
Invariant-Based Automatic Testing of AJAX User Interfaces

Ali Mesbah
Software Engineering Research Group

Delft University of Technology

The Netherlands

A.Mesbah@tudelft.nl

Arie van Deursen
Software Engineering Research Group

Delft University of Technology

The Netherlands

Arie.vanDeursen@tudelft.nl

Abstract

AJAX-based Web 2.0 applications rely on stateful asyn-
chronous client/server communication, and client-side run-
time manipulation of the DOM tree. This not only makes
them fundamentally different from traditional web applica-
tions, but also more error-prone and harder to test.

We propose a method for testing AJAX applications au-
tomatically, based on a crawler to infer a flow graph for
all (client-side) user interface states. We identify AJAX-
specific faults that can occur in such states (related to DOM
validity, error messages, discoverability, back-button com-
patibility, etc.) as well as DOM-tree invariants that can
serve as oracle to detect such faults. We implemented our
approach in ATUSA, a tool offering generic invariant check-
ing components, a plugin-mechanism to add application-
specific state validators, and generation of a test suite cov-
ering the paths obtained during crawling. We describe
two case studies evaluating the fault revealing capabilities,
scalability, required manual effort and level of automation
of our approach.

1 Introduction

Recently, many new web trends have appeared un-

der the Web 2.0 umbrella, changing the web significantly,

from read-only static pages to dynamic user-created con-

tent and rich interaction. Many Web 2.0 sites rely heav-

ily on AJAX (Asynchronous JAVASCRIPT and XML) [8], a

prominent enabling technology in which a clever combina-

tion of JAVASCRIPT and Document Object Model (DOM)

manipulation, along with asynchronous client/server delta-

communication [16] is used to achieve a high level of user

interactivity on the web.

With this new change comes a whole set of new chal-

lenges, mainly due to the fact that AJAX shatters the

metaphor of a web ‘page’ upon which many classic web

technologies are based. One of these challenges is testing

such applications [6, 12, 14]. With the ever-increasing de-

mands on the quality of Web 2.0 applications, new tech-

niques and models need to be developed to test this new

class of software. How to automate such a testing technique

is the question that we address in this paper.

In order to detect a fault, a testing method should meet

the following conditions [18, 20]: reach the fault-execution,

which causes the fault to be executed, trigger the error-

creation, which causes the fault execution to generate an

incorrect intermediate state, and propagate the error, which

enables the incorrect intermediate state to propagate to the

output and cause a detectable output error.

Meeting these reach/trigger/propagate conditions is

more difficult for AJAX applications compared to classical

web applications. During the past years, the general ap-

proach in testing web applications has been to request a

response from the server (via a hypertext link) and to an-

alyze the resulting HTML. This testing approach based on

the page-sequence paradigm has serious limitations meet-

ing even the first (reach) condition on AJAX sites. Recent

tools such as Selenium1 use a capture/replay style for test-

ing AJAX applications. Although such tools are capable of

executing the fault, they demand a substantial amount of

manual effort on the part of the tester.

Static analysis techniques have limitations in revealing

faults which are due to the complex run-time behavior of

modern rich web applications. It is this dynamic run-time

interaction that is believed [10] to make testing such appli-

cations a challenging task. On the other hand, when apply-

ing dynamic analysis on this new domain of web, the main

difficulty lies in detecting the various doorways to different

dynamic states and providing proper interface mechanisms

for input values.

In this paper, we discuss challenges of testing AJAX

(Section 3) and propose an automated testing technique for

finding faults in AJAX user interfaces. We extend our AJAX

crawler, CRAWLJAX (Sections 4–5), to infer a state-flow

1 http://selenium.openqa.org

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 210

graph for all (client-side) user interface states. We iden-

tify AJAX-specific faults that can occur in such states and

generic and application-specific invariants that can serve as

oracle to detect such faults (Section 6). From the inferred

graph, we automatically generate test cases (Section 7) that

cover the paths discovered during the crawling process. In

addition, we use our open source tool called ATUSA (Sec-

tion 8), implementing the testing technique, to conduct a

number of case studies (Section 9) to discuss (Section 10)

and evaluate the effectiveness of our approach.

2 Related Work

Modern web interfaces incorporate client-side scripting

and user interface manipulation which is increasingly sep-

arated from server-side application logic [23]. Although

the field of rich web interface testing is mainly unexplored,

much knowledge may be derived from two closely related

fields: traditional web testing and GUI application testing.

