
Automatic Dimension Inference and Checking for Object-Oriented Programs

Sudheendra Hangal and Monica S. Lam
Computer Science Department
Stanford University, CA 94305
{hangal,lam}@cs.stanford.edu

This paper introduces UniFi, a tool that attempts to auto-

matically detect dimension errors in Java programs. UniFi

infers dimensional relationships across primitive type and

string variables in a program, using an inter-procedural,

context-sensitive analysis. It then monitors these dimen-

sional relationships as the program evolves, flagging incon-

sistencies that may be errors. UniFi requires no programmer

annotations, and supports arbitrary program-specific dimen-

sions, thus providing fine-grained dimensional consistency

checking. UniFi exploits features of object-oriented lan-

guages, but can be used for other languages as well. We

have run UniFi on real-life Java code and found that it is

useful in exposing dimension errors. We present a case

study of using UniFi on nightly builds of a 19,000 line code

base as it evolved over 10 months.

1. Introduction

Dimensional analysis is a simple and well-understood

way of checking physics equations for consistency. How-

ever, programming languages have poor support for check-

ing dimensional consistency within programs. The work

reported in this paper is motivated by the many software er-

rors we have created, debugged, or otherwise encountered

that could have been caught by a simple dimension or unit

check.

1.1 Dimensions in Programs

While dimensions in physics are traditionally associ-
ated with physical quantities like mass, length and time,
program variables have dimensions in a broader sense.
They represent sizes, dates, colors, IDs, counts, positions,
masks, ports, flags, states, file names, host names, ad-
dresses, properties, messages, and so on. Consider the
following constructor declaration in the Java library class
java.awt.MouseWheelEvent:

MouseWheelEvent(Component source,
int id, long when, int modifiers,
int x, int y, int clickCount,
boolean popupTrigger,
int scrollType, int scrollAmount,
int wheelRotation);

The interface of this method alone involves several variables

with independent dimensions, such as id, modifier, time, co-

ordinate, number of clicks and scroll type. While even mod-

erately sized programs have hundreds of dimensional asso-

ciations, there is no protection provided to the programmer

to keep unrelated dimensions from interacting, or to ensure

that they are combined only in dimensionally sound ways.

Dimensions are currently coarsely simulated with pro-

gramming language types, which do not provide adequate

granularity. For instance, an integer variable representing

a network port can be interchanged with another integer

representing a graphics color, and a string variable holding

a file name may be used in place of a host name; in nei-

ther case will a conventional type checker complain. To get

the benefit of dimensional analysis, the programmer would

have to go through a cumbersome process of defining cus-

tom types for each dimension associated with a program,

and to specify legal ways in which they may interact. This

process is especially difficult and unnatural for values of

primitive types (e.g. integers and floating point numbers)

and strings, which is why we focus exclusively on these

types in this work.

Programmers often do have an implicit understanding

about dimensions in the program, as indicated by the fact

that variable names often refer to dimensions. However,

without automatic dimension checking, it is easy for pro-

grammers to create obvious errors, for example due to poor

naming choices, or in parameter passing where the corre-

spondence is positional.

Prior research aimed at enforcing dimension checking in

programming language usually proposes addition of syntac-

tic and type-checking support for some form of units and/or

dimensions to the language, and expects programmers to

annotate their programs with extra information [1, 10, 19]).
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The lack of adoption of dimension checking proposals in

mainstream programming languages indicates that a differ-

ent approach is needed.

1.2 Automatic Dimension Inference

We believe that automatic inference of specifications is

essential in the real world, given that it is tedious to anno-

tate programs, and is unlikely to happen on a mass scale

for routine software development. Most software projects

today start from an existing code base and/or use existing

libraries. This suggests that automatic inference on existing

software might be a way to assimilate dimension checking

into the software development process.

We have built a fully automatic tool called UniFi, short

for Unit Finder, that performs dimension inference, and

uses the results to detect errors. Without requiring program-

mer annotations, UniFi infers relations between dimensions

of variables. For example, it can infer that for a program

to be dimensionally consistent, two variables must have the

same dimension, or that one has a dimension that is the re-

ciprocal of the other. UniFi uses this information to auto-

matically check for bugs introduced as a program evolves,

by comparing the dimensional relationships in a new ver-

sion of a program with the original ones. By reporting only

the differences, UniFi can alert users to potential errors with

a small false-positive rate.

