups related

236

signatures into a hierarchy based on partial phrase match-
ing. As illustrated in Figure 2, phrases at the top of the hi-
erarchy are more general and contain fewer words, whereas
phrases more deeply nested in the hierarchy are more spe-
cific and contain more words.

In general, it is computationally infeasible to enumerate
all possible sub-phrases, which is an instance of the power
set problem. Thus, our technique is based on the top-down
approach used in Max-Miner [2] to efficiently mine long
data patterns from databases. In contrast to Max-Miner, our
implementation is recursive, and we use regular expressions
to approximate the set operations as well as to extend the
algorithm to handle sequences of words instead of sets.

In displaying search results, it is important to give an ex-
ample of what is retrieved so the user can decide whether the
query needs to be reformulated and in what way [8]. For this
reason, in addition to phrases, we also display signatures
that match each phrase in the source code. Our existing im-
plementation only places a signature in the hierarchy once,
in the topmost category possible. We achieve this by sorting
the candidate phrases by the number of phrase matches. We
also use the total number of matches of a phrase to sort the
branches when displaying the hierarchy to the user.

During the contextual search process and when building
the hierarchy, query words do not have to match a phrase
exactly but only preserve word order. For example, if the
query is “text field,” and the phrase “text field xml file”
maps to a signature, both “text field file” and “text field
xml” will be considered as candidates for sub-phrase match-
ing, even if neither phrase exactly describes a signature. In
addition, our approach uses the longest possible phrase that
describes a subset of signatures in the hierarchy. For exam-
ple, if all the signatures matching “text field” also match “j
text field”, our approach will skip the shorter phrase “text
field” and only add “j text field” to the hierarchy.

3.3. Implementation

Our current implementation extracts and generates
phrases from Java code as an Eclipse plug-in. We use
a morphological parser, PC-Kimmo [1], to determine the
possible parts of speech for individual words. The hier-
archical categorization of phrases is implemented in php
(http://www.cis.udel.edu/∼hill/context).

Ideally, this technique should be integrated into a devel-
opment environment. For this to be feasible, it must be pos-
sible to incrementally update the phrase representation as
the code evolves. Because phrases are stored per method or
per field, a new set of phrases can be extracted for modi-
fied program elements in the background or before the next
search is executed. The initial extraction time from source
code is very reasonable: 2-5 seconds for 20 KLOC, 8 sec-
onds for 75 KLOC, and under 3 minutes for 1.5 million

LOC. The extraction time depends on the length of signa-
ture names as well as the number of parameters overlapping
NPs in method names. The hierarchy of phrases is con-
structed online based on the query with imperceptible delay
for small (less than a thousand) result sets. For larger re-
sult sets, delay has been minor (less than ten seconds), but
noticeable. For more substantial code sizes, a map/reduce
architecture could be used to reduce overall search costs.

Future Extensions. Our current approach extracts infor-
mation from method and field signatures. In the future,
we plan to extract phrases from body statements as well
as comments to get a more accurate set of phrases that
describe a method’s actions. However, building these ex-
traction rules requires further analysis. Comments are free
form, containing less structure than signatures, and need a
different set of rules to properly extract phrases in VP, NP,
or PP form. Body statements present additional challenges
in determining appropriate direct and indirect objects.

Although other approaches to identifier splitting have
used a dictionary to further split identifier words with no
boundaries [15, 24], such as “scrollbar” or “textfield,” in
this work we have conservatively chosen to leave such
words intact. In addition, we have chosen not to use stem-
ming in the current version, since removing a stem can af-
fect the part of speech of a word. The effect of changing the
part of speech of a word on the readability of these phrases
has not yet been studied. Finally, other approaches have
used synonyms [30]. Rather than use potentially inaccu-
rate, domain-independent synonyms [32], we have chosen
to leave exploration of synonyms for future work.

4. Evaluation

The research question under investigation is:

What effect does a contextual search of natural
language phrases have on the effort and effective-
ness of developers searching source code?

