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Abstract

Predicting the incidence of faults in code has been com-
monly associated with measuring complexity. In this paper,
we propose complexity metrics that are based on the code
change process instead of on the code. We conjecture that
a complex code change process negatively affects its prod-
uct, i.e., the software system. We validate our hypothesis
empirically through a case study using data derived from
the change history for six large open source projects. Our
case study shows that our change complexity metrics are
better predictors of fault potential in comparison to other
well-known historical predictors of faults, i.e., prior modi-
fications and prior faults.

1 Introduction

Managing the complexity of a project is a paramount

goal while striving to meet user needs. The literature con-

tains a wealth of metrics (e.g. [19]) which measure the

complexity of the source code. However, little attention

has been paid to measuring and controlling the complex-

ity of the code change process. This process plays a cen-

tral role in a project since it is responsible for producing

the code needed to satisfy requirements, while dealing with

the complexities and challenges associated with the current

code base and other facets of the project such as its de-

sign, customer requirements, the team structure and size,

market pressure, and problem domain. A software system

with a complex code change process is undesirable since it

will likely produce a system which has many faults and the

project will face delays.

Four lines of prior work motivate our intuition about the

importance of the code change process and historical code

changes in predicting the incidence of faults:

1. Studies by Briand et al. [2], Graves et al. [11], Khosh-

goftaar et al. [20], Leszak et al. [22], and Nagappan and

Ball [26] indicate that prior modifications to a file are a

good predictor of its fault potential (i.e., the more a file is
changed, the more likely it will contain faults).

2. Studies by Graves et al. [11] and Leszak et al. [22], on

commercial systems, and recently by Herraiz et al. [18]

on open source systems show that most code complexity

metrics highly correlate with LOC, a much simpler met-

ric.

3. Studies, such as the one by Moser et al. [25], show that

process metrics outperform code metrics as predictors of

future faults.

4. Studies, such as the one by Yu et al. [37], indicate that

prior faults are good predictors of future faults.

In prior work, we used concepts from information theory

to define change complexity models which capture our in-

tuition about complex changes. Events such as large refac-

torings or release delays were accompanied with increases

in our proposed model measurements [14, 15]. Our earlier

results lead us to the following conjecture:

A complex code change process negatively affects
its product, the software system. The more com-
plex changes to a file, the higher the chance the
file will contain faults.

In this paper, we extend our change complexity mod-

els and study the ability of our proposed model measure-

ments to predict the incidence of faults in a software sys-

tem. In particular, we compare the performance of predic-

tors based on our complexity models with predictors based

on the number of prior modifications and prior faults. Based

on a case study using six large open source projects, our re-

sults indicate that our change complexity models are better

predictors of fault potential in contrast to other historical

predictors (such as prior modifications and prior faults).

Overview Of Paper. This paper is organized as follows.

Section 2 gives our view of the code change process. Sec-

tion 3 present Shannon’s entropy which we use to quantify

the complexity of code changes. Sections 4, 5, and 6 present

the complexity models we use in our work. Section 4 intro-

duces our first and simplest model for the complexity of

code changes – The Basic Code Change (BCC) Model.
We proceed to give a more elaborate and complete model

in Section 5 – The Extended Code Change (ECC) Model.
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Both these models calculate a single value that measures the

overall change complexity of a project during a particular

time period. In Section 6, we reformulate the ECC model

to introduce a finer grained model – The File Code Change
(FCC) Model. The FCC model maps the overall complex-

ity to individual source files or subsystems. In Section 7, we

empirically compare the performance of predictors based on

the FCC model with the performance of predictors based

on the number of prior modifications and prior faults using

data from six large open source projects. We end Section 7

with a critical review of our findings and their applicability

to other software systems. Section 8 presents related work.

Section 9 summarizes our findings.

2 The Code Change Process
We use the term code change process to mean the pat-

tern of source code modifications. Modifications are done

by developers to implement new features and repair faults.

By studying these patterns and quantifying their degree of

complexity over time (using defined models), we hope to

achieve a better understanding of the complexity facing de-

velopers who are evolving and working on a project.

Large projects extensively use source control systems to

control and manage their source code [30]. Data stored in

these repositories presents a great opportunity to study the

code change process and validate our ideas. The data col-

lection costs are minimal since it is collected automatically

as modifications are done to the code.

The repository of a source control system contains vari-

ous details about the change history of every file in a project.

It contains the creation date of a file, its initial content and

a record of every modification done to the file. A modifi-
cation record stores the date of the modification, the name

of the developer who performed the change, the number of

changed lines, the actual lines of code that were added or

removed, and a detailed message explaining the reasons for

the change. We automatically analyze the content of the

change message, using a lexical technique, similar to [23].

We divide modifications into three types:

1. Fault Repairing modifications (FR) which are done to

fix a fault. FRs represent the fault repair process which

likely differs from the code change process. In most

projects, the change message, attached to an FR, would

specify the ID of the fault being fixed or would use key-

words such as “fix bug”. FR modifications are not used in

calculating the complexity of the change process, but are

used for validating the results in our case study, which is

presented in Section 7.

2. General Maintenance modifications (GM) which are

mainly bookkeeping modifications and which do not re-

flect the implementation of a particular feature. Example

GMs are modifications to update the copyright notice at

the top of each source file and modifications to re-indent

the code after being processed by a pretty-printer. GMs

are removed from our analysis and are never considered.