Our approach has other uses besides finding errors across

versions of the same program. Some possibilities are to

compare consistency across different applications that use

a common library, across code written by an expert and a

novice, across different implementations of the same inter-

face, or across the implementation of a library and a pro-

gram that uses it. Furthermore, once dimension constraints

are inferred, programmers can verify them manually and as-

sign names to dimensions. We advocate releasing such an-

notations along with the interfaces of popular libraries (for

example, the standard Java runtime libraries), perhaps us-

ing the JSR-308 type annotation syntax [4]. This can pro-

vide useful documentation for a large number of users, and

allow a simple checker to catch dimension errors.

1.3 Contributions

The contributions of this paper are as follows:

• An automatic dimension inference algorithm. Our al-

gorithm automatically infers dimension relationships

between variables, fields, and parameters of primitive

types and strings. Denoting the dimension of a vari-

able x as δx, constraints discovered by our algorithm

are of the form δe1
x1

= δe2
x2

× . . . × δen
xn

. We formu-

late dimension inference as a polymorphic type infer-

ence problem. The algorithm is especially designed to

capture common idioms in object-oriented programs

to provide precise results. Specifically, assuming pro-

grams obey the Liskov substitution principle [12], we

infer that the corresponding parameters and return val-

ues of different methods implementing the same inter-

face have the same dimension.

• An error detection technique that exploits discrepan-
cies in inferred dimensions across versions. Errors

found by our tool can be very subtle and hard to di-

agnose. As part of this technique, we have developed

ways to match program variables and compare their

dimensional relationships across two different sets of

inferences.

• Validation with experimental results. We have imple-

mented the proposed algorithm for Java and used it to

detect bugs on a 19,000-line code base as it evolved

over 10 months. The system finds two subtle errors

that were independently discovered and fixed by the

programmer; had UniFi been deployed on this project,

the errors would have been discovered right away.

While the focus of the work reported in this paper is on

the Java programming language, the general methodology

and algorithms can easily be adapted to other programming

languages, whether object-oriented or not.

1.4 Paper Organization

The rest of the paper is organized as follows. We first

explain the dimension inference problem and show how we

map it to polymorphic type inference in Section 2. Sec-

tion 3 describes our algorithm to find discrepancies between

dimensional constraints in different versions of a program.

Section 4 describes our experience in using UniFi on a case

study, and Section 5 discusses some insights we gained

while using UniFi. We describe related work in Section 6,

mention areas for future work in Section 7, and conclude in

Section 8.

2 Polymorphic Dimension Inference

Type checking has been well established as a technique

for catching various kinds of errors at compile time. While

class objects often have elaborate type safety mechanisms,

variables of primitive types and strings do not, though their

types can also be further differentiated according to their

dimensions. The hypothesis of this paper is that it is pos-

sible to build a useful checker that infers relations between

the dimensions of variables automatically from the way the

variables are used.

Based on the usage of variables in a program, our algo-

rithm can infer the dimension relations between variables,
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RULE PROGRAM STATEMENT INFERENCE

LOAD x1 = x2.f ; δx1 = δf

STORE x1.f = x2; δf = δx2

ASSIGN x1 = x2; δx1 = δx2

NEW VARIABLE l : x = new C[e1][e2], . . . , [en]; δx = δl1

δ|li| = δei , i = 1, . . . , n
δli[] = δli+1 , i = 1, . . . , n− 1

ARRAY INDEX x = a[e]; δx = δa[]

a[e] = x; δe = δ|a|

ARRAY LENGTH x = a.length; δx = δ|a|

ADD/SUBTRACT x1 = x2 op x3; δx1 = δx2

(op is + or −) δx1 = δx3

COMPARE x1 op x2 δx1 = δx2

(op is one of <, >, ==, >=, <=)

NEGATE x1 = −x2; δx1 = δx2

REMAINDER x1 = x2 % x3 δx1 = δx2

MULTIPLY x1 = x2 × x3; δx1 = δx2 × δx3

DIVIDE x1 = x2 / x3; δx1 = δx2 × δ−1
x3

Table 1. Intraprocedural inference rules used by UniFi

but not their absolute semantics. For example, if two vari-

ables are added, we can infer that the variables must have

the same dimension, though we do not know a precise name

for that dimension. Note that a variable can also be inferred

to be dimensionless, i.e. a pure number. For example, if a

program contains a statement such as n = n2 or m = m/n,

then n must necessarily be dimensionless for the program

to be well-typed.

