
License Integration Patterns:
Addressing License Mismatches in Component-Based Development

Daniel M. German
Department of Computer Science
University of Victoria, Canada

dmg@uvic.ca

Ahmed E. Hassan
School of Computing

Queen’s University, Canada
ahmed@cs.queensu.ca

Abstract

In this paper we address the problem of combining
software components with different and possibly incom-
patible legal licenses to create a software application
that does not violate any of these licenses while poten-
tially having its own. We call this problem the license
mismatch problem. The rapid growth and availability
of Open Source Software (OSS) components with vary-
ing licenses, and the existence of more than 70 OSS li-
censes increases the complexity of this problem. Based
on a study of 124 OSS software packages, we developed
a model which describes the interconnection of compo-
nents in these packages from a legal point of view. We
used our model to document integration patterns that
are commonly used to solve the license mismatch prob-
lem in practice when creating both proprietary and OSS
applications. Software engineers with little legal exper-
tise could use these documented patterns to understand
and address the legal issues involved in reusing compo-
nents with different and possibly conflicting licenses.

1. Introduction

Most large software applications are not built from
scratch; they are built by combining several compo-
nents such as reused code snippets, self-contained bi-
nary libraries, or other applications. Component-based
development (e.g., [19]) has been a catalyst for the cre-
ation of many successful projects.

Over the last decade, various research efforts have
focused on the technical aspects of supporting and im-
proving component-based software development pro-
cesses. For example, Garlan et al. discuss the chal-
lenges of component development due to architecture
and interface mismatches [8]. However, little atten-
tion has been directed toward the legal complexities
surrounding component-based software development.

Builders of component-based applications must com-
bine components with different licenses to create a new
software application, i.e., derivative work, with its own
licensing terms.

With the widespread use of open source components,
practitioners are likely to pick open source components
when building their next large component-based appli-
cation. In contrast to commercial components, open
source components have a large number of licenses.
At last count there are 70 approved open source li-
censes. Each license has its own set of permissions and
restrictions. Combining components of differing and
possibly conflicting licenses is the next big challenge
for component-based development. We call this chal-
lenge the license-mismatch problem.

The Bugzilla software application [31] is a great ex-
ample to highlight the sheer complexity of this prob-
lem in modern component-based development. In its
most common instance, Bugzilla makes use of 82 pack-
ages. These packages use 10 different licenses including
original 4-clauses BSD, new 3-clauses BSD, Artistic v1,
GNU General Public License (GPL) v1, GNU GPL v2,
GNU Lesser General Public License v2.1, MIT, Apache
v2, and IBM Public License v1.0. Many of these li-
censes conflict with each other. For example, the GPL
licenses insist that all code linked to them must be
GPL-licensed as well; one would expect that the fi-
nal product, i.e., Bugzilla, would be licensed under the
GPL. However, Bugzilla is licensed under the Mozilla
Public License 1.1. To combine all these conflicting
licenses, the developers of Bugzilla had to adapt and
modify their technical solutions and architecture to en-
sure that Bugzilla complies with the other ten licenses.

Several models have been proposed in the past to
model the selection of components (such as [3]). How-
ever, these models do not address how the license of
a component affects the requirements, the architec-

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 188

ture and the potential uses of a component-based ap-
plication. Others have warned about the difficulties
of including open source software in commercial soft-
ware [1, 16, 25, 29]. IBM’s Ariadne appears to be the
only tool that fully incorporates the management of
intellectual property in software development [4].

License compliance is rapidly becoming an im-
portant and critical challenge for many software or-
ganizations worldwide. Companies like Hewlett-
Packard (http://www.hp.com), Black Duck Soft-
ware (http://blackducksoftware.com) and Palimida
(http://palamida.com) have created infrastructures
and toolsets to help software organizations tackle the
license-mismatch problem. For example, Koders.com
by Black Duck Software is a source code search engine
that permits developers to limit their code search to
specific licenses. The FOSSology Project by HP pro-
vides the infrastructure to automatically detect licenses
in software packages to aid in identifying possible li-
cense mismatches [10].

In contrast to technical challenges, the license mis-
match problem is a more complex challenge for which
software engineers have limited training and knowl-
edge. Undergraduate’s exposure to legal issues is con-
fined to a few lectures in a single course as per the
ACM Software Engineering Curriculum guidelines.

The main contributions of this paper are twofold.
First, the development of a model to describe licenses,
and the implications of licenses on the reuse of com-
ponents. This model is the first step toward creating
frameworks which could automatically verify legal com-
pliance. Second, we highlight and document the efforts
of the open source community in addressing the license-
mismatch problem. Through a detailed study of 124
OSS packages, we identified and documented patterns
that are commonly used to integrate components with
different licenses. By documenting these patterns, we
aim to 1) demonstrate the effect of legal issues on the
architecture of modern software applications; 2) define
common vocabulary for discussing and analyzing the
effects of licenses on software; 3) provide a set of pat-
terns for practitioners to learn best practices, and for
academics to improve research and education matters
associated with software licensing issues.

This paper is organized as follows. Section 2 gives a
brief overview of the legal protections available for soft-
ware. Section 3 presents our model to describe licenses
and the legal consequences of combining components
of different licenses. Section 4 presents our system of
patterns. Section 5 concludes the paper and outlines
avenues for future work.