These changes are rather easy to identify in large projects

since they usually involve a very large number of files

and their change message would include keywords such

as “copyright update”, and “re-indent”.

3. Feature Introduction modifications (FI) which add or

enhance features. All modifications which are not FR nor

GM are labeled as FI. FIs are used calculating the com-

plexity of the code change process.

A software system which has to endure highly scattered

modifications as it implements requirements, will have a

high tendency of becoming a complex project. In contrast, a

project where modifications are limited to specific spots will

have less complexity associated with it. A complex code

base, the addition of a large number of features within a

short period of time, or a large number of developers simul-

taneously changing the source code of a project are some of

the many reasons that could cause code modifications to be

highly scattered. This scatter of modifications throughout

the code, within a short time, makes it difficult for develop-

ers working on the project to keep track of its progress and

the changes. For instance in [21], Lehman et al. noted that

the changed portion of a software system during a release

tends to remain constant in relation to the rest of the sys-

tem over time, and that a sudden increase in the scatter of

changes during a release is likely to have adverse affect on

the software system as noted in their OS/360 case study.

Various observations by Brooks support our intuition and

our model [5]. In particular, Brooks warned of the decay of

the grasp of what is going in a complex system. A complex

modification pattern will cause delays in releases, high bug

rates, stress and anxiety to all the personnel involved in a

project. As the ability of team members to understand and

track the changes to the system deteriorates so does their

knowledge of the system. New development will be nega-

tively affected. Similarly, Parnas warned of the ill-effects

of Ignorant Surgery, modifications done by developers who

are not sufficiently knowledgeable of the code [28]. Such

ignorance may be due to the developers being junior devel-

opers or it may be due to the fast pace of development which

prevents developers from keeping track of other changes.

For instance, a study of the root cause of faults in a large

telephony system found that over 35% of faults where due

to problems such as change coordination, missing aware-

ness, communication, and lack of system knowledge [22].

Information hiding and good designs attempt to reduce the

need to track other changes, but as the scatter of changes

increases so does the likelihood that developers will miss

tracking changes that are relevant to their work and man-

agers will have a harder time allocating testing resources or

tracking the project’s progress. In short, a chaotic change

process is a good indicator of many project problems.
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3 Information Theory
Information theory deals with assessing and defining the

amount of information in a message [32]. The theory fo-

cuses on measuring uncertainty which is related to informa-

tion. For example, suppose we monitored the output of a

device which emitted 4 symbols, A, B, C, or D. As we wait

for the next symbol, we are uncertain as to which symbol

it will produce (i.e. we are uncertain about the distribution

of the output). Once we see a symbol outputted, our un-

certainty decreases. We now have a better idea about the

distribution of the output; this reduction of uncertainty has

given us information.

Shannon proposed to measure the amount of uncertainty

or entropy in a distribution. The Shannon Entropy, Hn is

defined as: Hn(P ) = −∑n
k=1

(
pk ∗ log2 pk

)
, where pk ≥

0,∀k ∈ 1, 2, ...., n and
n∑

k=1

pk = 1. For a distribution P

where all elements have the same probability of occurrence

(pk = 1
n , ∀k ∈ 1, 2, ...., n), we achieve maximum entropy.

On the other hand for a distribution P where an element i
has a probability of occurrence pi = 1 and ∀k �= i : pk =
0, we achieve minimal entropy.

By defining the amount of uncertainty in a distribu-

tion, Hn describes the minimum number of bits required

to uniquely distinguish the distribution. In other words, it

defines the best possible compression for the distribution

(i.e. the output of the system). This fact has been used to

measure the quality of compression techniques against the

smallest theoretically-possible compressed-size.

4 Basic Code Change Model
If we view the code change process of a software sys-

tem as a system which emits data, and we define the data

as the FI modifications to the source files, we can apply the

ideas of information theory to measure the amount of un-
certainty/randomness/complexity in the change process.

4.1 Basic Model
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Figure 1. Complexity of a Change Period

Suppose we have a system which consists of four files.

If we examine the change history of this system using the

FI modifications, we can plot for each file the moments in

time it was changed. As can be seen in Figure 1, we put

stars to indicate when a specific file was changed. We now

define a period of time, for example a week, or a month.

For that period of time, we can define a file change proba-

bility distribution 1 P . P gives the probability that filei is

changed in a period. For each file in the system, we count

how many times it was changed during a period and divide

by the total number of changes in that period for all files.

For example, in Figure 1, in the highlighted grey period we

have 10 changes for all the files in the system. fileA was

modified once so we have a p(fileA) = 1
10 = 0.1. For

fileB we get p(fileB) = 1
10 = 0.1, for fileC we get

p(fileC) = 3
10 = 0.3, and so on. On the right side of

Figure 1, we can see a graph of the file change probability

distribution P for the shaded period.

If we monitor the changes and find that the probability

of modifying fileA is 1 and all other files is zero, then we

have minimal entropy. On the other hand, if the probability

of changing each file is the same (i.e. filek = 1
n ) then the

amount of entropy in the system is at its maximum.

Instead of simply using the number of changes to the

file, we use the number of modified lines over a period to

build the file change probability. Modified lines is the sum

of added and deleted lines per the modification record.