In general, it is possible for dimensions to form a hier-

archy, in a way that is analogous to a class hierarchy. For

example, it may be legal to add the number of apples to

the number of oranges, if the result is supposed to be the

number of fruits. However, in this paper, we assume a flat

hierarchy for dimensions, i.e., there are no subtyping rela-

tionships between dimensions. This choice simplifies our

analysis and keeps the number of false-positive warnings

low.

2.1 The Program Model

Our inference algorithm is designed to find dimension

relationships between scalar and array variables of strings

and primitive types in Java: int, long, byte, char,

short, boolean, float and double. Though it han-

dles the full Java language, for the sake of brevity, we will

use a simplified language as shown in Table 1. The table

provides a summary of the intraprocedural inference rules;

how we handle methods is described in Section 2.3.

We model dimensions in a program as follows:

• Each local variable x has dimension δx. Every use of

a constant is treated as a separate local variable. (As a

preprocessing step, we rename logically different vari-

ables that happen to use the same local variable slot,

using an analysis similar to deriving the static single

assignment form [16]).

• Fields, static or instance, are monomorphic. Field f of

all instances of a class are assumed to have the same

dimension δf .
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• All objects created at allocation site l are treated as

having the same dimension δl. A multi-dimensional

array is modeled as an array of arrays. The dimension

of an array a, δa, has two related components:

1. Dimension of the elements, δa[]. All elements in

an array are assumed to have the same dimension.

2. Dimension of the length of the array, δ|a|.

• Methods can be polymorphic, allowing parameters in

different invocations to take on different dimensions.

The dimension summary of method m is expressed as

constraints between class fields and parameters δm[i],

where δm[i] represents the the dimension of the ith pa-

rameter, and δm[0] is the dimension of the return value.

2.2 Intraprocedural Inference Rules

Loads, stores, and assignments generate unification con-

straints between the dimensions of the source and destina-

tion variables. For array element access, the dimension of

the array index is unified with the length of the array. This

can be useful to detect bugs where a dimensionally incorrect

variable is used to index an array.

Addition, subtraction, and comparison are all operators

whose operands are expected to have the same dimension,

whereas addition, subtraction and negation produce results

of the same dimension as the operands. The result of a

remainder operator shares the same dimension as its first

operand.

Multiply and divide operations are special from a dimen-

sional perspective because they produce results with com-

posite dimensions. We refer to such constraints as com-
posite dimensional constraints. Given a statement x1 =
x2 × x3, we can infer that δx1 = δx2 × δx3 . Though not

detailed in Table 1 for purposes of brevity, UniFi also han-

dles the semantics of the java.lang.Math library meth-

ods such as sqrt (the dimension of the return value is the

square root of the parameter), and abs, floor, round,

min, max (the dimension of the return value is the same as

the parameter). The pow method generates the appropriate

constraint if the exponent is a simple compile-time rational

constant, otherwise it is ignored.

Our dimension inference algorithm often provides con-

straints we would normally associate with units, rather than

dimensions. (Units are multiple scales for measuring the

same dimension, e.g. foot and meter are both units of the

dimension length.) Given the program statement:

yen = dollars * exchangeRate;

our analysis infers that the dimension of exchangeRate
is the dimension of yen divided by the dimension of
dollars. If we later encounter an erroneous statement:

dollars = yen;

the analysis will infer that yen must have the same dimen-

sion as dollars, and exchangeRate must therefore be

dimensionless. As will be discussed in Section 3, a change

in dimensions across versions causes UniFi to raise a warn-

ing of a potential error.

A popularly cited example related to units errors is the

crash of the $125 million Mars Climate Orbiter due to a

failure to convert between metric and English units in soft-

ware [13]. However, not all unit errors can be caught using

our approach, especially in cases where the wrong scaling

factor is used.

2.3 Interprocedural Analysis

In the following, we first describe an additional inference

rule for methods, and then the inference algorithm itself.

2.3.1 Subtyping Constraints

The Liskov Substitution Principle in object-oriented pro-

gramming requires that the contract of a method remain

the same in all subtype implementations [12]. This im-

plies the constraint that the dimensions associated with each

method’s corresponding parameters and return value remain

the same as well. A stricter form of this constraint would be

that a method in a subtype must have covariant parameters

and contravariant return types. However, since we use a flat

hierarchy, we simply require that the parameters and return

values have the same dimension.