Traditional Web Testing. Benedikt et al. [3] present

VeriWeb, a tool for automatically exploring paths of multi-

page web sites through a crawler and detector for abnor-

malities such as navigation and page errors (which are con-

figurable through plugins). VeriWeb uses SmartProfiles to

extract candidate input values for form-based pages. Al-

though VeriWeb’s crawling algorithm has some support for

client-side scripting execution, the paper provides insuffi-

cient detail to determine whether it would be able to cope

with modern AJAX web applications. VeriWeb offers no

support for generating test suites as we do in Section 7.

Tools such as WAVES [10] and SecuBat [11] have been

proposed for automatically assessing web application secu-

rity. The general approach is based on a crawler capable of

detecting data entry points which can be seen as possible

points of security attack. Malicious patterns, e.g., SQL and

XSS vulnerabilities, are then injected into these entry points

and the response from the server is analyzed to determine

vulnerable parts of the web application.

A model-based testing approach for web applications

was proposed by Ricca and Tonella [19]. They introduce

ReWeb, a tool for creating a model of the web application

in UML, which is used along with defined coverage crite-

ria to generate test-cases. Another approach was presented

by Andrews et al. [1], who rely on a finite state machine

together with constraints defined by the tester. All such

model-based testing techniques focus on classical multi-

page web applications. They mostly use a crawler to infer

a navigational model of the web. Unfortunately, traditional

web crawlers are not able to crawl AJAX applications [14].

Logging user session data on the server is also used

for the purpose of automatic test generation [7, 21]. This

approach requires sufficient interaction of real web users

with the system to generate the necessary logging data.

Session-based testing techniques are merely focused on

synchronous requests to the server and lack the complete

state information required in AJAX testing. Delta-server

messages [16] from the server response are hard to analyze

on their own. Most of such delta updates become meaning-

ful after they have been processed by the client-side engine

on the browser and injected into the DOM.

Exploiting static analysis of server-side implementation

logic to abstract the application behavior is another testing

approach. Artzi et al. [2] propose a technique and a tool

called Apollo for finding faults in PHP web applications that

is based on combined concrete and symbolic execution. The

tool is able to detect run-time errors and malformed HTML

output. Halfond and Orso [9] present their static analysis

of server-side Java code to extract web application request

parameters and their potential values. Such techniques have

limitations in revealing faults that are due to the complex

run-time behavior of modern rich web applications.

GUI Application Testing. Reverse engineering a

model of the desktop (GUI), to generate test cases has been

proposed by Memon et al. [13]. AJAX applications can

be seen as a hybrid of desktop and web applications [16],

since the user interface is composed of components and

the interaction is event-based. However, AJAX applications

have specific features, such as the asynchronous client/-

server communication and dynamic DOM-based user inter-

face, which make them different from traditional GUI ap-

plications [12], and therefore require other testing tools and

techniques.

Current AJAX Testing Approaches. The server-side

of AJAX applications can be tested with any conventional

testing technique. On the client, testing can be performed

at different levels. Unit testing tools such as JsUnit2 can

be used to test JAVASCRIPT on a functional level. The

most popular AJAX testing tools are currently capture/re-

play tools such as Seleninum, WebKing3, and Sahi4, which

allow DOM-based testing by capturing events fired by user

(tester) interaction. Such tools have access to the DOM,

and can assert expected UI behavior defined by the tester

and replay the events. Capture/replay tools demand, how-

ever, a substantial amount of manual effort on the part of

the tester [13].

Marchetto et al. [12] have recently proposed an approach

for state-based testing of AJAX applications. They use

traces of the application to construct a finite state machine.

Sequences of semantically interacting events in the model

are used to generate test cases once the model is refined by

the tester. In our approach, we crawl the AJAX application,

simulating real user events on the user interface and infer

the abstract model automatically.

2 http://jsunit.net
3 http://www.parasoft.com/jsp/products/home.jsp?product=WebKing
4 http://sahi.co.in/w/

211

3 AJAX Testing Challenges

In AJAX applications, the state of the user interface is de-

termined dynamically, through event-driven changes in the

browser’s DOM that are only visible after executing the cor-

responding JAVASCRIPT code. The resulting challenges can

be explained through the reach/trigger/propagate conditions

as follows.