Intuition. Consider these two modifications. In the first

modification, the developer had to change over a dozen files

to add a feature. When asked about the steps required to add

the feature, she or he may not recall half of them. Whereas

another modification to add a different feature required the

changing a single file. Recalling the changes required for

the latter feature is much easier. Intuitively, if we have a

software system that is being changed across all or most of

its files, developers will have a hard time keeping track of all

these changes. Concerns about the complexity of tracking

scattered changes have been expressed by others working

on large software systems, such as telephony systems [33].

The BCC model quantifies the patterns of changes in-

stead of measuring the number of changes or measuring the

effects of changes to the code structure. Faults are intro-

duced due to misunderstandings about the current structure

and state of the system. By being aware of the current state

of the system, developers are less likely to introduce faults

and managers are likely to have an easier time monitor-

ing the project. Entropy measures redundancy and patterns.

Change patterns with low information content as defined by

entropy are easier to track and remember by developers and

others working on a project.

The BCC model, along with the next two models, only

use the FI modifications. FR modifications are not used

since they represent fault fixes which are likely to be more

scattered and to touch areas that are not being developed

during the current period. This property of fault fixes in-

1Our definition of distribution follows the frequentists school

of thought on probability which considers the relative frequency

of occurrence of an event, as a measure of its probability [34].
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flates the entropy measurement for a period. Moreover, fault

fixes are not likely to introduce new functionality, instead

they are simply revisiting old changes which developers are

already aware of and are less likely to need recalling them.

Our models could be redefined to include FRs if need be.

The models quantify entropy for several modifications

within a period not just for a specific modification. This

choice of grouping several modifications is likely to inflate

the entropy measurements, but we are more concerned with

variations across periods instead of the absolute entropy val-

ues. In addition, by grouping modifications we can gauge

the challenges that managers and developers need to cope

with due to wide spread modifications. Nevertheless, the

models could be adjusted to quantify the entropy of every

modification.

Files As a Unit of Measurement. In the BCC model we

use the file as our unit of code to build the change probabil-

ity distribution P for each period. Other units of code can

be used, such as functions or code chunks that are deter-

mined by a person with good knowledge of the system. Our

choice of files is based on the belief that a file is a conceptual

unit of development where developers tend to group related

entities such as functions and data types. Based on our ex-

perience in studying large systems, we found this to often

be the norm. In recent work [16] we were able to empiri-

cally support this belief by showing that the probability of

two source code entities (e.g. functions) changing together

over time is high, if both entities are within the same file, at

least for large open source software systems written in the

C language.

4.2 Evolution of Entropy
We can view the file change probability distribution Pj

for a period j, as a vector which characterizes the system

and uniquely identifies its state. We can divide the life-

time of a software system into successive periods in time,

and view the evolution of a software system as the repeated

transformation of the code change process from one state to

the next. Looking at Figure 2, we can see the Pj’s calculated

for 4 consecutive periods with their respective entropy. This

allows us to monitor the evolution of entropy in the change

process. If the project and the code change process are not

under control nor managed well, then the system will head

towards maximum entropy and chaos.

The manager of a large software project should aim to

control and manage entropy. Monitoring for unexpected

spikes in entropy and investigating the reasons behind them

would let managers plan ahead and be ready for future prob-

lems. For example, a spike in entropy may be due to an

influx of developers working on too many aspects of the

system concurrently, or to the complexity of the code or to

a refactoring or redesign of many parts of the system. In

the refactoring case, the manager would expect the entropy

to remain high for a limited time period then to drop as the
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Figure 2. Evolution of Change Entropy

refactoring eases future modifications to the code. On the

other hand, a complex code base may cause a consistent

rise in entropy over an extended period of time, until the is-

sues causing the rise in change entropy/complexity are ad-

dressed and resolved as we observed when studying open

source projects such as KDE [15].

5 Extended Code Change Model
The BCC model presented in Section 4, assumes a fixed

period size for entropy calculation, and assumes that the

number of files in a system remains fixed over time. Both

assumptions limit the use of the BCC model on large long

lived software systems. The Extended Code Change (ECC)

model, presented in this section, addresses these limitations.

5.1 Evolution Periods

Instead of using fixed length periods such as a month,

or a year, we now present more sophisticated methods for

breaking up the evolution of a software projects into peri-

ods:

1. Time based periods: This is the simplest technique and

it is the one presented in the BCC model in Section 4.

The history of changes is broken into equal length peri-

ods based on calendar time from the start of the project.

For example, we break the history on a monthly or bi-

monthly basis. A project which has been around for one

year, would have 12 or 6 periods respectively. In prior

work [15], we chose a 3 month period which represents

a quarter. We believe that a quarter is a good amount of

time to implement a reasonable amount of enhancements

to a software system.

2. Modification limit based periods: The history of

changes is broken into periods based on the number of

modifications as recorded in the source control repository.

For example, we can use a modification limit of 500 or

1,000 modifications. A project which has 4,000 modifica-

tions would have 8 or 4 periods respectively. To avoid the

case of breaking an active development week into two dif-

ferent periods, we attach all modifications that occurred a
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week after the end of a previous period to that period. To

prevent a period where little development may have oc-

curred from spanning a long time, we impose a limit of

3 months on a period even if the modification limit was

not reached. In prior work [15], we chose a limit of 600

modifications.