In practice, we can just substitute a reference to method

T.m with a reference to T ′.m where T ′ is the most generic

class or interface of T that contains the same method inter-

face m. If there are multiple most generic interfaces, then

we generate constraints to unify the respective parameters

and return values of m in all those interfaces. The con-

straints inferred due to each method body implementing a

given interface all update the constraints at the interface.

2.3.2 Polymorphic Dimension Inference

From our early attempts of using a monomorphic dimen-

sion inference algorithm, we have found programs to have

at least a few dimensionally polymorphic methods. Thus, it

is important to have a context-sensitive dimension inference

algorithm to avoid conflating dimensions from different call

sites to polymorphic methods.

To achieve context sensitivity, our algorithm summarizes

the effect of methods with dimensional constraints between

input parameters and return values, and other global di-

mensions. These method summaries can involve unification

as well as composite dimensional constraints. These sum-

maries are applied at each call site. Our algorithm computes
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the summaries of the methods iteratively until convergence

is reached.

2.4 UniFi Usage

A user supplies each run of UniFi with a set of Java class

files. Class files may be compiled with or without debug

information; if debug information is present, it is used to

print accurate local variable and method parameter names.

Since UniFi analysis runs directly on bytecode, the class

files analyzed could potentially be generated from multiple

source languages like Java or Java Server Pages. Methods in

external libraries are treated as black boxes unless explicitly

included in the set of classes to be analyzed.

With every variable, UniFi tracks all the constraints as-

sociated with it, and with every constraint, it tracks the point

in the code that created the constraint. This information is

essential for explaining intelligibly to the user why UniFi

inferred the dimensional constraints that it did.

The UniFi GUI lets users graphically browse the results

of an analysis run. The user can view all the inferred di-

mensions, and the variables in each one of them. The GUI

also correlates constraints with source code and lets the user

query why two variables were inferred to have the same di-

mension.

3 Comparing Inferences Across Programs

We now describe how UniFi compares two sets of di-

mensional constraints inferred by the algorithm described in

the previous section. There are three aspects to this compar-

ison. The first is to identify common dimension variables in

the two sets. The second is to check whether these variables

form the same equivalence classes. The third is to check

whether composite dimensional constraints are equivalent

in the two versions.

3.1 Identifying Common Variables

To enable comparison of inference results across two dif-

ferent programs or two versions of the same program, we

first need to find correspondence between variables across

the two programs. A simple heuristic that we adopt in our

current implementation is the following. We match fields

with the same fully qualified name. We match method

parameters, return values and local variables by the full

method signature and position of the parameter or local

variable. More robust association mechanisms that allow,

for example, for systematic re-factoring of code are possi-

ble.

3.2 Comparing Unification Constraints

Once we have identified variables that are common in

the two program versions, we check if the dimensions for

these variables form the same equivalence classes in both

programs. If not, this means that some set of variables that

were in different equivalence classes in one set of results

were unified in the other; this is reported as a potential di-

mensional consistency violation. We initially expected that

errors would be detected with unification constraints mainly

when dimensions that used to be previously independent

in a program were subsequently unified. However, as de-

scribed later in Section 4, we also uncover errors when di-

mensions that were in the same equivalence classes became

independent in a subsequent version.

When a dimension error is reported, we find it useful to

let users query in our GUI the smallest set of unifications

that caused two variables to share the same dimension. The

user can investigate these unifications and correlate each

unification with the point in the source code that caused it.

3.3 Comparing Composite Dimension
Constraints

Recall that the constraint generation phase sets up a sys-

tem of composite dimension constraints involving different

dimensions. UniFi converts each constraint to the form:

δ1
e1 × δ2

e2 × . . . × δn
en = 1

where δ1, . . . , δn are all the dimensions in the program and

each exponent ei is a rational number. For example, the

statement E = m × c2 is converted to the constraint:

δE × δm
−1 × δc

−2 = 1.

It is useful to reduce this system of constraints to a

canonical form, in order to enable simple comparison of

constraints across the two versions of the program. A sec-

ond benefit is that we can ensure that the results of the anal-

ysis can be presented to programmers consistently, without

being perturbed by extraneous issues like the order in which

program statements are processed.

We derive a canonical form for composite dimension

constraints by expressing dependent dimensions in terms

of other, independent dimensions. Independent dimensions

are just those that are not expressed in terms of others (sim-

ilar to the fundamental S.I. units in physics). However,

our choice for selecting which dimensions to consider inde-

pendent can be somewhat arbitrary. For example, the con-

straint:

δE × δm
−1 × δc

−2 = 1
could result in the derivation of any of the following

equations, based on which two of the three dimensions

involved are considered independent:
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δE = δm × δ2
c

δc = (δE/δm)1/2

δm = (δE/δ2
c )

We call the expression for a dependent dimension δv in

terms of a composition of other, independent dimensions a

formula for δv .