Reach. The event-driven nature of AJAX presents the

first serious testing difficulty, as the event model of the

browser must be manipulated instead of just constructing

and sending appropriate URLs to the server. Thus, sim-

ulating user events on AJAX interfaces requires an envi-

ronment equipped with all the necessary technologies, e.g.,

JAVASCRIPT, DOM, and the XMLHttpRequest object used

for asynchronous communication.

One way to reach the fault-execution automatically for

AJAX is by adopting a web crawler, capable of detecting

and firing events on clickable elements on the web interface.

Such a crawler should be able to exercise all user interface

events of an AJAX site, crawl through different UI states and

infer a model of the navigational paths and states. We pro-

posed such a crawler for AJAX, discussed in our previous

work [14], which will be briefly explained in Section 4.

Trigger. Once we are able to derive different dynamic

states of an AJAX application, possible faults can be trig-

gered by generating UI events. In addition input values can

cause faulty states. Thus, it is important to identify input

data entry points, which are primarily comprised of DOM

forms. In addition, executing different sequences of events

can also trigger an incorrect state. Therefore, we should be

able to generate and execute different event sequences.

Propagate. In AJAX, any response to a client-side

event is injected into the single-page interface and therefore,

faults propagate to and are manifested at the DOM level.

Hence, access to the dynamic run-time DOM is a necessity

to be able to analyze and detect the propagated errors.

Automating the process of assessing the correctness of

test case output is a challenging task, known as the oracle

problem [24]. Ideally a tester acts as an oracle who knows

the expected output, in terms of DOM tree, elements and

their attributes, after each state change. When the state

space is huge, it becomes practically impossible. In prac-

tice, a baseline version, also known as the Gold Standard

[5], of the application is used to generate the expected be-

havior. Oracles used in the web testing literature are mainly

in the form of HTML comparators [22] and validators [2].

4 Deriving AJAX States

Here, we briefly outline our AJAX crawling technique

and tool called CRAWLJAX [14]. CRAWLJAX can exer-

cise client side code, and identify clickable elements that

change the state within the browser’s dynamically built

DOM. From these state changes, we infer a state-flow
graph, which captures the states of the user interface, and

the possible event-based transitions between them.

We define an AJAX UI state change as a change on the

DOM tree caused either by server-side state changes prop-

agated to the client, or client-side events handled by the

AJAX engine. We model such changes by recording the

paths (events) to these DOM changes to be able to navigate

between the different states.

Inferring the State Machine. The state-flow graph

is created incrementally. Initially, it only contains the root

state and new states are created and added as the applica-

tion is crawled and state changes are analyzed. The follow-

ing components participate in the construction of the graph:

CRAWLJAX uses an embedded browser interface (with dif-

ferent implementations: IE, Mozilla) supporting technolo-

gies required by AJAX; A robot is used to simulate user

input (e.g., click, mouseOver, text input) on the embedded

browser; The finite state machine is a data component main-

taining the state-flow graph, as well as a pointer to the cur-

rent state; The controller has access to the browser’s DOM

and analyzes and detects state changes. It also controls

the robot’s actions and is responsible for updating the state

machine when relevant changes occur on the DOM. The

algorithm used by these components to actually infer the

state machine is discussed below: the full algorithm along

with its testing-specific extensions is shown in Algorithms

1 and 2 (Section 8).

Detecting Clickables. CRAWLJAX implements an

algorithm which makes use of a set of candidate ele-
ments, which are all exposed to an event type (e.g., click,

mouseOver). In automatic mode, the candidate clickables

are labeled as such based on their HTML tag element name

and attribute constraints. For instance, all elements with a

tag div, a, and span having attribute class="menuitem"
are considered as candidate clickable. For each candidate

element, the crawler fires a click on the element (or other

event types, e.g., mouseOver), in the embedded browser.

Creating States. After firing an event on a candidate

clickable, the algorithm compares the resulting DOM tree

with the way as it was just before the event fired, in or-

der to determine whether the event results in a state change.

If a change is detected according to the Levenshtein edit

distance, a new state is created and added to the state-flow

graph of the state machine. Furthermore, a new edge is cre-

ated on the graph between the state before the event and the

current state.