3. Burst based periods: Based on studying the change his-

tory for several large software systems, we observed that

the modification process is done in a bursty pattern. Over

time, we see periods with many code modifications, these

periods are followed by short periods of no or little code

modifications. We chose to use that observation to auto-

matically break up the change history into periods. If we

find a period of a couple of hours where no code modifi-

cations have occurred, we consider all the previous code

modifications to be part of the previous period and we start

a new period. This period creation method is used in [14]

and in our case study in Section 7. The Burst based period

creation method is the most general method, as we do not

need to specify modification counts or time limits which

may differ between projects or over time.

5.2 Adaptive System Sizing
Our entropy calculations, in Section 4, needs to account

for the varying number of files in a software system. We

define Normalized Static Entropy, H , as:

H(P ) =
1

Max Entropy for Distribution
∗Hn(P )

=
1

log2 n
∗Hn(P ) = − 1

log2 n
∗

n∑
k=1

(
pk ∗ log2 pk

)

= −
n∑

k=1

(
pk ∗ logn pk

)
,

where pk ≥ 0, ∀k ∈ 1, 2, ...., n and
n∑

k=1

pk = 1. The

normalized static entropy H normalizes Shannon’s entropy

Hn, so that 0 ≤ H ≤ 1. We can now compare the entropy

of distributions of different sizes, such is the case when we

examine the various periods of a software system as new

files are added or removed. It is interesting to note that us-

ing normalized static entropy H , we could compare the en-

tropy between different software projects. For example, we

could compare the evolution of two operating systems side

by side or even an operating system and a window manager.

The Normalized Static Entropy, H , depends on the num-

ber of files in a software system, as it depends on n. For

many software system there exist files that are rarely modi-

fied, for example, platform and utility files [21]. Developers

do not need to worry about tracking changes to these files,

since the probability of them changing is very low. To pre-

vent these files from reducing the normalized entropy mea-

sure, we defined Adaptive Sizing Entropy (H ′) which is a

working set normalized entropy. In H ′ instead of dividing

by the actual current number of files in the software system,

we divide by the number of recently modified files. We de-

fine the set of recently modified files using two different

criteria:

1. Using Time: The set of recently modified files is all files

modified in the preceding x months, including the current

month. In our experiments we used 6 months. Other val-

ues could be used. Our choice of six months as a window

originates from our belief and our experience developing

large software systems. We found that usually what is hot

(relevant and development focus) at the beginning of the

year tends not to be a concern towards the end of the year.

This is mainly due to the fact that throughout the earlier

part of the year most of the problems and features related

to these files are addressed.

2. Using Previous Periods: The set of recently modified

files is all files modified in the preceding x periods, in-

cluding the current period. We don’t show results from

using this model in this paper but in our experiments we

used 6 periods in the past to build the working set of files.

An adaptive sizing entropy H ′ usually produces a higher

entropy than a traditional normalized entropy H , since for

most software systems there exists a large number of files

that are rarely modified and would not exist in the recently

modified set. Thus the entropy would be divided by a

smaller number. In some rare cases, the software system

may have undergone several changes/refactorings. In these

cases, it may happen that the size of the working set is larger

than the actual number of the files that currently exist in the

software system, since many files may have been removed

recently as part of a cleanup [15]. In these rare cases, an

adaptive sizing entropy H ′ will be larger than a traditional

normalized entropy H .

6 File Code Change Model
The two previously presented models in Sections 4 and 5

produce a value which quantifies the entropy for each pe-

riod in the lifetime of a software system. We now extend

the ECC model to deal with assigning a complexity value

to a file. By assigning a complexity value to a file we can

later (see Section 7) study the ability of our entropy mod-

els in predicting the incidence of faults in specific files or

subsystems.

We believe that files that are modified during periods of

high change complexity, as determined by our ECC Model,

will have a higher tendency to contain faults. Developers,

performing changes during these periods, will not have a

good grasp of the latest changes to the source code and the

state of the project. We define a History Complexity Met-
ric (HCM) for each file in a system. The HCM assigns

to a file the effect of the change complexity of a period, as
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calculated by our ECC model. A file that has been modified

during periods of high complexity/entropy will have a high

HCM value to indicate that the file will tend to be more

prone to faults.

Given a period i, with entropy Hi where a set of files, Fi

are modified with a probability pj for each file j ∈ Fi, we

define History Complexity Period Factor (HCPFi) for a

file j during period i as:
HCPFi(j) =

{
cij ∗Hi, j ∈ Fi

0, otherwise

cij is the contribution of entropy for period i (Hi) as-

signed to file j. We explore three HCPF s by varying the

definition of cij :

1. HCPF 1 with cij = 1: This factor assigns the full com-

plexity value (Hi) to every modified file in a period (j ∈
Fi). This is the simplest model and assumes that all files

changed during a period are affected by the full complex-

ity of the period.

2. HCPF 2 with cij = pj : This factor assigns a percentage

of the complexity associated to a period (Hi). The per-

centage is the probability of file j being modified during

period i. This metric assumes that files are affected based

on their frequency of change during the period. The more

a file is changed, the more it is affected by the complexity

of a period.