To derive canonical formulas for dependent variables, we

first define a priority order for selection of independent di-

mensions. Elements with higher priority are preferred as

independent dimensions to elements with a lower priority.

Our goal is to derive a set of formulas for dependent vari-

ables in terms of other independent variables that are all of

higher priority.

As the first step, we rewrite each constraint, replacing

each dimension with the highest priority dimension in the

same equivalence class. Next, we reduce our system of

constraints to canonical formulas using a Gaussian elimi-

nation style algorithm. The algorithm is described in Fig-

ure 1. It takes in a set of constraints and a priority order-

ing. It successively eliminates lower priority dimensions

from the constraint system by replacing them with formu-

las composed of higher priority dimensions. It then back-

substitutes each of the dimensions in each formula, this time

going from the highest priority dimension downwards. This

ensures that dependent dimensions are expressed as a func-

tion of independent dimensions.

To compare two sets of composite dimension constraints,

we adopt a priority order for independent dimensions in

each program such that the dimensions of variables in com-

mon are ordered after those not in common. The common

dimensions are also sorted to ensure they have a consistent

order for both constraint systems. We then use the algo-

rithm in Figure 1 to generate formulas in each set of con-

straints. The formulas for the dependent dimensions that

are common are expressed in terms of other common di-

mensions when possible. Given these canonical formulas

in both versions, it is simple to check whether the formulas

for the common dependent variables are the same in both

versions. If they are different, a possible dimension error is

flagged. An error can also be flagged if a variable that has

a non-empty dimensional formula in one version is flagged

as dimensionless in the other.

4. UniFi Case Study

In this section, we report results of running UniFi over

the codebase of bddbddb, an open source program analysis

toolset. This toolset is implemented in Java and is hosted

at the public open source repository SourceForge. We ran

UniFi retrospectively over daily snapshots across 10 months

(from October 2004 to July 2005) when this project was un-

der active development. We chose this project because we

knew this project had evolved significantly during this pe-

Inputs:

1. A list of dimensions D: δ1, . . . , δn in increasing order

of priority.

2. A set of constraints C = {c1, c2, . . . , cm}, where ci is
∏

1≤j≤m
δj

eij = 1

and each exponent eij is a rational number.

Outputs:

1. A set of dependent dimensions D′ ∈ D

2. A set of constraints C′ = {c′i | δi ∈ D′}, where

c′i is δi = Fδi , and

Fδi is of the form δi+1
ei+1 × . . .× δn

en .

Algorithm:

for j = 1 to n do

pick some ci ∈ C such that eij �= 0
if no such ci exists

continue to the next j

Fδj ← (
∏

1≤k≤n,k �=j
δk

eik)−1/eij

remove ci from C
foreach c ∈ C do

rewrite c replacing δj with Fδj

update exponent matrix e to reflect the exponents in the

rewritten constraint

for j = n down to 1 do

if Fδj is defined

rewrite Fδj replacing δk with Fδk ,

where k = j + 1, . . . , n and Fδk is defined

add δj to D′ and the constraint δj = Fδj to C′

Figure 1. Algorithm to canonicalize compos-
ite dimension constraints

riod and we had easy access to the developer of the project

for analyzing the results generated by UniFi.

We built the main trunk of the repository as it existed

each night of this period. There were a total of 292 success-

ful builds. For each successful build (except the first), we

compared UniFi results with the results from the previous

build and reported differences in dimensional relationships.

All dates in this section are in Year-Month-Date format.

4.1 Codebase Statistics

Table 2 provides statistics about this codebase as of

2004-10-01 and as of 2005-07-30. Typical analysis run-

time for each inference run was between 20 and 25 seconds

on a 2.2GHz Intel CPU with 4 GB physical memory, and a

512MB JVM heap size. The row listing “number of distinct

method interfaces” is different from the number of method

bodies analyzed because multiple methods could map to the
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2004-10-01 2005-07-30
Classes 179 226

Interfaces 14 14

Method bodies 1,376 1,801

Distinct Method interfaces 889 1215

Binary jar file size (KB) 359 463

Lines of code (Non-blank,

non-comment)

14,379 19,119

Table 2. Codebase statistics

Type of Dimension Variable Count
Field 258

Local variable 877

Constant 2,244

Method parameter 552

Method return value 393

Result of multiply/divide 102

Array element 129

Array length 407

Total 4,962

Table 3. Frequency of dimension variables

same interface method, using the object-oriented interface

mappings explained earlier.