Processing Document Tree Deltas. After a new state

has been detected, the crawling procedure is recursively

called to find new possible states in the partial changes made

to the DOM tree. CRAWLJAX computes the differences be-

tween the previous document tree and the current one, by

means of an enhanced Diff algorithm to detect AJAX par-

212

tial updates which may be due to a server request call that

injects new elements into the DOM.

Navigating the States. Upon completion of the recur-

sive call, the browser should be put back into the previous

state. A dynamically changed DOM state does not regis-

ter itself with the browser history engine automatically, so

triggering the ‘Back’ function of the browser is usually in-

sufficient. To deal with this AJAX crawling problem, we

save information about the elements and the order in which

their execution results in reaching a given state. We then

can reload the application and follow and execute the ele-

ments from the initial state to the desired state. CRAWLJAX

adopts XPath to provide a reliable, and persistent element

identification mechanism. For each state changing element,

it reverse engineers the XPath expression of that element

which returns its exact location on the DOM. This expres-

sion is saved in the state machine and used to find the ele-

ment after a reload. Note that because of side effects of the

element execution and server-side state, there is no guaran-

tee that we reach the exact same state when we traverse a

path a second time. It is, however, as close as we can get.

5 Data Entry Points

In order to provide input values on AJAX web applica-

tions, we have adopted a reverse engineering process, sim-

ilar to [3, 10], to extract all exposed data entry points. To

this end, we have extended our crawler with the capability

of detecting DOM forms on each newly detected state (this

extension is also shown in Algorithm 1).

For each new state, we extract all form elements from

the DOM tree. For each form, a hashcode is calculated on

the attributes (if available) and the HTML structure of the

input fields of the form. With this hashcode, custom values

are associated and stored in a database, which are used for

all forms with the same code.

If no custom data fields are available yet, all data, in-

cluding input fields, their default values, and options are

extracted from the DOM form. Since in AJAX forms are

usually sent to the server through JAVASCRIPT functions,

the action attribute of the form does not always correspond

to the server-side entry URL. Also, any element (e.g., A,

DIV) could be used to trigger the right JAVASCRIPT func-

tion to submit the form. In this case, the crawler tries to

identify the element that is responsible for form submission.

Note that the tester can always verify the submit element

and change it in the database, if necessary. Once all nec-

essary data is gathered, the form is inserted automatically

into the database. Every input form provides thus a data

entry point and the tester can later alter the database with

additional desired input values for each form.

If the crawler does find a match in the database, the input

values are used to fill the DOM form and submit it. Upon

submission, the resulting state is analyzed recursively by

the crawler and if a valid state change occurs the state-flow

graph is updated accordingly.

6 Testing AJAX States Through Invariants

With access to different dynamic DOM states we can

check the user interface against different constraints. We

propose to express those as invariants on the DOM tree,

which we thus can check automatically in any state. We

distinguish between invariants on the DOM-tree, between

DOM-tree states, and application-specific invariants. Each

invariant is based on a fault model [5], representing AJAX-

specific faults that are likely to occur and which can be cap-

tured through the given invariant.

6.1 Generic DOM Invariants

Validated DOM. Malformed HTML code can be the

cause of many vulnerability and browser portability prob-

lems. Although browsers are designed to tolerate HTML

malformedness to some extent, such errors have led to

browser crashes and security vulnerabilities [2]. All cur-

rent HTML validators expect all the structure and con-

tent be present in the HTML source code. However, with

AJAX, changes are manifested on the single-page user in-

terface by partially updating the dynamic DOM through

JAVASCRIPT. Since these validators cannot execute client-

side JAVASCRIPT, they simply cannot perform any kind of

validation.

To prevent faults, we must make sure that the applica-

tion has a valid DOM on every possible execution path and

modification step. We use the DOM tree obtained after each

state change while crawling and transform it to the corre-

sponding HTML instance. A W3C HTML validator serves

as oracle to determine whether errors or warnings occur.

Since most AJAX sites rely on a single-page interface, we

use a diff algorithm to prevent duplicate occurrences of fail-

ures that may be the result of a previous state.

No Error Messages in DOM. Our state should never

contain a string pattern that suggests an error message [3]

in the DOM. Error messages that are injected into the DOM

as a result of client-side (e.g., 404 Not Found, 400 Bad Re-

quest) or server-side errors (e.g., Session Timeout, 500 In-

ternal Server Error, MySQL error) can be detected automat-

ically. The prescribed list of potential fault patterns should

be configurable by the tester.