3. HCPF 3 with cij = 1
|Fi| : This factor distributes evenly

the complexity associated to a period (Hi) between all

modified files in that period. This metric assumes that files

are equally affected with the complexity of a period. As

more files are changed, the effect of a period’s complexity

on every changed file is reduced.

More elaborate definitions of HCPF are possible but for

this paper we chose to use these intuitive and simple defini-

tions.

Now we define the History Complexity Metric
(HCM ) for a file j over a set of evolution periods {a, .., b}
as:

HCM{a,..,b}(j) =
∑

i∈{a,..,b}
HCPFi(j)

We use this simple HCM definition to indicate that

complexity associated with a file keeps on increasing over

time, as a file is modified. Using this simple HCM and

our three HCPF definitions, we have three HCM metrics

namely: HCM1s, HCM2s, and HCM3s, where the s su-

perscript indicates the use of the simple HCM formula. In

addition, we define a more elaborate HCM1d, which em-

ploys a decay model using the simplest HCPF (HCPF 1).

In HCM1d, earlier modifications would have their contri-

bution to the complexity of the file reduced in an exponen-

tial fashion over time. Similar decay approaches have been

used in [11, 17].

HCM{a,..,b}(j) =
∑

i∈{a,..,b}
eφ∗(Ti−Current T ime)HCPF 1

i (j),

where Ti is the end time of period i and φ is the decay factor.

We define the HCM for a subsystem (i.e. directory) S
over a set of evolution periods {a, .., b} as the sum of the

HCMs of all the files that are part of that subsystem:

HCM{a,..,b}(S) =
∑
j∈S

HCM{a,..,b}(j)

If a file moves subsystems during a studied evolution pe-

riod, the moved file would contribute to the HCM of its

old subsystem till the time it was moved. Then it would

contribute to its new subsystem afterwards.

Using the 4 defined HCMs at the subsystem level

(HCM1s, HCM2s, HCM3s, and HCM1d), we study

whether our entropy HCM metric is a better predictor of

faults compared to predictors based on the number of prior

modifications or faults. We chose to compare the perfor-

mance of our model against predictors using prior faults

and modifications since prior research shows that these two

types of predictors outperform other types predictors (e.g.
ones based on complexity metrics) [2, 11, 20].

7 Case Study
We performed three experiments to predict future faults

in the subsystems of large software systems:

1. Modifications vs. Faults: We compare the performance

of predictors based on prior modifications with ones based

on prior faults.

2. Modifications vs. Entropy: We compare the perfor-

mance of predictors based on prior modifications with

ones based on our HCM entropy models.

3. Faults vs. Entropy: We compare the performance of

predictors based on prior faults with ones based on our

HCM entropy models.

Application Application Start Subsystem Prog.

Name Type Date Count (low Lang.

level directories)

NetBSD OS March 1993 235 C

FreeBSD OS June 1993 152 C

OpenBSD OS Oct 1995 265 C

Postgres DBMS July 1996 280 C

KDE Windowing April 1997 108 C++

System

KOffice Productivity April 1998 158 C++

Suite

Table 1. Summary of the studied systems
Table 1 summarizes the details of the software systems

we studied in our case study. We based our analysis on the

first five years in the life of each studied open source project.

We ignore the first year in the source control repository, due

to the special startup nature of code development during that

year as each project initializes its repository and processes.

Our case study follows an approach similar to [11], in par-

ticular:
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1. We build Statistical Linear Regression (SLR Model)
models for every software system in Table 1. These

SLR Models use data from the second and third years

from the source control repository to predict faults in the

fourth and fifth years of the software project. In total, we

build six SLR models: 4 models for the HCM entropy

metrics, one for prior faults, and one for prior modifica-

tions. All the built SLR models predict faults in subsys-

tems during the fourth and fifth years.

2. We measure the amount of error in each model and com-

pare the error between models. In particular, we compare

the performance of

(a) modifications versus fault models.

(b) modifications versus entropy models.

(c) faults versus entropy models.

3. We perform statistical tests to determine whether the dif-

ference in error is statistically significant or simply due to

the natural variability of the studied data.

In the following subsections, we elaborate on these steps.

7.1 Linear Regression Models
To perform our experiments, we built six SLR models for

each software system in Table 1. The built SLR models have

the following form, y = β0 +β1x, where y is the dependant

variable and x is the predictor/independent variable.

For each model, y represents the number of faults in a

subsystem. The number of faults is the number of Fault Re-

pairing (FR) modifications which occurred in the subsystem

during the fourth and fifth years. x represent specific met-

rics for each subsystem in the second and third years. Ta-

ble 2 describes the value of x in each of the six SLR models.

SLR Model Value of x
Modelm number of modifications for a subsys-

tem.

Modelf number of faults for a subsystem.

ModelHCM1s HCM1s value for a subsystem.

ModelHCM2s HCM2s value for a subsystem.

ModelHCM3s HCM3s value for a subsystem.

ModelHCM1d HCM1d value for a subsystem.

Table 2. Value of x used to predict y (faults in
years 4 and 5) for each subsystem.