To evaluate this research question, we compared our con-
textual search with an approximation of the verb-DO search
method [30], as well as to a version of our tool that does not
display the phrases or hierarchy, only the matching signa-
tures. In this study, we compare search results of 22 devel-
opers performing 28 concern location tasks.

4.1. Independent Variable

The independent variable in our study is the search tech-
nique: contextH , V -DO, and contextL. The contextH
search technique is the contextual search approach de-
scribed in Section 3. We compare contextH to a V -DO
approach [30] which we implemented. For the purposes

237

Number of Software Developers in Study

No. Years Programming Industry Perform Perform Maintenance FrequencyExperience Experience Maintenance on Code Not Authored
10+ years 13 – 5 2 Daily
5-9 years 4 6 7 3 Weekly
1-4 years 5 11 7 7 Monthly
< 1 year – 5 3 10 Yearly

Table 1. Subject Developer Characteristics

of evaluation, we removed as much variability as possi-
ble between V -DO and contextH by implementing V -DO
within the contextH framework, while still maintaining the
essence of the approach. We did this to explore whether
natural language phrases beyond V -DO improve searching
capabilities, without studying effects caused by synonym
recommendations or other minor algorithmic differences.

The V -DO approach requires the user to enter verb and
direct object queries as input and outputs a list of signatures.
The query consists of a single verb, followed by a direct ob-
ject which may be multiple words. Examples include “re-
move item” and “lookup performance event.” The approach
will always treat the first word of the query as a verb, and
matches exact V-DO phrases only [31]. For example, the
query “lookup performance” will only match “lookup per-
formance” and not “lookup performance event.”

To address the vocabulary mismatch problem, V -DO
displays a set of verb and object recommendations for query
reformulation below the list of exact matches. One column
shows a list of the verbs that co-occur in the code with the
direct object in the query, sorted by frequency. Similarly,
another column displays all the direct objects that co-occur
in the code with the query’s verb.

The extraction process for V -DO differs slightly from
contextH . First, in the case of constructors, the verb “con-
structs” is added in front of the class name. Second, non-
void methods beginning with the prepositions “from,” “to,”
and “as,” are replaced with the verb “convert.” Method
names beginning with “is” are replaced with “check.” Fi-
nally, no prepositional phrases are explored or new phrases
generated as with contextH ; as soon as the direct object is
identified the phrase is complete.

We also compare contextH to a baseline version,
contextL. The contextL technique uses the same query
and search technique as contextH to identify matches, but
skips the hierarchical categorization step and simply dis-
plays the results in a list. We use the contextL technique
to explore whether the phrase matching or the hierarchical
categorization has more of an effect on the search.

4.2. Dependent Variables and Measures

The dependent variables in the study are user effort and
search effectiveness. We measure effort in terms of the
number of queries submitted, ignoring any identical consec-
utive queries. We measure effectiveness by calculating the
common measures of precision and recall on each search
result set [20]. Precision is the percent of search results
that are relevant, and captures how many irrelevant results
were present with the relevant results. Recall is the percent
of all relevant results that were correctly returned as search
results, and captures how many of the actually relevant re-
sults were predicted as relevant. We combine precision and
recall using the F measure, which is high only when both
precision and recall are similarly high.

Although results for effective queries will ideally have
both high precision as well as high recall, and thus a high
F measure, it is unlikely that a single query will be capable
of capturing both high precision and high recall. For the
search techniques in this experiment, individual queries will
typically be able to capture either high recall (by returning
many results) or high precision (by returning few, but very
relevant results).

4.3. Subjects

The subjects of our study are the human developers and
concerns. The concerns formed the search tasks for which
subject developers were required to construct queries. The
concerns were also used as a gold standard, i.e., a set of
relevant program elements, to evaluate effectiveness.

Developers. We obtained results from 22 volunteer soft-
ware developers with varying levels of programming and
industry experience. Table 1 shows characteristics of our
subject population. The distribution of years of program-
ming and industry experience for each subject is displayed
on the left of the table, and the frequency that they perform
maintenance tasks is on the right. Although we confirmed
that 27 subjects would participate, 22 completed the study.