Other Invariants. In line with the above, further

generic DOM-invariants can be devised, for example to

deal with accessibility, link discoverability, or security con-

straints on the DOM at any time throughout the crawling

process. We omit discussion of these invariants due to space

limitations.

213

6.2 State Machine Invariants

Besides constraints on the DOM-tree in individual states,

we can identify requirements on the state machine and its

transitions.

No Dead Clickables. One common fault in classical

web applications is the occurrence of dead links which point

to a URL that is permanently unavailable. In AJAX, click-

ables that are supposed to change the state by retrieving data

from the server, through JAVASCRIPT in the background,

can also be broken. Such error messages from the server

are mostly swallowed by the AJAX engine, and no sign of

a dead link is propagated to the user interface. By listening

to the client/server request/response traffic after each event

(e.g., through a proxy), dead clickables can be detected.

Consistent Back-Button. A fault that often occurs

in AJAX applications is the broken Back-button of the

browser. As explained in Section 4, a dynamically changed

DOM state does not register itself with the browser his-

tory engine automatically, so triggering the ‘Back’ function

makes the browser completely leave the application’s web

page. It is possible to programatically register each state

change with the browser history and frameworks are ap-

pearing which handle this issue. However, when the state

space increases, errors can be made and some states may be

ignored by the developer to be registered properly. Through

crawling, upon each new state, one can compare the ex-

pected state in the graph with the state after the execution

of the Back-button and find inconsistencies automatically.

6.3 Application-specific Invariants

We can define invariants that should always hold and

could be checked on the DOM, specific to our AJAX ap-

plication in development. In our case study, Section 9.2, we

describe a number of application-specific invariants. Con-

straints over the DOM-tree can be easily expressed as in-

variants in Java, for example through an XPath expression.

Typically, this can be coded into one or two simple Java

methods. The resulting invariants can be used to dynami-

cally search for invariant violations.

7 Testing AJAX Paths

While running the crawler to derive the state machine

can be considered as a first full test pass, the state machine

itself can be further used for testing purposes. For example,

it can be used to execute different paths to cover the state

machine in different ways. In this section, we explain how

to derive a test suite (implemented in JUnit) automatically

from the state machine, and how this suite can be used for

testing purposes.

@Test
public void testcase1() {
browser.goToUrl(url);

/*Element-info: SPAN class=expandable-hitarea */
browser.fireEvent(new Eventable(new Identification(

"xpath", "//DIV[1]/SPAN[4]"), "onclick"));

Comp.AssertEquals(oracle.getState("S_1").getDom(),
browser.getDom());

/*Element-info: DIV class=hitarea id=menuitem2 */
browser.fireEvent(new Eventable(new Identification(

"xpath", "//SPAN[2]/DIV[2]"), "onmouseover"));

Comp.AssertEquals(oracle.getState("S_3").getDom(),
browser.getDom());

/*Element-info: Form, A href=#submit */
handleForm (2473584);

Comp.AssertEquals(oracle.getState("S_4").getDom(),
browser.getDom());

}

private void handleForm(long formId) {
Form form = oracle.getForm(formId);
if (form != null) {
FormHandler.fillFormInDom(browser , form);
browser.fireEvent(form.getSubmit());

}
}

Figure 1. A generated JUnit test case.

To generate the test suite, we use the K shortest paths
[25] algorithm which is a generalization of the shortest path

problem in which several paths in increasing order of length

are sought. We collect all sinks in our graph, and compute

the shortest path from the index page to each of them. Loops

are included once. This way, we can easily achieve all tran-

sitions coverage.

Next, we transform each path found into a JUnit test

case, as shown in Figure 1. Each test case captures the se-

quence of events from the initial state to the target state.

The JUnit test case can fire events, since each edge on the

state-flow graph contains information about the event-type

and the element the event is fired on to arrive at the tar-

get state. We also provide all the information about the

clickable element such as tag name and attributes, as code

comments in the generated test method. The test class pro-

vides API’s to access the DOM (browser.getDom()) and

elements (browser.getElementBy(how, value)) of the

resulting state after each event, as well as its contents.

If an event is a form submission (annotated on the edge),

we generate all the required information for the test case to

retrieve the corresponding input values from the database

and insert them into the DOM, before triggering the event.