All the HCM models are based on the ECC bursty

model that has a one hour quiet time between bursts. The

HCM1d uses a decay factor (φ) of 10, which minimizes the

error for the SLR ModelHCM1d when correlating HCM1d

values in the second year to faults in the third year. To en-

sure the mathematical validity of our SLR models, we use

the value of y and the mathematical log of the x values, in-

stead of x. The use of a log transformation (e.g. log(number

of modifications)) stabilizes the variance in the error for

each data point in the SLR model, a requirement for lin-

ear regression models which assume that the error variance

is always constant [35]. The SLR model parameters (β0 and

β1) are estimated using the fault data from the second and

third years. Table 3 shows the R2 statistic which measures

the quality of the fit. The better the fit, the higher the R2

value. A zero R2 indicates that there exists no relationship

between the dependant (y) and independent (x) variables.

We notice that the C systems have a better fit in comparison

to the C++ systems (i.e. KDE and KOffice) for all the SLR

models. The SLR ModelHCM1d has the best fit of all the

SLR models for all the studied systems.

App R2
f R2

m R2
1s R2

2s R2
3s R2

1d

NetBSD 0.57 0.55 0.54 0.53 0.61 0.71

FreeBSD 0.65 0.48 0.57 0.58 0.59 0.65

OpenBSD 0.45 0.44 0.54 0.55 0.54 0.57

Postgres 0.57 0.36 0.49 0.51 0.60 0.61

KDE 0.31 0.26 0.28 0.29 0.36 0.57

KOffice 0.30 0.27 0.33 0.33 0.27 0.41

Table 3. The R2 statistic for the SLR Models

7.2 Prediction Error for the SLR Models
Once we estimate β0 and β1 for the SLR Models for

every system, we measure the amount of prediction error.

Mathematically for every model with β0 and β1 as parame-

ters, we get a ŷi for every xi, where ŷi is the number of pre-

dicted faults in the subsystem in the fourth and fifth years:

ŷi = β0 + β1xi

We define the absolute prediction error as ei =| ŷi −
yi |, where yi is the actual number of faults that occurred in

subsystem i during the fourth and fifth years.

Thus the total prediction error of an SLR model is:

E =
∑n

i=1 e2
i , for all n subsystems in the software sys-

tem under study. To achieve the goals of our study, we need

to compare the prediction errors for the SLR models. For

example, to determine if prior modifications are better than

prior faults in predicting faults, we need to compare Em

with Ef , where Em and Ef are the total prediction error

for the SLR Modelm and SLR Modelf respectively. The

best model is the one with the lowest total prediction error.

7.3 Statistical Significance of Differences
We use statistical paired tests to study the significance of

the difference in prediction error between two SLR Models

(SLR ModelA and SLR ModelB). Our statistical analysis

assumes a 5% level of significance (i.e. α = 0.05). We

formulate the following test hypotheses:

H0 : μ(eA,i − eB,i) = 0, HA : μ(eA,i − eB,i) �= 0,
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where μ(eA,i − eB,i) is the population mean of the

difference between the absolute error of each subsystem.

If the null hypothesis H0 holds (i.e. the derived p-value

> α = 0.05), then the difference is not significant. If the p-

value < α = 0.05 then we can with high probability reject

H0.

For our analysis, we conducted parametric and non-

parametric paired statistical tests. For a parametric test, we

used a paired t-test. For a non-parametric test, we used a

paired Wilcoxon signed rank test which is resilient to strong

departures from the t-test assumptions [29]. We studied

the results of both tests to determine if there are any dif-

ferences between the results reported by both types of tests.

In particular for non-significant differences reported by the

parametric t-test, we checked if the differences are signif-

icant according to the non-parametric Wilcoxon test. The

Wilcoxon test helps ensure that non-significant results are

not simply due to the departure of the data from the t-test

assumptions. For the results presented below, both tests are

consistent so we only report the values of the t-test.

7.4 Comparing Models
7.4.1 Modifications vs. Faults

App Em − Ef (%) P (H0 holds)

NetBSD +11.7 (+04%) 0.67

FreeBSD +71.2 (+48%) 0.00

OpenBSD +03.7 (+02%) 0.84

Postgres +47.2 (+49%) 0.02

KDE +26.3 (+07%) 0.32

KOffice +26.3 (+04%) 0.51

Table 4. The difference in prediction error
and t-test results for the SLR Modelm and
SLR Modelf for the studied systems

We want to determine if prior modifications are bet-

ter than prior faults in predicting future faults; there-

fore, we compare the total prediction error for both the

SLR Modelm and SLR Modelf . The second column

in Table 4 shows the percentage of difference in predic-

tion error when the SLR Modelm is used instead of

SLR Modelf . The third column shows the results for the

t-test which determines if the difference is statistically sig-

nificant or if it is due to the natural variability of the data.

The t-test on paired observations of absolute error was sig-

nificant at better than 0.02 for the FreeBSD and Postgres

systems (marked in grey in Table 4). For these two sys-

tems, we are over 98% confident that the increase in pre-

diction error between SLR Modelf and SLR Modelm is

statistically significant. Whereas for the other systems, the

increase is not statistically significant indicating the perfor-

mance of both models (prior faults or prior modifications)

is similar.
These results indicate that prior faults should be used to

predict faults instead of using prior modifications. Using a

prior modifications predictor may cause an approximately

50% rise in prediction error over using a prior faults pre-

dictor.