Table 3 lists the number of dimension variables in the

program from date 2005-07-30. Note that these counts con-

sider only variables of primitive types and strings. For this

program version, the largest equivalence class was of size

132. There were 3340 equivalence class containing just one

element; of these 2100 were one-time use constant strings.

4.2 Bugs During Software Evolution

In all, over 292 builds, comparing the results of each

build with the results on the previous one caused 26 warn-

ings between 19 pairs of builds. We have found that the

most interesting reports tend to be those where there is a

change in the dimensional relationships of a (static or in-

stance) field or a method interface (method parameter or

return value) — these are typically more useful than re-

ports involving only, say, local variables. We are consid-

ering restricting UniFi reports to those that involve one of

these kinds of variables. If we consider only fields and

method interfaces, there were only 16 warnings. 5 of these

16 warnings were dimensional differences directly related

to bugs: 2 introduced new bugs, and 3 fixed bugs. The other

11 warnings were caused by valid changes in dimensional

relationships as the program evolved.

We describe below the three errors encountered by UniFi

in bddbddb. Of these three, the first two would have been

found by UniFi had it been deployed during development.

All three errors were independently discovered by the de-

veloper and fixed at some point after they were introduced.

Bug 1: A code update on 2004-11-07 caused

UniFi to issue a warning saying that the previ-

ously independent dimension variables associated

with the fields NO CLASS SCORE and NO CLASS
in the class FindBestDomainOrder (in package

net.sf.bddbddb) were now unified. The field

NO CLASS has the same dimension as a group of variables

referring to a class identifier; NO CLASS is used as a

special default value. The NO CLASS SCORE field has the

same dimension as the score of a class, which is unrelated

to a class identifier; once again, NO CLASS SCORE is a

special default value for the score of a class.

In method tryNewGoodOrder2 in this class, the fol-

lowing initialization code was introduced:

...
double vScore=NO_CLASS,aScore=NO_CLASS,
dScore=NO_CLASS;
double vClass=NO_CLASS,aClass=NO_CLASS,
dClass=NO_CLASS;
...

The intention here is clearly to set the score variables to

a default score value of NO CLASS SCORE; however, they

are incorrectly set to NO CLASS. One can imagine that it

is easy to make such a mistake since both variables have

similar names and are declared and used in the same area of

the code. This error is fixed by an update on 2004-11-11,

at which point UniFi reported another warning saying that

the previous unified dimension variables for NO CLASS and

NO CLASS SCORE were now independent.

Bug 2: Somewhat surprisingly, UniFi can also finds er-

rors when variables that should be unified are separated

into different equivalence classes. The following exam-

ple illustrates this: Analysis on the code as of 2005-05-

24 reported that the previously unified dimension variables

for the fields net.sf.bddbddb.Stratify.TRACE
and net.sf.bddbddb.Solver.TRACE were now in-

dependent. The original code was the following:

public Stratify(Solver solver) {
this.solver = solver;
this.TRACE = solver.TRACE;
this.out = solver.out;

}

This constructor in the Stratify class which takes a
Solver as a parameter and copies the Solver’s TRACE
field to its own TRACE field. This code was changed on
2005-05-24, but inadvertently lost the copy of this field:
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public Stratify(Solver solver) {
this.solver = solver;
this.NOISY = solver.NOISY;
this.nodes = new HashMap();
this.emptyRelationNode =

getRelationNode(null);
}

The copy of TRACE was re-introduced in a bug fix a few

days later on 2005-06-11.

Bug 3 (not detected by UniFi): This bug illustrates a

limitation of UniFi: a dimension error was introduced in

new code. Since UniFi implicitly assumes dimensions asso-

ciated with variables that it has not seen before to be correct,

it did not generate a warning. Manual inspection of dimen-

sions associated with new variables may therefore be useful

for detecting these kinds of errors. Our attention was fo-

cused on this example because UniFi correctly detected the

change in dimension relationships when the bug was fixed.