After each event invocation the resulting state in the

browser is compared with the expected state in the database

which serves as oracle. The comparison can take place at

different levels of abstraction ranging from textual [22] to

schema-based similarity [15].

214

Crawljax Controller Ajax
Engineupdate

 DOM

update

UI

event

Embedded
Browser

event

Analyze
Dom

State
Machine

Test-case
Generator

event

Legend

Control flow

Data component
Processing component

Access

Event invocation

Test
Cases

Static file

DOM
Analyzer update

inCrawling
plugins

postCrawling
plugins

DB

Robot

Test
Executor

Test
Report

Coverage
Report

report

DOM
Validator

Implementation

Transform
DOM to HTML

Validate HTML Validation
Report

report

generate event

Figure 2. Processing view of ATUSA.

Test-case Execution. Usually extra coding is necessary

for simulating the environment where the tests will be run,

which contributes to the high cost of testing [4]. We provide

a framework to run all the generated tests automatically us-

ing a real web browser and generate success/failure reports.

At the beginning of each test case the embedded browser is

initialized with the URL of the AJAX site under test. For

each test case, the browser is first put in its initial index

state. From there, events are fired on the clickable elements

(and forms filled if present). After each event invocation,

assertions are checked to see if the expected results are seen

on the web application’s new UI state.

The generated JUnit test suite can be used in several

ways. First, it can be run as is on the current version of the

AJAX application, but for instance with a different browser

to detect browser incompatibilities. Furthermore, the test

suite can be applied to altered versions of the AJAX applica-

tion to support regression testing: For the unaltered user in-

terface, the test cases should pass, and only for altered user

interface code failures might occur (also helping the tester

to understand what has truly changed). The typical use of

the derived test suite will be to take apart specific gener-

ated test cases, and augment them with application-specific

assertions. In this way, a small test suite arises capturing

specific fault-sensitive click trails.

8 Tool Implementation: ATUSA

We have implemented our testing approach in an open

source tool called ATUSA (Automatically Testing UI States

Algorithm 1 Pre/postCrawling hooks

1: procedure START (url, Set tags)
2: browser← initEmbeddedBrowser(url)
3: robot← initRobot()
4: sm← initStateMachine()
5: preCrawlingPlugins(browser)
6: crawl(null)
7: postCrawlingPlugins(sm)
8: end procedure
9: procedure CRAWL (State ps)

10: cs← sm.getCurrentState()
11: Δupdate← diff(ps, cs)
12: analyseForms(Δupdate)
13: Set C← getCandidateClickables(Δupdate, tags)
14: for c ∈C do
15: generateEvent(cs, c)
16: end for
17: end procedure
18: procedure ANALYSEFORMS (State cs)
19: for f orm ∈ cs.getForms() do
20: id← getHashCode(form)
21: dbForm← database.getForm(id)
22: if dbForm == null then
23: extractInsertForm(form, id)
24: else
25: fillFormInDom(browser, dbForm)
26: generateEvent(cs, dbForm.getSubmit())
27: end if
28: end for
29: end procedure

of AJAX), available through our website.5 It is based on

the crawling capabilities of CRAWLJAX and provides plugin

hooks for testing AJAX applications at different levels. Its

architecture can be divided into three phases:

preCrawling occurs after the application has fully been

loaded into the browser. Examples include authenti-

cation plugins to log onto the system and checks on

the HTML source code.

inCrawling occurs after each detected state change, differ-

ent types of invariants can be checked through plugins

such as Validated DOM, Consistent Back-button, and

No Error Messages in DOM.

postCrawling occurs after the crawling process is done

and the state-flow graph is inferred fully. The graph

can be used, for instance, in a plugin to generate test

cases from.

Algorithms 1 and 2 show the hooks along the crawling

process. For each phase, ATUSA provides the tester with

specific APIs to implement plugins for validation and fault

detection. ATUSA offers generic invariant checking compo-

nents, a plugin-mechanism to add application-specific state

validators, and generation of a test suite from the inferred

state-flow graph. Figure 2 depicts the processing view of

ATUSA, showing only the DOM Validator and Test Case

Generator as examples of possible plugin implementations.