7.4.2 Modifications vs. Entropy

App EHCM3s − Em (%) P (H0 holds) EHCM1d − Em (%) P (H0 holds)

NetBSD -39.8 (-14%) 0.03 -106.5 (-36%) 0.00

FreeBSD -47.4 (-22%) 0.02 -72.0 (-33%) 0.00

OpenBSD -40.4 (-18%) 0.01 -53.8 (-23%) 0.00

Postgres -52.7 (-37%) 0.04 -56.9 (-40%) 0.03

KDE -52.1 (-13%) 0.01 -165.2 (-42%)] 0.00

KOffice +03.3 (+01%) 0.83 -69.9 (-18%) 0.01

Table 5. The difference in prediction er-
ror and t-test results for the SLR Modelm,
SLR ModelHCM3s, and SLR ModelHCM1d

We want to determine the value of the additional

analysis in deriving our HCM entropy metrics which

are derived from the number of modifications. We now

compare the prediction quality of modifications and

HCM metrics. We chose the simple SLR ModelHCM3s

and the decay SLR ModelHCM1d to compare with the

SLR Modelm. Both HCM models were the top two

performing HCM models based on the R2 statistic shown

in Table 3. The second and fourth columns in Table 5

shows the percentage of difference in prediction error when

the SLR ModelHCM3s, or the SLR ModelHCM1d are

used instead of SLR Modelm respectively. The third

and fifth columns in Table 5 show the results for the

t-test which determines if the difference in prediction

error is statistically significant. Greyed cells in Table 5

indicate that the shown results are statistically significant

at α = 0.05. All results are significant except for the

SLR ModelHCM3s, for the KOffice system where there is

a negligible, though not statistically significant, increase in

prediction error (1%) for the simple HCM model.

These results indicate that both HCM (simple and decay)

based models are statistically likely to outperform prior

modifications in predicting future faults. The decrease in

prediction error when using an HCM model ranges be-

tween 13% to 42% (32% on average) when compared to

the prior modifications model.

7.4.3 Faults vs. Entropy
We have shown that our entropy metrics outperform prior

modifications but prior faults outperform prior modifica-

tions in predicting faults. So we would like to study the

performance of our entropy metric in comparison to prior

faults (the best predictor up to now). We chose again
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App EHCM3s − Ef (%) P (H0 holds) EHCM1d − Ef (%) P (H0 holds)

NetBSD -28.14 (-10%) 0.26 -94.84 (-34%) 0.00

FreeBSD +23.81 (+16%) 0.30 -00.79 (-01%) 0.97

OpenBSD -36.59 (-16%) 0.02 -50.05 (-22%) 0.01

Postgres -05.53 (-06%) 0.71 -09.71 (-10%) 0.55

KDE -25.72 (-07%) 0.32 -138.87 (-38%) 0.01

KOffice +19.20 (+05%) 0.34 -54.07 (-15%) 0.04

Table 6. Results for the SLR Modelf ,
SLR ModelHCM3s, and SLR ModelHCM1d

the top two performing models (SLR ModelHCM3s and

SLR ModelHCM1d) based on the R2 statistic in Table 3.

The second and fourth columns in Table 6 shows the per-

centage of difference in prediction error when the HCM
models (SLR ModelHCM3s or the SLR ModelHCM1d)

are used instead of SLR Modelf respectively. The third

and fifth columns in Table 6 show the results for the

t-test which determines the statistical significance of the

difference in prediction error. Greyed cells in Table 6

indicate that the difference between prediction errors

is statistically significant. For the SLR ModelHCM3s

model, only the cell for the OpenBSD system is grey

indicating that the improvement in prediction error for

this system is statistically significant. For OpenBSD, the

simple HCM model statistically outperforms the prior

faults predictor by 16%. The results for the other systems

varies but the results are not statistically significant. For

the SLR ModelHCM1d, all cells except the ones corre-

sponding to FreeBSD and Postgres are grey. These results

indicate that SLR ModelHCM1d outperforms the number

of prior faults in predicting future faults for all systems

except for the FreeBSD and Postgres where the results

are not statistically significant. For these two systems,

even though the HCM decay model performs better, the

performance improvement are not statistically significant.

These results indicate that models based on our entropy

metrics are as good as (or even better) predictors of faults

in comparison to prior faults for most studied software

systems. The decrease in prediction error using an HCM

model ranges between 15% to 38% when compared to the

prediction error of a model based on prior faults.

Based on our three experiments we note that in almost all

cases, except for EHCM1d vs. Em, no single model statis-

tically outperforms all other models for all systems. Fault

predictors are usually project specific and vary in perfor-

mance from one project to the next (similar observations on

commercial systems were noted by Nagappan et al. [27]).

Nevertheless, we can discern the following general results:

1. Prior faults are better predictors of future faults than the

prior modifications. These results on open source systems

are similar to prior results reported on industrial systems

by Graves et al. [11].

2. The HCM based predictors are better predictors of fu-

ture faults than prior modifications or prior faults. These

results are very promising since although many compa-

nies may not have a complete history of their faults, they

often have a detailed record of code changes, as changes

are readily available and automatically collected in code

repositories. In practice, one can build multivariate mod-

els which combine our complex metric, prior faults, prior

modifications, and other available complexity metrics in-

stead of using a single predictor.