2. Legal protections for software

From a legal point of view, software, or more specif-
ically, a “‘computer program’ is a set of statements or
instructions to be used directly or indirectly in a com-
puter in order to bring about a certain result.”[37].
Computer programs are usually protected using one or
more legal alternatives: a) trademarks—which protect
the software name, logos, and any specific mark asso-
ciated with the software; b) trade secret—the source
code of the program is kept secret, only binary or
obfuscated versions of the program are distributed,
c) patents—software related inventions are patentable,
giving the owner of the patent a monopoly on its
exploitation though not all countries permit software
patents, d) copyright—gives its owner certain exclu-
sive rights such as making copies of the software. See
[2, 11, 14, 24] for comprehensive discussions on how
these protections are applied to software. This paper
focuses on the use of copyright to protect software.

2.1. Exclusive rights and licenses

The copyright owner of a software system has var-
ious exclusive rights over it [37]: 1) to make copies of
it; 2) to prepare derivative works based on it; 3) to
distribute copies for sale, rent, lease or lending; 4) to
perform the work in public; and 5) to display the work
in public. A copyright owner can exploit these exclu-
sive rights for a fixed period of time. An owner can
explicitly forfeit the copyright of a work. A work with
no copyright owner is said to be in the public domain.

A license is a legal mechanism used by the copyright
or patent owner (the licensor) to grant permission to
others (the licensees) to use and exploit her intellectual
property in ways that would otherwise be forbidden by
copyright or patent law [15, 17, 28]. For example, an in-
tegrator who wants to modify and include a component
as part of a larger software application and sell the ap-
plication will require the rights to create a derivative
work of the component, make copies of it, distribute
it and sell it. The integrator has these rights if a) she
owns the intellectual property of the component, b) the
intellectual property of the component is in the pub-
lic domain, or c) she has a license for the component
which grants her these rights.

2.2. Collective and derivative works

The concepts of collective and derivative works are
fundamental to understanding the legal issues involved
in creating a component-based software application.
The United States Copyright Act defines a collective

189

work as “a work [...] in which a number of contribu-
tions, constituting separate and independent works in
themselves are assembled into a collective whole” and
a derivative work (also known as derived work) as “a
work based upon one or more preexisting works [...] in
which a work may be recast, transformed, or adapted”
[37].

An integrator of a component-based software appli-
cation must determine if this application is a collective
or a derivative work of any given component. If the
application is a derivative work of one or more com-
ponents, then the integrator must have a grant to the
right to create a derivative work from each of these
components. The license of the component-based ap-
plication will be subject to the restrictions imposed by
these grants. Unfortunately there is no simple method
to determine if a work is a derivative or a collective
work; the final decision is made by a judge in a court
of law (see [26] for a detailed discussion).

Collective and derivative works are entitled to their
own copyright protections. The author of a collective
or a derivative work owns the copyright only to the
material contributed by her, as distinguishable from
the previous works. The author of a new collective
or derivative work is subject to the copyrights of the
components that are part of the work [38].

2.3. Open source licenses

Open source licenses create a legal framework which
permits the collaboration of different individuals and
organizations in the creation of software: “Open source
licensing has become a widely used method of creative
collaboration that serves to advance the arts and sci-
ences in a manner and at a pace that few could have
imagined just a few decades ago” [13].

The Open Source Initiative (OSI) (http://www.
opensource.org/) defines and promotes the “Open
Source Definition” (OSD). The OSD defines open
source as software that is distributed under a license
that satisfies 11 specific criteria for an open source li-
cense [32]. These criteria include, for example: the
source code should be available; the license should al-
low modifications and derived works, and their fur-
ther distribution; and the license must not discriminate
against fields of endeavor nor persons or groups.

The OSI is also responsible for officially approving
licenses as open source. Some widely used licenses are
considered open source but have never been approved,
such as the original BSD license (also known as 4-
clauses BSD), and the GPL1 license (we use a subscript

after the license name to indicate a particular version).
As of August 2008, there exists 72 OSI-approved open-
source licenses. 26 cannot be reused by anybody else
but their author because they include the name of their
author inside the license itself and are not in the pub-
lic domain, hence they cannot be modified by a new
author; e.g. the Apple Public License, and the PHP
License. Four licenses have been voluntarily retired.
Some open source licenses are recent versions of older
licenses (e.g., the GPL3 is a newer license than the
GPL1 and GPL2) but from a legal point of view each
is different and independent from the earlier versions.

3. A model to describe the licensing re-
quirements of components

From a legal point of view, we define a component-
based software application (S) as a work composed of
one or more software components (Ci) functioning to-
gether. Our definition of the term component is very
lax: a component is any software product (proprietary
or open source), including any “glue” that might be
required to integrate or adapt one or more compo-
nents. This definition is similar to that in [3], with
the addition of components that are first modified and
then reused. Each component (Ci) has its own copy-
right owner (who can be the end user or the integrator
putting S together) and its own license (L(Ci)). Simi-
larly, S can have its own license (L(S)).

A component C can be reused in two primary forms:

White-box: Using one or more files of C, either in
their original or modified form. Usually these files
are distributed as part of S.

Black-box: Using C without any modifications to it.
C can be distributed separately or along with S.

White-box reuse is likely to create a derivative
work of the modified component. Even copying a
small fraction—less than 100 LOCs—of a component
C might result in S being considered as a derivative
work [18]. The integrator or user must acquire the
right to modify and potentially redistribute all the files
of C in S.

Determining whether S is derived or collective work
for a black-box reuse is a more complex task which
depends on the nature of the use and interconnection of
each Ci with the rest of S and other reused components
in S. A component C can be reused in one of the
following ways, which we call interconnection types:

Linking: Calling functions or methods in C using dy-
namic or static linking.

190

Fork: Stand alone execution via a fork or exec system
calls. C is executed in a separate space from S.
The communication between the rest of S and C
might be done via pipes, sockets or files.