The error was as follows:

The class net.sf.bddbddb.order.BaggedId3
has 2 fields: numClasses and NUM TREES, which have

logically different dimensions. The dimensions for these

fields were being incorrectly merged due to the following

loop in method distributionForInstance():

double[] distribution =
new double[numClasses];

... //compute sum and initialize

... // distribution array
for (int i=0; i<NUM_TREES; ++i)

distribution[i] /= sum;

The for loop above should have run for the range

[0..numClasses-1] instead of [0..NUM TREES-1]. The

effect of this bug was to unify the dimensions of

numClasses and NUM TREES via the variable i and the

length of the distribution array; the bug fix correctly

caused UniFi to report that these variables were now in dif-

ferent equivalence classes.

This bug was introduced in new code on 2004-11-09; it

was fixed on 2004-11-11.

In our experiments with UniFi on bddbddb, no dimen-

sional difference reports were issued which involved com-

pound constraints due to multiply/divide operations; all re-

ports were related to unification of dimension variables.

This probably reflects the fact that bddbddb does not per-

form many multiply/divide operations, except a few for sta-

tistical reporting.

5 Discussion

In this section, we discuss our overall experience in using

UniFi on bddbddb as well as on other projects.

Types of Errors: Many errors due to dimensional in-

consistency tend to be relatively simple errors, similar to

the errors found by conventional type checking. However,

we have also come across situations where a dimensional

error has taken several days to debug. This is typical, for

example, when the range of the incorrect value is similar to

that of the correct value, such as a small integer. The use

of the incorrect value may not lead immediately to an ob-

vious failure like a crash, and may even cause silent data

corruption.

False Positives: We have not yet made significant ef-

forts to reduce the false positive rate because, in practice,

the absolute number of false positives is small and has not

been problematic. Running on nightly builds, UniFi typi-

cally issues a warning only once in a few days, and even

when the report does not point out a bug, it highlights new

relationships between variables in the code in interesting

ways. One reason we see for false positives is when a field

is declared in a class, but its functionality is initially left

unimplemented. When the field is eventually used, UniFi

emits a warning because the dimension of the field merges

with other dimensions in the program.

Another reason for false positives is when a constant

primitive type field switches between being declared final

and non-final. A final declaration causes the javac compiler

to remove the reference to the field and replace its use with

a compile time constant, making the field itself unused at

the bytecode level. We expect that it should be fairly easy

to eliminate or de-prioritize these kinds of false positives.

A more interesting source of false positives (or lost pre-

cision) is due to our treatment of all elements of an array

having the same type. Some coding patterns, most notably

those involving reflection, assemble different kinds of vari-

ables (e.g. strings) into a single array, thereby merging dis-

tinct dimensions. A possible workaround for this specific

pattern is to try and assign different dimension variables if

an array is only accessed with constant indices.

Dimensionally-inconsistent code: We find

that some methods, most notably those that

override Object.hashCode() or implement

Comparable.compareTo(), intentionally perform di-

mensionally inconsistent computations. A common idiom

for hashCode() is to compute an arbitrary function of

the object’s fields. A common idiom for compareTo() is

the following:

public int compareTo (Object o) {
SomeClass other = (SomeClass) o;
if (this.field1 != other.field1)

return (this.field1 - other.field1);
return this.field2 - other.field2;

}

This idiom compares two objects of a type by first com-

paring a major field (field1) and then comparing a minor
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field (field2) if the major fields are equal. However it

conflates the dimensions of field1 and field2 by uni-

fying both with the dimension of the return value of the

compareTo method. Therefore, UniFi always excludes

method bodies for both of these special methods from its

analysis.

Variable Naming: One side effect we have observed

during analysis of UniFi results is that browsing the vari-

ables with a given dimension sometimes points to a poor

choice of variable names. While generic local variable

names like i and n commonly appear in different dimension

classes, we also see cases where a variable’s dimension is

correct, but the variable is named misleadingly, reflecting

confusion in the mind of the programmer. Poor naming can

mislead the reader of the code about the semantics of the

variable and cause a potential software maintenance prob-

lem.

6 Related Work

UniFi belongs to a general class of tools that attempt

to acquire specifications automatically by mining existing

software, either statically or dynamically. These approaches

exploit the property that programs are often mostly correct,

and can thus be a useful source of specifications. The in-

ferred specifications can be used to check for errors in many

ways: for example, by detecting inconsistencies within the

specifications, verifying the code statically against the spec-

ifications, or checking for violations of invariants in dy-

namic runs of the program [2, 5, 9, 11, 20]. In UniFi’s case,

we attempt to use existing code to derive program specific

dimensions and the relationships between them.