Concerns. The description and contents of concerns add
significant variability to the study. To control for this vari-

238

ability as much as possible, we used concerns from two
completely different sets, which have completely different
types of concern descriptions, and different methodologies
for deriving the gold sets.

The first set of 19 concerns is from the 45 KLOC
JavaScript/ECMAScript interpreter and compiler, Rhino.
The gold sets of the concerns were derived by the removal
dependency rule [7]: under this rule, a method or field was
only considered to be associated with a concern if it should
be removed or modified when the concern is removed from
the program. Two human analysts used this rule to deter-
mine 415 concerns for the Rhino program [7]. Each con-
cern maps to a subsection of the documentation, which is
used as the concern description.

We selected a random subset of these 415 with some re-
strictions. First, the concerns varied in size from over 300
program elements to just a single element. Therefore, we
restricted our sample to just the middle 50% of the con-
cerns, with sizes ranging from 4 to 25. Second, since each
concern mapped to a specific section or subsection of the
documentation, we wanted to have a representative sample
to control for whether different sections tend to have certain
types of concerns. Thus, we selected a random sample of
19 concerns such that every major section of the documen-
tation was represented before repeats were selected. We se-
lected 19 concerns so that the total number could be divided
evenly into four groups for the design.

The second set of concerns consists of 9 user-observable,
action-oriented concerns from 4 programs ranging in size
from 23 to 75 KLOC [30]. The four programs are: iRe-
port, a visual report builder and designer; jBidWatcher, an
auction bidding, sniping, and tracking tool for online auc-
tion sites such as eBay or Yahoo; javaHMO, a media server
for the Home Media Option from TiVo; and Jajuk, a mu-
sic organizer for large music collections. The concern de-
scriptions consist of screen shots of each concern being ex-
ecuted. The concern implementations were derived by a set
of two human analysts who agreed on the concern imple-
mentations after executing and exploring the concerns [30].

Both sets of concerns were derived by two groups of in-
dependent researchers, and have been used as subjects in
previous evaluations [7, 30]. It should be noted that as a
compiler, Rhino is out of most of our developer’s familiar
domain. In addition, it is known from previous experience
that the concerns from javaHMO and Jajuk are implemented
using very different words than appear in the user interface,
which is used for the concern description.

4.4. Design and Methodology

We designed the experiment to compare contextH with
V -DO and contextL. In the design, there were two block-
ing factors: the order that the search techniques, or treat-

Unit Order of Concern group Concern group
contextH for contextH for V -DO

1 1 A D
2 1 C B
3 2 B A
4 2 D C

Table 2. Experimental units for comparing
contextH with V -DO

ments, were applied, and the concerns. The order the treat-
ments were applied is important to control for learning ef-
fects. To create concern blocks, the concerns were ran-
domly assigned to 4 groups of 7 concerns (A−D) such that
each group contained 4-5 Rhino concerns and 2-3 concerns
from 3 other programs. This ensured that each treatment
was applied to a consistent variety of concerns.

We used a randomized crossed block design [5] to cre-
ate 8 experimental units, 4 for each comparison (contextH
with V -DO and contextH with contextL). The four ex-
perimental units used to compare contextH with V -DO are
presented in Table 2. Similar units were used for comparing
contextH with contextL. Every treatment was applied to
every concern and every order, although not every order was
applied to every possible combination of concern blocks.

Subjects were initially randomly assigned to experimen-
tal units. Because not all subjects completed the study, we
do not have an equal number of replications for each ex-
perimental unit. Units with less replications were assigned
to new subjects as they volunteered; thus, every unit was
completed by at least 2 subjects, but no more than 4. The
subjects were asked to fill out an exit survey after complet-
ing the experiment. All the experimental materials, includ-
ing the instructions for each experimental unit, are avail-
able online: http://www.cis.udel.edu/∼hill/
context.