Subclass: Other parts of S inherit one or more classes
of C.

IPC: C is built as a service or server. Other parts of
S use C via a well-defined process intercommuni-
cation protocol, such as CORBA and COM.

Plugin: S extends the functionality of C using C’s
plugin-architecture.

A software system S can be modelled as a directed
dependency graph with each component (Ci) as a node.
An edge between two nodes indicates that the two com-
ponents are interconnected through one of the afore-
mentioned interconnection types. This graph is not
acyclic, as two components might require each other
to function. All the nodes (components) in the graph
should be available for all the features of S to properly
work, and the user of S should have the right to use
them.

3.1. Modeling open source licenses

As we have seen in section 2, an open software li-
cense provides its licensee with a grant to one or more
of the exclusive rights owned by the copyright owner
of that component. Because an open source license is
unilateral, each grant is granted provided a set of condi-
tions are satisfied; if one of such conditions is violated,
then the grant is not given[28]. by the US Court of
Appeals for the Federal Circuit in Jacobsen v. Katzer
[13].

A license (L) is, therefore, a set of grants. The con-
ditions for each grant to right r (Gr) can be represented
as a set of m conjuncts. All conjuncts should be satis-
fied for the licensor to receive such grant:

Gr(L) = p1 ∧ · · · ∧ pm

For example, one of the several grants of the
original BSD allows the licensee to distribute deriva-
tive works in binary form as long as the following three
conjuncts are satisfied: 1) “Redistribution [..] must re-
produce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation
and/or other materials provided with the distribution.”
2) “All advertising materials mentioning features or use
of this software must display the following acknowl-
edgements: This product includes software developed
by the <OWNER> and its contributors.” 3) “Neither
the name of the <OWNER> nor the names of its con-
tributors must be used to endorse or promote products

derived from this software without specific prior per-
mission.”

Intellectual property lawyers, who are familiar with
the copyright laws in the applicable jurisdiction, must
interpret which grants are present in a license, and their
corresponding conjuncts.

3.2. Modeling the licensing of component-based ap-
plications

The integrator and the user of a component-based
software application S expect to have some rights to it,
such as the right to execute it, to create other derivative
works from it, the right to license it, and to sell copies
of it. The needed rights vary between applications,
while the available rights depend on the components of
S and their interconnection types.

Let us assume that S is composed of n components
{C1...Cn}. U denotes the user of S and I denotes the
integrator of S. ∆(C) denotes the set of all derivative
works of a C. S is a derivative work of C iff S ∈ ∆(C).
S might be a derivative work of zero or more of its
components Ci.

U and I need to obtain a license to each Ci that
grants them the rights needed to use Ci in S. For
example, if I wants to sell binary copies of S, and S ∈
∆(C) then the license to C, which we denote as L(C),
should grant the right to distribute derivative works
of C in binary form. This grant is likely to impose
conditions that should be satisfied by I.

The specific grant required by I to be able to inte-
grate C in S depends on two factors:

1. Whether S ∈ ∆(C), which depends on the inter-
connection type of C with the rest of S; and

2. The rights required by I and U to use, and poten-
tially distribute C.

For example, let us assume that I wants to distribute
copies of S under a proprietary license P ; one of S’s
components, C is licensed to I under the terms of the
GPL2, i.e., L(C) = GPL2. The position of the Free
Software Foundation (FSF), creator of the GPL2, is
that if L(C) = GPL2 and C is interconnected to the
rest of S via Black-box Linking, then S ∈ ∆(C) and I
acquires a grant to create and redistribute copies of the
derivative work of C from L(C). One of the conjuncts
of this grant under the GPL2 is that L(S) = GPL2,
i.e., the license of the derivative work of C should be
under the GPL2. Since L(S) = P , this conjunct is not
satisfiable, hence under these circumstances C cannot
be used in P . On the other hand, if C is interconnected

191

to the rest of S via Black-box Forking then according
to the interpretation of the FSF S /∈ ∆(C), and under
the GPL2 I acquires a grant to make and redistribute
copies of C as part of S. This grant does not have
a conjunct which imposes conditions on the license of
S. Therefore, it is possible for I to distribute copies
of S under a proprietary license. However, the grant
has other conjuncts which impose conditions on the
availability of the source code of C and the ease of
identifying C as a separate executable program.

3.3. Reusing components made from components

Frequently a component C—used by S—is created
from other components as a derivative or collective
work of these components. As previously discussed,
I requires a license from the licensor of C. To be valid
this license should satisfy all the conditions of each of
the sub-components c1..cm of C; if the conditions of
one of them (say ci) is not satisfied (either by mistake
or on purpose) then the creator of C might not have
a license to C, and I does not have a license to use C
as part of S. Under this scenario I might be liable for
copyright or patent infringement, even if I was never
aware of how and why such license was not honoured
inside one of the components Ci of S. For this reason I
must be aware of all components and sub-components
included explicitly, or implicitly in S and the licensing
requirements of these components.

3.4. Compatibility of licenses

As mentioned before, each of the rights needed for
S will require a grant to one or more specific rights
from each of the C1...Cn. Each grant imposes a set
of conditions, which are modeled as conjuncts. If the
union of all these conjuncts is not satisfiable, then I
cannot acquire the desired rights and might not be able
to create S or license it to anybody. We say that, for
a given grant g, L(C) is not compatible with L(S) if
at least one of the conjuncts of g from L(C) is not
satisfiable under L(S). We denote this relationship as
�g (compatible) and �g (not compatible): if under
grant g, L(A) is compatible with L(B) then A �g B.
By extension the use of C in S is compatible under use
u (denoted C �u S) iff the use u is permitted by a
grant g of L(C), and L(C) �g L(S).