ATUSA supports looking for many different types of

faults in AJAX-based applications, from errors in the DOM

instance, to errors that involve the navigational path, e.g.,

5 http://spci.st.ewi.tudelft.nl/atusa/

215

Algorithm 2 Incrawling hook while deriving AJAX states

1: procedure GENERATEEVENT (State cs, Clickable c)
2: robot.fireEvent(c)
3: dom← browser.getDom()
4: if distance(cs.getDom(), dom) > τ then
5: xe← getXpathExpr(c)
6: ns← State(dom)
7: sm.addState(ns)
8: sm.addEdge(cs, ns, Event(c, xe))
9: sm.changeState(ns)

10: inCrawlingPlugins(ns)
11: crawl(cs)
12: sm.changeState(cs)
13: if browser.history.canBack then
14: browser.history.goBack()
15: else
16: browser.reload()
17: List E← sm.getPathTo(cs)
18: for e ∈ E do
19: robot.fireEvent(e)
20: end for
21: end if
22: end if
23: end procedure

constraints on the length of the deepest paths [3], or num-

ber of clicks to a certain state. Whenever a fault is detected,

the error report along the causing execution path is saved in

the database so that it can be reproduced later easily.

Implementation. ATUSA is implemented in Java 1.6.

The state-flow graph is based on the JGrapht library. The

implementation details of the crawler can be found in [14].

The plugin architecture is implemented through the Java

Plugin Framework (JPF) and we use Hibernate to store the

data in the database. Apache Velocity templates assist us in

the code generation process of JUnit test cases.

9 Empirical Evaluation

In order to assess the usefulness of our approach in sup-

porting modern web application testing, we have conducted

a number of case studies, set up following Yin’s guide-

lines [26].

Goal and Research Questions. Our goal in this exper-

iment is to evaluate the fault revealing capabilities, scalabil-

ity, required manual effort and level of automation of our

approach. Our research questions can be summarized as:

RQ1 What is the fault revealing capability of ATUSA?

RQ2 How well does ATUSA perform? Is it scalable?

RQ3 What is the automation level when using ATUSA and

how much manual effort is involved in the testing pro-

cess?

9.1 Study 1: TUDU

Our first experimental subject is the AJAX-based open

source TUDU 6 web application for managing personal

6 http://tudu.sourceforge.net

todo lists, which has also been used by other researchers

[12]. The server-side is based on J2EE and consists of

around 12K lines of Java/JSP code, of which around 3K

forms the presentation layer we are interested in. The client-

side extends on a number of AJAX libraries such as DWR7

and Scriptaculous8, and consists of around 11k LOC of ex-

ternal JAVASCRIPT libraries and 580 internal LOC.

To address RQ3 we report the time spent on parts that

required manual work. For RQ1-2, we configured ATUSA

through its properties file (1 minute), setting the URL

of the deployed site, the tag elements that should be in-

cluded (A, DIV) and excluded (A:title=Log out) dur-

ing the crawling process, the depth level (2), the similarity

threshold (0.89), and a maximum crawling time of 60 min-

utes. Since TUDU requires authentication, we wrote (10

minutes) a preCrawling plugin to log into the web appli-

cation automatically.

As shown in Table 1, we measure average DOM string

size, number of candidate elements analyzed, detected

clickables and states, detected data entry points, detected

faults, number of generated test cases, and performance

measurements, all of which are printed in a log file by

ATUSA after each run.

In the initial run, after the login process, ATUSA crawled

the TUDU application, finding the doorways to new states

and detecting all possible data entry points recursively. We

analyzed the data entry points in the database and pro-

vided each with custom input values (15 minutes to eval-

uate the input values and provide useful values). For the

second run, we activated (50 seconds) the DOM Validator,

Back-Button, Error Detector, and Test Case Generator plu-

gins and started the process. ATUSA started crawling and

when forms were encountered, the custom values from the

database were automatically inserted into the browser and

submitted. Upon each detected state change, the invariants

were checked through the plugins and reports were inserted

into the database if faults were found. At the end of the

crawling process, a test suite was generated from the in-

ferred state-flow graph.