4.5. Threats to Validity

Studying the effects of human subjects on such an open-
ended task as concern location poses many challenges. Al-
though we endeavored to control for variability as much as
possible, there are still threats to the validity of the results.

The subject concerns are an unavoidable threat. To min-
imize the effect that some concerns are more difficult to
locate and formulate queries for, we used concerns from
5 different programs with two different types of descrip-
tions. In addition, each participant applied each treatment
to 7 concerns to avoid any one concern dominating the re-
sults. However, it is possible that the concern groups that
we randomly selected were not of equivalent difficulty. We
avoided this as much as possible by ensuring that each

239

Figure 5. Effort and Effectiveness Results for
contextH and V -DO. Effort is measured in terms
of the number of queries entered, shown on the left.
Effectiveness is measured in terms of the F Measure,
shown on the right.

group contained concerns from at least 3 different pro-
grams, under the assumption that concerns from the same
program will be of approximately the same difficulty.

The experiment was administered as a volunteer online
survey to gain access to as many developers with industry
experience as possible. However, this meant that subjects
were not in a controlled environment, and other distractions
may have influenced the attention that subjects devoted to
the experiment. For example, one subject was eating during
the first part of the experiment, but not the second part. An-
other subject took an hour break in the middle of reformu-
lating a query for one concern. For this reason, we cannot
analyze effort in terms of time, only in terms of the number
of submitted queries. Again, we attempted to minimize this
threat as much as possible by observing the subjects over 7
concerns per treatment.

5. Results and Analysis

Contextual Phrases versus V-DO Pairs. We found that
contextH significantly outperforms V -DO in terms of ef-
fort and effectiveness. Figure 5 presents the results of our
comparison in a box and whisker plot. The shaded box rep-
resents the inner 50% of the data, the middle line represents
the median, the plus represents the mean, and outliers are
represented by an ‘×’.

In terms of effort, shown on the left, developers entered
5 more queries on average for V -DO than for contextH .
In most cases, this was due to the fact that users found it
difficult to formulate strict verb-direct object queries for all
the concerns. One subject said,“I really liked the verb-direct
object search add-on, but had trouble formulating some of
the mandatory verbs, for example with the sqrt2 query.”

In situations where V -DO could not extract a verb, users
had trouble formulating successful queries and therefore ex-
pended more effort than with contextH .
V -DO’s inability to extract verbs in all situations also

led to poor effectiveness, shown on the right in Figure 5.
Although the developers found V -DO’s query recommen-
dations to be helpful, the recommendations did not provide
significantly improved results. For example, another sub-
ject said, “In the V-DO part especially, it was difficult to find
an accurate list [of signatures] for each concern by specify-
ing complete V-DO combinations.” Thus, the more flexible
phrase extraction process of contextH allowed for higher F
measure values.

To verify our observation that contextH outperforms V -
DO, we performed a two-sample t-test [5]. Our depen-
dent variables, number of queries (nq) and F measure (f),
had unequal variances, leading us to use the Satterthwaite
approximation. We found that contextH outperforms V -
DO with statistical significance at the α = 0.05 level (nq:
p = 0.0004, f : p = 0.0021).

Because our experiment includes repeated measures of
the same subjects, the assumption that the two samples are
independent does not hold. In such situations it is more ap-
propriate to use a mixed model. When we analyzed the data
as a mixed model, we achieved the same level of signifi-
cance, with similar p values.

At first inspection, the F measure values appear to be
low. Although we used concerns as benchmarks, the goal
of the study was not to locate the entire concern, but to lo-
cate seed starting points to begin concern location. We do
not expect any single query to be capable of locating all
relevant items in a concern. However, an automatic pro-
gram exploration technique [11, 33] can explore structural
edges to locate program elements not returned by the nat-
ural language search. Because most concerns in this study
contain just one or two structurally connected components,
non-zero F measure values translate into fairly decent con-
cern coverage.