To illustrate these concepts, let us assume that
S ∈ ∆(C), L(S) = MPL1.1, and L(C) = GPL2.
The condition any derivative work of C should be li-
censed under the GPL2 (modeled as the conjunct ∀A ∈
∆(C),L(A) = GPL2) is unsatisfiable in this particular
case. We therefore say that under the grant of creation

and distribution of derivative works (δ) the GPL2 is
incompatible with the MPL1.1, GPL2 �δ MPL1.1.
For this particular grant we will omit the subscript
GPL2 �MPL1.1. Similarly, when C is used to create
a derivative work S that is to be distributed (its use is
υ) C �υ S, (for this use we omit υ and write C � S).

For other grants the GPL2 is not necessarily incom-
patible with other licenses. We will denote as ρ the
grant to create and run a derivative work but not dis-
tribute it. The GPL2 imposes no condition for ρ if S is
never distributed. We model this condition as the con-
junct use in-house only. In other words, an integrator
can create any derivative work from GPLed compo-
nents as long as the resulting system is used in-house
only. One of the conditions of the Microsoft Public
License (Ms-PL) is that the user must accept the li-
cense before the software is used. We model this con-
dition of ρ as the conjunct “accept license”. Another
condition of the (Ms-PL) is that the license of the
derivative work is the Ms-PL exclusively. We model
this conjunct of the ρ as “L(S) = Ms-PL”. Assume
S is a derivative work of two components G and M ,
L(G) = GPL2 and L(M) = Ms-PL, and S is never
going to be distributed so it will only be used in-house.
Under this scenario the grant needed is ρ. The conjunct
of such grant from the GPL2 is always satisfied (“only
use in-house”); simultaneously it is possible to satisfy
the conjuncts of ρ from the Ms-PL (the user “accepts
license”, and L(S) = Ms-PL). S will contain code
licensed both under the GPL2 and the Ms-PL with-
out any copyright infringement: ∀D ∈ ∆(M), G �ρ D,
and GPL2 �ρ Ms-PL. However, it is impossible for
the integrator to distribute S. If S ∈ ∆(G) then
one conjunct of this grant (δ, create and distribute
derivative works) under the GPL2 is “L(S) = GPL2”,
and if S ∈ ∆(M) then one of Ms-PL δ conjuncts is
“L(S) = Ms-PL”. If L(S) = GPL2 then the conjuncts
of the Ms-PL are unsatisfiable (Ms-PL � GPL2).
Likewise, if L(S) = Ms-PL then the conjuncts of δ
from GPL2 are unsatisfiable (GPL2 � Ms-PL). A
derivative work of bothG andM cannot be distributed,
though the work can be used in-house.

4. A system of patterns for interconnect-
ing open source components

Open source and proprietary applications incorpo-
rate components with different licenses, and frequently
the resulting application has a different license. Under
which circumstances could a software application be
legally created with components with different licenses
(the license-mismatch problem)? To answer this ques-
tion we needed to know: a) the components used by an

192

application; b) the licenses of such components and the
application; c) the technique used to address and re-
solve the license mismatches, if such mismatches exist.
Our goal is to identify a system of patterns that encap-
sulates the methods used to solve the license-mismatch
problem.

4.1. Methodology

We examined the licensing for 124 OSS projects. We
started from the following eight popular software ap-
plications: Apache version 2.2, GIMP version 2.2.0,
MySQL 5.0.38, Koffice 1.6.3, GNOME desktop 2.14.0,
GCC 4.3.2, PostgreSQL 8.2.4, and Bugzilla 3.0.2.
We then built a dependency graph which recursively
showed all the packages which these applications de-
pend on. We determined the packages and dependen-
cies by using the open source packaging systems which
is used to ease the installation of open source pack-
ages [27, 36]. Our method is described in detail in [9].
In particular, we used the information from the pack-
aging systems of Debian 4.0 and Fink 0.8.1 to create
the interdependency graphs of these eight applications.

To fully understand the licensing terms of each of
these software packages, we downloaded their source
code packages and manually inspected their documen-
tation. We documented their license and any peculiar-
ities in their licensing terms.

Many packages contained a file in its source code
that described in detail the license. For example, the
netpbm project listed every single file and the license
under which it was being offered–a total of 9 licenses
were mentioned. Sometimes identifying the type of li-
cense was not trivial. For example, the MIT and the
BSD licenses are based upon templates that must be
filled-in with the name of the copyright owner and her
organization, and frequently the licensors further edit
the license. Occasionally one of the resulting licenses
becomes known by the name of the project that uses it.
For instance, libJPEG uses a license that appears to be
derived from the original BSD, with other projects,
like netpbm, refering to that license as the libJPEG
license.

The licensing terms of packages vary significantly.
Some packages, such as PostgreSQL, have only one
license; while others, such as GCC, have different li-
censes for different parts. In the case of GCC, the C
runtime library, known as glibc, is licensed under the
LGPL3+ (a + after a version number of a license in-
dicates that the licensor allows the licensee to choose
a newer version of the license) while the programs, in-
cluding the compiler, are licensed under the GPL3+.