7.5 Threats to Validity

In our analysis we used the number of Fault Repairing

(FR) modifications as recorded by the source control sys-

tem and determined using an automatic lexical classifica-

tion technique. In [13], we compared our automatic classi-

fications to classifications done by six professional software

developers on the same data used in this paper. Our anal-

ysis shows a high correlation (σ > .8) between a human

and an automated classifier. When the humans were divided

into two groups and were asked to correlate the same data,

the inter-human correlation is as high as the human and au-

tomatic classification. In short, we feel that our analysis

shows that the used data is as accurate as possible given

the limited information available about the studied projects.

Alternatively, we could have used data from defect manage-

ment systems. Unfortunately, several of the studied systems

do not have a defect tracking system. Also if we had access

to defect systems, we could not map defects to particular

parts of the code unless the modification records referenced

every defect in the tracking system.

In our analysis we do not consider faults that may have

been reported but never fixed, since we used the fault fixes

instead of using the reported fault counts. There may exist

subsystems in which a large number of faults have been re-

ported yet they were never fixed during our period of anal-

ysis. We believe the chance of this occurring is low nev-

ertheless it is a possibility. Furthermore, the number of

fixed faults is likely to correlate with the number of reported

faults.

Although we examined a large number of software sys-

tems, the systems used in our study are all open source sys-

tems which have several interesting characteristics that may

not hold for commercial systems. The most notable char-

acteristics are: a) The distribution of the development team

around the world with members rarely meeting in person

and relying heavily on electronic communications such as

emails and newsgroups instead of in-person formal and in-

formal (e.g., water cooler and lunch time conversations). b)
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The self selective nature of the team. Developers volunteer

to work on the project and are free in picking which areas to

contribute to. All these characteristics limit the generaliza-

tion of our results. We believe that our results are generaliz-

able to large open source systems with an extended network

of developers spread out throughout the world. Our results

are likely to generalize as well to commercial software sys-

tems which are developed by distributed teams, and proba-

bly even to commercial systems developed in a single loca-

tion. We need to study a few commercial systems, before

we can confidently generalize our results.

Finally, demonstrating that a complex code change pro-

cess causes the appearance of faults requires more than sim-

ply showing statistical significant relations, instead we need

to show temporal precedence as well. We need to show

that the complex code change process caused the appear-

ance of faults in the software system. Unfortunately, this

is a rather hard task and may be difficult to demonstrate,

as we believe that the complexity in the code change pro-

cess interacts with all the other project facets in a feedback

loop. A complex code base requires complex change pro-

cess to maintain it and a complex change process produces a

complex code base. Furthermore, a complex set of require-

ments may cause the change process to become a complex

process which in turn may cause the appearance of faults

in the software. Therefore to show true causality we would

need to build a richer and detailed theory which can measure

the effect of the feedback loop on the interacting facets in a

software project. To validate this theory, we would need to

perform controlled experiments with subjects. The results

of such experiments would have a much weaker external

validity (i.e. would be hard to generalize). Our results do

not show a causality relation but intuitively we believe that

a complex code change process negatively affects the soft-

ware system.

8 Related Work
Barry et al. used a volatility ranking system and a time

series analysis to identify evolution patterns in a retail soft-

ware system based on the source modification records [3].

Eick et al. studied the concept of code decay and used the

change history to create visualization of the change history

of a project [9, 10]. Graves et al. showed that the number

of modifications to a file is a good predictor of the fault po-

tential of the file [11]. Leszak et al. showed that there is

a significant correlation between the percentage of change

in reused code and the number of defects found in those

changed components [22]. Mockus et al. used source mod-

ification records to assist in predicting the development ef-

forts in large software systems for AT&T [24]. Previous

research has focused primarily on studying the source code

repositories of commercial software systems for predicting

faults or required effort. We believe that this focus on com-

mercial source systems limits the applicability of the results

since the findings may depend on the studied systems or

organizations. Using open source systems we can study a

much larger set of systems to validate our findings and are

more confident about the generality of our results.

Whereas our model quantifies the complexity of the code

change process as calculated from the source code modifi-

cation statistics, previous studies [1, 4, 6, 12, 36] quantify

the complexity of the source code. For example, in previ-

ous models the distribution of special tokens in the source

code or the control flow structure of the source are used to

calculate the entropy. Our work aims to compute a mea-

sure of the complexity of the code change process instead

of just computing the complexity of the source code. We

conjecture that detecting complex code changes will serve

as an early warning measure to help prevent the occurrence

of faults in a software system.

Outside of the software engineering domain, the mea-

sure of entropy has been used to improve the performance

of Just In Time compilers and profilers [31]. It has been

used for edge detection and image searching in large image

databases [8]. Also, it has been used for text classification

and several text based indexing techniques [7].

9 Conclusion
We conjecture that: A complex code change process neg-

atively affects its product, the software system. The more
complex changes to a file, the higher the chance the file will
contain faults. We present models to quantify the complex-

ity over time using historical code changes instead of source

code attributes. Through a case study on six large open

source projects, we show that the number of prior faults is a

better predictor of future faults in comparison to the number

of prior modifications. We also demonstrate that predictors

based on our change complexity models are better predic-

tors of future faults in large software systems in contrast to

using prior modifications or prior faults.
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