Contextual Hierarchy. We also compared our contex-
tual search technique both with and without the hierarchi-
cal topic display, contextL. In contrast to V -DO, we
did not see a significant difference between contextH and
contextL. In fact, the distributions of the nq and f variables
for both techniques are quite similar. We found that the re-
sults in this part of the experiment are complicated by user
interface issues. First, when faced with a long list of signa-
tures from contextL, many subjects trusted the results and
simply moved on. Such behavior led to very few queries
entered, and very high recall from the huge size of the re-
sult set. Second, a number of developers were frustrated by
the interactive nature of contextH ’s hierarchy. They liked
the hierarchy, but disliked having to click to expand every

 0

 5

 10

 15

 20

 25

 30

 35

Context V-DO Context V-DO
 0

 10

 20

 30

 40

 50

 60

 70

 80

N
um

be
r o

f Q
ue

rie
s

(E
ffo

rt)

F
M

ea
su

re
 (E

ffe
ct

iv
en

es
s)

240

branch. Currently, it is impossible to determine how much
of an effect the phrase hierarchy and topic display has on
the user without further investigation of the user interface.

Qualitative Results. At the end of the experiment, sub-
jects were asked to comment on the techniques they used.
Of the 17 that responded, 5 commented on which tool
they preferred. Four of the subjects preferred using the
contextH technique:

The nice thing about the reformulation technique
[contextH] is that most of the time you put in
a 1-word query and find the concern(s) quickly,
because they are nicely organized in groups. This
way, you definitely see other functions you might
miss if your queries were longer than one word.

However, one subject disagreed:

I felt like Part II [contextH] was too exact and
that I should remove words from my query–to
only one word, which for some reason wasn’t in-
tuitive. I’ve been trained to at least use two words
(unless they’re, like, proper names).

The subjects also suggested improvements, such as accept-
able instances for stemming. Two of the subjects would
have liked at least trailing ‘s’ characters stemmed from plu-
ral nouns and third person singular verbs. One subject sug-
gested the use of synonyms, which we plan to add in the
future. Some subjects also felt that the word order restric-
tion on the query made searching difficult; in future, the
word order could be used for creating the phrase hierarchy,
and not for the search mechanism.

6. Related Work

The most closely related work is Shepherd et al.’s ap-
proach to automatically extracting V-DO pairs from source
code comments and identifiers for search and query recom-
mendations [30, 31]. Our technique generalizes this ap-
proach by extracting NPs, VPs, and PPs from signatures.
Another approach to query recommendation automatically
suggests close matches for misspelled query terms [27].
Other static search techniques supporting natural language
queries do not provide query recommendations [21, 28].

There is work on automatically extracting topic words
and phrases from source code [22, 25], displaying search
results in a concept lattice of keywords [26], and clustering
program elements that share similar phrases [14]. Although
useful for exploring the overall word usage of an unfamil-
iar software system, these techniques are not sufficient for
exploring all usage. In contrast to our approach, these ap-
proaches either filter the topics based on perceived impor-
tance to the system [14, 25, 26], or do not produce human

understandable topic labels [22]. Since it is impossible to
predict a priori what will be of interest to the developer, we
let the developer filter the results with a natural language
query, and have endeavored to keep our extracted phrases
as human readable as possible.

Existing research into design recovery and reuse has also
used information from identifiers [3, 6, 10, 23, 29]. How-
ever, all of these approaches require an expert-defined do-
main model or knowledge base, which is not available for
all software systems or domains. One approach for auto-
matic generation of domain representations has been sug-
gested for software artifacts, but has not yet been evaluated
on source code [17]. Another approach automatically con-
structs and categorizes reuse libraries based on comments
and documentation, but does not process identifiers [18].
Michail et al. use similarity of identifier names to compare
and contrast software libraries for reuse [24].

Another approach to querying source code is to use
structural queries [12, 13, 34]. These techniques use struc-
tural information such as call and use relationships [12, 13],
type information [13, 34], or can match exact identifier
names [12, 13]. Although these techniques do not support
natural language queries, they could be used in conjunction
with our approach for reuse.