Freq Name of License Version Abbrev.
2 Aladdin
2 Apache 2.0 AL2

2 Artistic 1.0 ArtL1.0

15 BSD style New new BSD
6 Original original BSD
4 Other
1 General Public 1+ GPL1+

12 2 GPL2

31 2+ GPL2+

1 3+ GPL3+

4 Library General 2 LGPL2

37 Public 2+ LGPL2+

4 Lesser General 2.1 LGPL2.1

11 Public 2.1+ LGPL2.1+

1 3+ LGPL3+

16 MIT/X11-style MIT
5 Mozilla Public 1.1+ MPL1.1+

17 Other
2 Public domain

Table 1. Licenses found in the 124 studied OSS pack-
ages. The first column lists the number of packages
using a license. A + after a version number of a li-
cense indicates that the licensor allows the licensee
to choose a newer version of the license. The last
column shows the abbreviations used in this paper.
The MIT/X11 and the BSD are templates, and each
instance is expected to be different from others (e.g.,
the name of the copyright owner will differ). The
original BSD is also known as the 4-clauses BSD,
and the new BSD as the 3-clauses with one clause–
the so-called “advertising clause” removed.

Sometimes a package is explicitly licensed under the
terms of more than one license. For example, Perl
lets the user choose between the terms of the origi-
nal Artistic License, or the terms of the GPL1+. We
found many licenses that were not OSI-approved; some
of them were complex, while others very simple. For
example the “Beer-ware” is a one-paragraph long li-
cense which asks the user to buy beer to the author if
she likes the software. Table 1 summarizes the licenses
found, and their frequency of occurrence.

Once we determined the license of all the compo-
nents, we proceeded to identify any license mismatches.
When there was a license mismatch, we documented
the rationale for allowing it. In a few cases, we con-
tacted authors of the packages seeking clarification. It
was clear that most software package maintainers were
concerned with the licensing issues surrounding the use
of their packages, and how they used other packages.

193

Not surprisingly, a few common methods, used to ad-
dress the license-mismatch problem, have emerged over
the years and across projects.

We identified 12 patterns, and classified them into
two types: patterns for the licensor (the creator of the
component), and patterns for the licensee (the integra-
tor or user of the component). These are summarized
in table 2. Due to space restrictions we only present 4
patterns.

4.2. Patterns for Licensor

Exception

Intent: To allow a particular use by expanding the
terms of the license in an addendum, without modify-
ing the text of the license itself.
Motivation: The copyright owner of a component
wants to allow its use in a situation that is incom-
patible with its license. Rather than modifying the
license (or using a different license), the copyright
owner issues an exception that explicitly states cer-
tain extra conditions under which it will allow such use.

Applicability:
• A potential derivative work D of the product P can-

not be created because the licensing terms of D are
incompatible with the license of P . Yet, the copyright
owner of P wants this derivative work to exist, but
does not want to re-license P under al compatible li-
cense. This is a common problem in the FOSS world,
where many licenses are not compatible among them
for the grant of creation and distribution of derivative
works, even if they have similar philosophical goals.
• A complementary situation arises when a product
P needs to use a component C and the license of
C is incompatible with the license of P (usually due
to few, minor clauses that are not satisfiable by the
license of P , but that the copyright owner of P is
willing to satisfy). The copyright owner of P issues
an exception to P ’s license making it legal for P to
use C.

Advantages:
• It facilitates the integration of modules with other-

wise incompatible licenses.
• It avoids the need to modify the original license of

the component (avoiding the proliferation of versions
of the license).

Disadvantages:
• Only the copyright owner is capable of granting an

exception. If more than one owner, then each one of
them should consent to the exception.

• The exception might create a legal loophole with un-
intended consequences.

Known Uses:
• Trolltech GPL Exception. Trolltech distributes

several products under the GPL2 and a commercial
license. Aware that the GPL2 is incompatible with
many FOSS licenses, Trolltech has issued its GPL Ex-
ception [35]. It explicitly allows linking of its libraries
by software products released under 22 different open
source licenses. The main goal of this exception is to
allow reuse of its libraries by as many OSS as possi-
ble.1

• MySQL AB FLOSS License Exception. This
exception is very similar in objectives to the Troll-
tech GPL Exception. It allows linking to its MySQL
Client Libraries by software products released under
23 different open source licenses (the same 22 licenses
listed under the Trolltech GPL Exception plus one
more). Although the MySQL AB FLOSS License Ex-
ception and the Trolltech GPL Exception have very
similar objectives, they are drafted in very different
terms. Trolltech’s exception addresses and permits
linking, while MySQL’s addresses the issue of what
constitutes a derivative work[22].
• OpenSSL GPL Exception. Any program li-

censed under the GPL that links to the OpenSSL
library requires this exception. OpenSSL is a cryp-
tographic implementation of the SSL and TLS pro-
tocols. OpenSSL is FIPS 140-2 compliant, an im-
portant requirement for certain organizations which
use cryptographic software, making it desirable for
applications to link to it [23]. OpenSSL is released
under the terms of both the OpenSSL License and
the SSLeay License. These licenses are incompati-
ble with the GPL2+ under the grant of creation and
distributions of derivative works. Without this excep-
tion a program licensed under a GPL license would
not be capable of linking to the OpenSSL [40]. The
Free Software Foundation has published guidelines
that describe how this type of exception should be
worded (see [6]). wget and climm are two products
that use this exception.
• Java Classpath exception. Until recently Sun

distributed its Java JDK under the Common Devel-
opment and Distribution License (CDDL), an OSI-
approved license that is not compatible with the
GPL2 under the grant of creation and distribution
of derivative works. Sun wanted to increase the po-
tential use of Java, and decided to change the license
of the JDK to the GPL2. But there was a problem:

1In 2008 Trolltech was acquired by Nokia, and in January of
2009 Nokia change the license of QT, its flagship product, to the
LGPL2.1.