Prior approaches to enforcing dimensional consistency

in software depend on programmers providing annotations

or modifying programs in some way. Fortress is a research

programming language from Sun Microsystems that pro-

vides support for units and dimensions in an object-oriented

setting by extending the syntax and semantics of the Java

programming language [1]. Van Delft proposes another

extension to Java to support dimensions [19]. The Xelda

system checks dimensional correctness of spreadsheets and

found bugs in several scientific computing spreadsheets ac-

companying a textbook [3]. Osprey is a type-checking sys-

tem for C that tries to limit the programmer burden by re-

quiring annotations on some set of variables, but inferring

dimensions on others [10]. However, Osprey is limited to

checking dimensions that are a function of a fixed set of

units, like the S.I. units.

Like UniFi, the Fortress, Osprey and Xelda systems

mentioned above use abelian groups to represent dimen-

sional algebra constraints related to multiplication and di-

vision, and employ techniques similar to Gaussian elimina-

tion to solve such constraints. Unlike UniFi, which can po-

tentially be used automatically to detect dimension errors,

these three systems depend on some form of user annota-

tion to seed the type system. Further, only Fortress exploits

subtyping relationships in object-oriented languages.

Lackwit is a tool that performs polymorphic type in-

ference on a C program to identify variables that are con-

strained to have the same representation [14]. This informa-

tion is used as an aid to performing software maintenance.

However, Lackwit does not generalize its type inference to

support dimensions and does not support arithmetic opera-

tors like addition and multiplication.

Some prior work attempts to infer dimensional consis-

tency at runtime. Guo et al attempt to infer abstract types

by instrumenting a program and detecting interactions at

run time [8]. Their built-in interactions do not handle mul-

tiply and divide constraints using abelian groups. Petty’s

proposed approach for Fortran aims to ensure dimensional

consistency (mainly for the S.I. units) by using a modified

real type to carry dimensional information [15].

Another body of related work uses the concept of type

qualifiers. The Cqual and Jqual frameworks (for C and

Java programs respectively) provide generalized type infer-

ence and checking using type qualifiers. They let program-

mers assign qualifiers to type declarations, and describe

how the type qualifiers interact with the operators of the

language [6, 7]. UniFi’s dimensions can be viewed as a

particular class of type qualifiers, although UniFi does not

support subtyping relationships between dimensions. How-

ever, UniFi targets the specific domain of dimensions, and

therefore embeds constraint rules and solvers specific to this

domain. Uses of Cqual so far have been in the domain of

constant variable inference [6] and taint propagation[17];

Jqual has been applied to enhance type checking with re-

spect to native (JNI) code and for detecting immutable vari-

ables. JavaRI is another system that attempts to use type

checking to verify immutability properties of annotated Java

programs [18]. UniFi’s general approach of inferring di-

mensions on one version of the program and using the re-

sults to check other versions of the program may be useful

with other kinds of type qualifiers as well.

7 Future Work

As mentioned earlier, there are many different situations

in which it may be useful to compare dimension inference

results. More work is needed to gain experience with UniFi

in these situations. More experience is also needed with sci-

entific applications where there is an abundance of multiply

and divide relationships.

One promising approach is to use UniFi to infer dimen-

sions on the implementation of popular Java libraries. After

manual review and assignment of human-friendly names,

the inferred dimensions can be output as type annotations
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using the JSR-308 syntax. This will offer a considerable

amount of documentation to users of these libraries and a

way for compile time checkers to detect dimension errors.

We could also extend UniFi to precompute summaries

of methods in popular libraries, so that the effect of these

methods can be accurately applied to programs that invoke

them, without the need to analyze the libraries along with

every program.

Finally, we are interested in exploring dimensional con-

sistency in the context of hardware programs written in lan-

guages like Verilog. Hardware programs have even less pro-

tection than software in terms of type checking, and infer-

ring dimensions in a sea of bits may be a useful way to find

inconsistencies in the design.

We plan to release our UniFi implementation in

open source form. Additional information and screen-

shots of the UniFi GUI are available at the website:

http://cs.stanford.edu/˜hangal/unifi.html.

8 Conclusions

We have shown that the UniFi approach is a practical

way to bootstrap the use of dimensional analysis into the

software development process. Dimension checking is use-

ful for much more than scientific code; it is valuable in all

types of code because programs manipulate many different

kinds of values that have dimensions associated with them.
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