7. Conclusion

As software systems continue to grow and evolve, lo-
cating code for maintenance and reuse tasks becomes in-
creasingly difficult. In this paper, we present a novel ap-
proach that provides automated support to the developer
both in formulating queries and discriminating between rel-
evant and irrelevant search results. Our contextual search
approach automatically captures the context of query words
in source code by extracting and generating natural lan-
guage phrases from method and field signatures. These
phrases naturally form a hierarchy that allows the developer
to quickly identify relevant program elements by reducing
the number of relevance judgments, while the phrases help
the developer to formulate effective queries.

We conducted an empirical evaluation of 22 developers
comparing our contextual search approach to verb-direct
object, the most closely related search technique. Our re-
sults show that contextual search significantly outperforms
verb-direct object in terms of effort and effectiveness. Feed-
back from the subject developers indicate further areas of
research.

8. Acknowledgments

The authors would like to thank Giriprasad Sridhara,
Amy Siu, Haley Boyd, Oana Tudor, and Keith Trnka for
their useful help and comments on this paper.

241

References

[1] E. L. Antworth. PC-KIMMO: a two-level processor for mor-
phological analysis. Occasional Publications in Academic
Computing No. 16., Dallas, TX: Summer Institute of Lin-
guistics, 1990. http://www.sil.org/pckimmo/.

[2] Roberto J. Bayardo, Jr.. Efficiently mining long patterns
from databases. In Proc. of the 1998 ACM SIGMOD Intl.
Conf. on Management of Data, pages 85–93, 1998.

[3] T. J. Biggerstaff, B. G. Mitbander, and D. Webster. The
concept assignment problem in program understanding. In
Proc. of the 15th Intl. Conf. on Software Engineering, pages
482–498, 1993.

[4] B. Caprile and P. Tonella. Nomen est omen: Analyzing the
language of function identifiers. In Proc. of the 6th Working
Conf. on Reverse Engineering, pages 112–122, 1999.

[5] A. Dean and D. Voss. Design and Analysis of Experiments.
Springer, New York, NY, USA, 1999.

[6] P. T. Devanbu, R. J. Brachman, P. G. Selfridge, and B. W.
Ballard. Lassie—a knowledge-based software information
system. In Proc. of the 12th Intl. Conf. on Software Engi-
neering, pages 249–261, 1990.

[7] M. Eaddy, T. Zimmermann, K. D. Sherwood, V. Garg, G. C.
Murphy, N. Nagappan, and A. V. Aho. Do crosscutting con-
cerns cause defects? IEEE Trans. on Software Engineering,
34(4):497–515, 2008.

[8] G. Fischer and H. Nieper-Lemke. Helgon: extending the
retrieval by reformulation paradigm. In Proc. of the SIGCHI
Conf. on Human Factors in Computing Systems, pages 357–
362, 1989.

[9] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Du-
mais. The vocabulary problem in human-system communi-
cation. Communications of the ACM, 30(11):964–971, 1987.

[10] S. Henninger. Using iterative refinement to find reusable
software. IEEE Software, 11(5):48–59, 1994.

[11] E. Hill, L. Pollock, and K. Vijay-Shanker. Exploring the
neighborhood with Dora to expedite software maintenance.
In Proc. of the 22nd IEEE Intl. Conf. on Automated Software
Engineering, 2007.

[12] R. Holmes and G. C. Murphy. Using structural context to
recommend source code examples. In Proc. of the 27th Intl.
Conf. on Software Engineering, 2005.

[13] D. Janzen and K. D. Volder. Navigating and querying code
without getting lost. In Proc. of the 2nd Intl. Conf. on
Aspect-oriented Software Development, 2003.

[14] A. Kuhn, S. Ducasse, and T. Gı́rba. Semantic clustering:
Identifying topics in source code. Information Systems and
Technologies, 49(3):230–243, 2007.