194

Type Name Intent
Licensor Exception To allow a particular use by expanding the terms of the license in an

addendum, without modifying the text of the license itself.
Disjunctive To give the option to the licensor to choose one of several licenses that will

best suit her purpose.
Clarification Give an interpretation of contentious or ambiguous parts of the license.
Permit Relicensing Allow the derivative work to be licensed under a different license than the

one under which the component is made available.
Add-on Allow components under a non-compatible license to extend the function-

ality of another component via a well-defined API.
Indirect License A component indicates that its license will be the same as another one.
Different parts, dif-
ferent licenses

Provide different parts or features of the system under different licenses.

Licensee Patch Issue a patch that the user can apply to the component to create the
derivative work.

Component with
Compatible License

Find a component that can be licensed in a manner that is compatible
with the intended use.

Create collective Make sure the work is considered a collective that includes the component.
Ask for exception Request the licensor to give you an exception to one or more conditions

imposed by the license. Results in the Exception Pattern, above.
Ask for clarification Request the licensor to clarify her interpretation of any ambiguous or con-

tentious parts of the license. Results in the Clarification Pattern, above.

Table 2. Identified patterns to address the license-mismatch problem.

any program that runs under the Java Virtual Ma-
chine (JVM) dynamically links to the runtime library.
The runtime library is part of the JDK, and would
end up licensed under the GPL2. As a consequence
any program running under the JVM would need to
be licensed under the GPL2. To avoid this issue Sun
added the Classpath exception to the GPL2. This ex-
ception, authored by the Free Software Foundation,
explicitly states that linking to the provided library
(part of the JDK) is not considered a derivative work
[7, 30].

Modeling a pattern

We demonstrate the usefulness of the model and
concepts presented in section 3.2 by describing this
pattern. Due to space limitations, we omit this demon-
stration for other patterns.

Assume S uses component P , g is the grant required
on P to create S and L(P) �g L(S), hence there exists
one or more conjuncts in g that are not satisfiable. The
copyright owner of C adds exceptions to one or more
clauses of L(P) to remove these conjuncts (and likely
add new ones). The new set of conjuncts for the grant
g becomes satisfiable.

In the case of the Trolltech GPL Exception, Troll-
tech produces QT, a multi-platform GUI library, and

L(QT) = GPL2. An application S that wants to use
QT has two alternatives: 1) to copy the source code of
QT (potentially modifying it) or link to it. As we have
seen above both methods are possible if L(S) = GPL2.
But QT wants open source projects under 22 other li-
censes (we denote this set as OSS) to be able to link
to QT as long as they do not modify it. One solu-
tion would be to provide QT under each of these li-
censes, but some of these licenses are too permissive
from the point of view of Trolltech. For example, the
new BSD will not only allow linking, but also the mod-
ification and distribution of the library under commer-
cial licenses, undermining Trolltech’s business model.
Trolltech solves this problem by creating an exception
to the grant of distribution of derivative works of the
GPL2: if L(S) ∈ OSS and the interconnection type
is linking then S then one can use QT in S, otherwise
the L(S) = GPL2. The conjuncts of this grant have
become more complex, but they are satisfiable under
these circumstances.

Disjunctive

Other names: Dual licensing, tri-licensing.
Intent: To give the option to the licensor to choose
one of several licenses that will best suit her purpose.
Motivation: The licensor has two or more groups of
users and each requires a different incompatible license.

195

Applicability: The licensor wants both groups to use
the component, but writing a license to satisfy them
simultaneously might be error prone or even impossi-
ble, for instance when one license is incompatible with
the other.
Advantages:
• Each license will provide different rights, benefits and

restrictions to the licensor, allowing the integrator to
choose the license that best fits her uses (and ignore
the others).
• It is used as the basis of a business model based

for open source software where at least one of the
licenses to the software is proprietary and another is
open source.
• It avoids the use of a more complex license.
Disadvantages:
• The licensor and the licensee need to understand the

differences between each license.
• The legal repercussions of accepting large external

contributions to the product (e.g., a patch to fix a
defect, or to add a new feature) need to be carefully
evaluated.

Known uses:
• Perl. Perl is licensed under the terms of the GPL1+,

or the Artistic License (original version).
• Mozilla Core. The Mozilla Core project is licensed

under three different licenses: MPL1.1+, GPL2+,
and LGPL2.1+. According to the project, its main
motivation for this licensing scheme is to allow others
to use its code in as many projects as possible. [20]
• MySQL and QT. Both are offered under the GPL2

and various commercial licenses.

Clarification

Intent: Give an interpretation of contentious or am-
biguous parts of the license.
Motivation: The terms of a license might be con-
fusing or ambiguous, leading to legal uncertainty by
its potential users. The licensor of the product issues
a clarification of the terms of the license to address
this uncertainty.
Applicability: It is not uncommon for software li-
censes to have terms and conditions that might be am-
biguous, confusing, or potentially misunderstood. This
could lead to different interpretations of the same li-
cense by the licensee and licensor. For example, the
definition of derivative work is not well-defined–see sec-
tion 2.2. The Clarification allows the licensor to explic-
itly state its understanding of one or several parts of
the license.
Advantages:
• It makes clear the intention of using such a license.
• The licensee knows, in advance, the interpretation

that the licensor has of the licensing terms.
Disadvantages:
• A clarification might be contradictory to the license

itself with licensors often issuing clarifications with-
out legal advice.
• The interpretation of the licensee is biased and might

be overreaching or contradictory to IP law.
Known uses:
• Linux GPL clarifications. Linus Torvalds, the

main copyright owner of the Linux kernel, has stated
that programs that only use the services of the kernel
are not considered derivative works of the kernel [33].
In another clarification, he stated that the files of the
kernel for which he owns the copyright are released
under the GPL2 only, even though the files do not
explicitly state a license—as the FSF recommends–
instead he only includes a COPYING file with the
license in the distributions of the kernel. [34].
• Perl GPL clarification. Larry Wall, the original

author and copyright owner of Perl, includes a clar-
ification to Perl’s license. Perl is licensed under a
disjunctive license–GPL1+ or Artistic, see the Dis-
junctive pattern in page 8.The Perl GPL clarification
states “my interpretation of the GNU General Public
License is that no Perl script falls under the terms of
the GPL unless you explicitly put said script under
the terms of the GPL yourself.” [39].
• Eclipse clarification. As long as a plug-in for

Eclipse uses the plug-in API, without any modifica-
tions, to communicate with Eclipse, the plug-in does
not create a derivative work of Eclipse and can be
licensed under any terms [5].

4.3. Patterns for Licensee

Patch

Intent: Issue a patch that the user can apply to the
component to create the derivative work.
Motivation: To modify a component without having
to publish a derivative work.
Applicability: This pattern applies in two scenarios.
In the first the licensor of the main component does not
allow redistribution of a particular derivative work. In
the second, the integrator is not interested in creating
and maintaining a derivative work of the original. In
such cases, the integrator decides to issue its modifica-
tions as a “patch” that can be applied, either in binary
or source code form to the original component.
Applicability: This pattern is useful when a third
party is interested in providing a feature not in the
product, and yet, does not want to (or cannot) redis-
tribute the modified product.

196

Advantages:
• It circumvents the need to distribute a derivative

work.
• It permits the modification of the original component

without any approval of its copyright owner, although
it might be restricted by other laws; see disadvan-
tages.
• It can be performed in source code or binary form.
• For open source projects, patches allow the testing

of new and experimental features before they are in-
tegrated into the main product. A patch might be
later integrated into the product.
• A patch can have a different license than the original

product.
Disadvantages:
• A new version of the original product might render

the patch ineffective, and a new patch might need to
be created.
• The end-user is expected to be capable and willing

to apply the patch.
• In some cases, the patch might be considered illegal

(for example, if the patch is considered–in the USA–a
circumvention device under the DMCA).

Known uses:
• MySQL AB accepts some contributions for its

mysqMySQLl database, but it does not accept all of
them. The authors of those accepted contributions
must sign a copyright transfer to MySQL AB [21].
The Google MySQL Tools Mailing List maintains a
repository of patches for features that are either not
accepted or have not been submitted to MySQL AB
but some users find useful [12].
• Trolltech’s QT was originally released under the Q

Public License Version 1.0. This license is OSI-
approved, and does not permit the distribution of
derivative works, but it allows the distribution of
patches. Trolltech wanted to restrict the possibil-
ity that other companies would create commercial
derivatives of their library, and wanted to maximize
their chance to sell licenses. Trolltech stopped using
this license when it released version 4.0 of QT under
the GPL2 (see [15]).

5. Conclusion and future work

The license-mismatch problem poses many chal-
lenges to developers of modern software application.
With the rapid growth of open source components with
varying and conflicting licenses, developers have cre-
ated methods to address this problem. We manually
analyzed over 124 OSS packages on which several pop-
ular open source applications such as Bugzilla, Apache,
and GIMP depend. Based on our study we identified
several patterns which permit the interconnection of

components with conflicting licenses while complying
with all licenses.

The basic model presented in this paper shows the
potential benefits of formally describing licenses. We
believe our work tackles an important yet rarely inves-
tigated aspect of building large component-based soft-
ware applications. With the widespread and easy ac-
cess to open source components online, the need for
practitioners to have a good understanding of the legal
implications of re-using particular components is be-
coming extremely important and vital for the success
of large software projects.

Acknowledgements

We are greteful to Bob Gobeille from the FOSSol-
ogy Project, and Jesús González-Barahona from the
University Rey Juan Carlos for helpful comments and
previous conversations, and to the European Legal Net-
work Mailing List members for their always enlighten-
ing discussions. The work of D.M.German has been
funded by Hewlett-Packard to support the FOSSology
Project.

References

[1] M. Bayersdorfer. Managing a project with open source
components. interactions, 14(6):33–34, 2007.

[2] A. Becerman-Rodau. Protecting Computer Soft-
ware: after Apple Computer Inc. v. Frankin Computer
Corp., 714 F.2d 1240 (3d Cir. 1983) does copyright
provide the best protection? Temple Law Review,
57(527), 1984.

[3] J. Bhuta, C. Mattmann, N. Medvidovic, and B. W.
Boehm. A Framework for the Assessment and Se-
lection of Software Components and Connectors in
COTS-Based Architectures. In WICSA, page 6, 2007.

[4] Y. B. Dang, P. Cheng, L. Luo, and A. Cho. A code
provenance management tool for IP-aware software
development. In ICSE Companion ’08: Companion
of the 30th international conference on Software en-
gineering, pages 975–976, New York, NY, USA, 2008.
ACM.

[5] Eclipse Foundation. Eclipse Public License (EPL) Fre-
quently Asked Questions, 2007. Accessed Dec. 2007.

[6] Free Software Foundation. What legal issues come
up if I use GPL-incompatible libraries with GPL
software? http://www.gnu.org/licenses/gpl-faq.

html, 2007.
[7] Free Software Foundation. GNU Classpath. http:

//www.gnu.org/software/classpath/license.html,
2008. Accessed Sept. 2008.

[8] D. Garlan, R. Allen, and J. Ockerbloom. Architectural
Mismatch or Why It’s Hard to Build Systems Out Of
Existing Parts. In ICSE, pages 179–185, 1995.