[15] D. Lawrie, H. Feild, and D. Binkley. Extracting meaning
from abbreviated identifiers. In Proc. of the 7th IEEE Intl.
Working Conf. on Source Code Analysis and Manipulation,
2007.

[16] B. Liblit, A. Begel, and E. Sweetser. Cognitive perspectives
on the role of naming in computer programs. In Proc. of the
18th Annual Psychology of Programming Workshop, 2006.

[17] J. Lloréns, M. Velasco, A. de Amescua, J. A. Moreiro, and
V. Martı́nez. Automatic generation of domain representa-
tions using thesaurus structures. Journal of the American So-
ciety for Information Science and Technology, 55(10):846–
858, 2004.

[18] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An information
retrieval approach for automatically constructing software
libraries. IEEE Trans. on Software Engineering, 17(8):800–
813, 1991.

[19] C. Manning and H. Schütze. Foundations of Statistical Nat-
ural Language Processing. MIT Press, Cambridge, MA,
USA, May 1999.

[20] C. D. Manning, P. Raghavan, and H. Schütze. Introduction
to Information Retrieval. Cambridge University Press, New
York, NY, USA, 2008.

[21] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An
information retrieval approach to concept location in source
code. In Proc. of the 11th Working Conf. on Reverse Engi-
neering, 2004.

[22] G. Maskeri, S. Sarkar, and K. Heafield. Mining business
topics in source code using latent dirichlet allocation. In
Proc. of the 1st India Software Engineering Conf., 2008.

[23] E. Merlo, I. McAdam, and R. D. Mori. Feed-forward and
recurrent neural networks for source code informal informa-
tion analysis. Journal of Software Maintenance, 15(4):205–
244, 2003.

[24] A. Michail and D. Notkin. Assessing software libraries by
browsing similar classes, functions and relationships. In
Proc. of the 21st Intl. Conf. on Software Engineering, pages
463–472, 1999.

[25] M. Ohba and K. Gondow. Toward mining “concept key-
words” from identifiers in large software projects. In Proc.
of the 2005 Intl. Workshop on Mining Software Repositories,
2005.

[26] D. Poshyvanyk and A. Marcus. Combining formal concept
analysis with information retrieval for concept location in
source code. In Proc. of the 15th IEEE Intl. Conf. on Pro-
gram Comprehension, 2007.

[27] D. Poshyvanyk, A. Marcus, and Y. Dong. JIRiSS – an
Eclipse plug-in for source code exploration. In Proc. of the
14th Intl. Conf. on Program Comprehension, 2006.

[28] D. Poshyvanyk, M. Petrenko, A. Marcus, X. Xie, and D. Liu.
Source code exploration with Google. In Proc. of the 22nd
IEEE Intl. Conf. on Software Maintenance, 2006.

[29] R. Prieto-Diaz and P. Freeman. Classifying software for
reusability. IEEE Software, 4(1):6–16, 1987.

[30] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-
Shanker. Using natural language program analysis to locate
and understand action-oriented concerns. In Proc. of the 6th
Intl. Conf. on Aspect-oriented Software Development, 2007.

[31] D. Shepherd, L. Pollock, and K. Vijay-Shanker. Towards
supporting on-demand virtual remodularization using pro-
gram graphs. In Proc. of the 5th Intl. Conf. on Aspect-
Oriented Software Development, 2006.

[32] G. Sridhara, E. Hill, L. Pollock, and K. Vijay-Shanker. Iden-
tifying word relations in software: A comparative study of
semantic similarity tools. In Proc. of the 16th IEEE Intl.
Conf. on Program Comprehension, 2008.

[33] M. Sridharan, S. Fink, and R. Bodik. Thin slicing. In Proc.
of the 2007 ACM SIGPLAN Conf. on Programming Lan-
guage Design and Implementation, 2007.

[34] A. M. Zaremski and J. M. Wing. Signature matching: a
tool for using software libraries. ACM Trans. on Software
Engineering and Methodology, 4(2):146–170, 1995.

242

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