[9] D. M. German, J. M. González-Barahona, and G. Rob-
les. A model to understand the building and running

197

inter-dependencies of software. In ”Proc. 14th Work-
ing Conference on Reverse Engineering”, pages 130–
139, 2007.

[10] R. Gobeille. The FOSSology project. In MSR ’08:
Proceedings of the 2008 International Conference on
Mining Software Repositories, pages 47–50, New York,
NY, USA, 2008. ACM.

[11] P. Goldstein. International Copyright: Principles,
Law, and Practice. Oxford University Press US, 2001.

[12] Google MySQL Tools Mailing List. Patches
for MySQL 5. http://code.google.com/p/

google-mysql-tools/wiki/Mysql5Patches.
[13] Jacobsen v. Katzer, No. 2008-1001 (Fed. Cir.

8/13/2008). U.S. Court of Appeals for the Federal
Circuit, 2008.

[14] S. Lai. The Copyright Protection of Computer Soft-
ware in the United Kingdom. Hart Publishing, 2000.

[15] A. M. S. Laurent. ”Understanding Open Source and
Free Software Licensing”. O’Reilly, 2004.

[16] T. Madanmohan and R. De’. Open Source Reuse in
Commercial Firms. IEEE Software, 21(6):62–69, 2004.

[17] D. McGowan. Legal Aspects of Free and Open Source
Software. In J. Feller, B. Fitzgerald, S. Hissam, and
K. Lakhani, editors, Perspectives on Free and Open
Source Software, pages 211–226. MIT Press, 2005.

[18] N. J. Mertzel. Copying 0.03 percent of software code
base not “de minimis”. Journal of Intellectual Prop-
erty Law & Practice, 9(3):547–548, 2008.

[19] M. Morisio, editor. Reuse of Off-the-Shelf Com-
ponents, 9th International Conference on Software
Reuse, ICSR 2006, Turin, Italy, June 12-15, 2006,
Proceedings, volume 4039 of Lecture Notes in Com-
puter Science. Springer, 2006.

[20] Mozilla Foundation. Mozilla Relicensing FAQ
Version 1.1. http://www.mozilla.org/MPL/

relicensing-faq.html, Aug. 2008. Accessed
Aug. 2008.

[21] MySQL AB. MySQL Contributor License Agree-
ment v0.3. http://forge.mysql.com/contribute/

cla.php. Accessed Sept. 2008.
[22] MySQL AB. MySQL AB FLOSS License Ex-

ception. http://www.mysql.com/company/legal/

licensing/foss-exception.html, March 2007. Ac-
cessed Dec. 2007.

[23] National Institute of Standards and Technology. Val-
idated FIPS 140-1 and FIPS 140-2 Cryptographic
Moduples 2007. http://csrc.nist.gov/groups/STM/
cmvp/documents/140-1/1401val2007.htm.

[24] M. B. Nimmer and D. Nimmer. Nimmer on Copyright.
Matthew Bender & Company, 2002.

[25] Z. Obrenovic and D. Gasevic. Open Source Soft-
ware: All You Do is Put it Together. IEEE Software,
24(5):86–95, 2007.

[26] R. C. Osterberg. Substantial Similarity in Copyright
Law, chapter 8. Practising Law Institute, 2003.

[27] G. Robles, J. M. Gonzalez-Barahona, M. Michlmayr,
and J. J. Amor. Mining large software compilations
over time: another perspective of software evolution.
In MSR ’06: Proceedings of the 2006 International
Workshop on Mining Software Repositories, pages 3–
9, New York, NY, USA, 2006. ACM Press.

[28] L. Rosen. Open Source Licensing: Software Freedom
and Intellectual Property Law. Prentice Hall, 2004.

[29] C. Ruffin and C. Ebert. Using open source software
in product development: a primer. IEEE Software,
21(1):82–86, 2004.

[30] Sun Microsystems. Free and Open Source Java.
http://www.sun.com/software/opensource/java/

faq.jsp, 2008. Accessed Sept. 2008.
[31] The Mozilla Organization. Bugzilla. www.bugzilla.

org, 2008. Accessed Sep. 2008.
[32] The Open Source Initiative. The Open Source Defini-

tion. http://opensource.org/docs/osd, 2006.
[33] L. Torvalds. Note to the GNU General Public License.

./COPYING file in the Linux kernel version 2.6.23.
Accesed Dec. 2007.

[34] L. Torvalds. Re: GPL V3 and Linux - Dead Copyright
Holders. http://lkml.org/lkml/2006/1/27/339, Jan
2006.

[35] Trolltech ASA. Trolltech GPL Exception ver-
sion 1.0. http://trolltech.com/products/qt/

gplexception. Accessed Dec. 2007.
[36] C. Tucker, D. Shuffelton, R. Jhala, and S. Lerner.

Opium: Optimal package install/uninstall manager.
In ICSE ’07: Proceedings of the 29th International
Conference on Software Engineering, pages 178–188,
2007.

[37] United States Copyright Office. Circular 92 Copyright
Law of the United States of America and Related Laws
Contained in Title 17 of the United States Code, June
2003.

[38] United States Copyright Office. Circular 14 Copyright
Registration for Derivative Works, June 2008.

[39] L. Wall. Perl Kit Version 5. ./README file in Perl
version 5.6.10, available at cpan.org. Accesed Dec.
2007.

[40] Wikipedia. OpenSSL. http://en.wikipedia.org/

wiki/OpenSSL_exception#GPL_exception. Accessed
Dec. 2007.

198

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Ahmed E. Hassan