To the best of our knowledge, there are currently no tools

that can automatically test AJAX dynamic states. Therefore,

it is not possible to form a base-line for comparison using,

for instance, external crawlers. To assess the effectiveness

of the generated test suite, we measure code coverage on the

client as well as the presentation-tier of the server. Although

the effectiveness is not directly implied by code coverage, it

is an objective and commonly used indicator of the quality

of a test suite [9]. To that end, we instrumented the presen-

tation part of the server code (tudu-dwr) with Clover and

the client-side JAVASCRIPT libraries with JSCoverage9, and

7 http://directwebremoting.org
8 http://script.aculo.us
9 http://siliconforks.com/jscoverage/

216

L
O

C
S

er
v
er

-s
id

e

L
O

C
C

li
en

t-
si

d
e

D
O

M
st

ri
n
g

si
ze

C
an

d
id

at
e

C
li

ck
ab

le
s

D
et

ec
te

d
C

li
ck

ab
le

s

D
et

ec
te

d
S

ta
te

s

D
et

ec
te

d
E

n
tr

y
P

o
in

ts

D
O

M
V

io
la

ti
o
n
s

B
ac

k
-b

u
tt

o
n

G
en

er
at

ed
T

es
t

C
as

es

C
o
v
er

ag
e

S
er

v
er

-s
id

e

C
o
v
er

ag
e

C
li

en
t-

si
d
e

D
et

ec
te

d
F

au
lt

s

M
an

u
al

E
ff

o
rt

P
er

fo
rm

an
ce

3k 11k (ext) 24908 332 42 34 4 forms 182 false 32 73% 35% (ext) 80% 26.5 5.6
580 (int) (byte) 21 inputs 75% (int) (minutes) (minutes)

Table 1. TUDU case study.

deployed the web application. For each test run, we bring

the TUDU database to the original state using a SQL script.

We run all the test cases against the instrumented appli-

cation, through ATUSA’s embedded browser, and compute

the amount of coverage achieved for server- and client-side

code. In addition, we manually seeded 10 faults, capable

of causing inconsistent states (e.g., DOM malformdness,

adding values longer than allowed by the database, adding

duplicate todo items, removing all items instead of one) and

measured the percentage of faults detected. The results are

presented in Table 1.

Findings. Based on these observations we conclude

that: The use of ATUSA can help to reveal generic faults,

such as DOM violations, automatically; The generated test

suite can give us useful code coverage (73% server-side and

75% client-side; Note that only partial parts of the external

libraries are actually used by TUDU resulting in a low cov-

erage percentage) and can reveal most DOM-based faults, 8

of the 10 seeded faults were detected, two faults were unde-

tected because during the test execution, they were silently

swallowed by the JAVASCRIPT engine and did not affect

the DOM. It is worth mentioning that increasing the depth

level to 3 significantly increased the measured crawling

time passed the maximum 60 minutes, but dit not influence

the fault detection results. The code coverage, however, im-

proved by approximately 10%; The manual effort involved

in setting up ATUSA (less than half an hour in this case)

is minimal; The performance and scalability of the crawl-

ing and testing process is very acceptable (it takes ATUSA

less than 6 minutes to crawl and test TUDU, analyzing 332

clickables and detecting 34 states).

9.2 Study 2: Finding Real-Life Bugs

Our second case study involves the development of an

AJAX user interface in a small commercial project. We use

this case study to evaluate the manual effort required to use

ATUSA (RQ3), and to assess the capability of ATUSA to find

faults that actually occurred during development (RQ1).

Subject System. The case at hand is Coachjezelf (CJZ,

“Coach Yourself”),10 a commercial application allowing

high school teachers to assess and improve their teaching

10See www.coachjezelf.nl for more information (in Dutch).

skills. CJZ is currently in use by 5000-6000 Dutch teachers,

a number that is growing with approximately 1000 paying

users every year.

The relevant part for our case is the interactive table of

contents (TOC), which is to be synchronized with an actual

content widget. In older versions of CJZ this was imple-

mented through a Java applet; in the new version this is to

be done through AJAX, in order to eliminate a Java virtual

machine dependency.

The two developers working on the case study spent

around one week (two person-weeks) building the AJAX

solution, including requirements elicitation, design, under-

standing and evaluating the libraries to be used, manual test-

ing, and acceptance by the customer.

The AJAX-based solution made use of the jQuery11

library, as well as the treeview, history-remote, and

listen plugins for jQuery. The libraries comprise around

10,000 lines of JAVASCRIPT, and the custom code is around

150 lines of JAVASCRIPT, as well as some HTML and CSS

code.

Case study setup. The developers were asked (1) to try

to document their design and technical requirements using

invariants, and (2) to write the invariants in ATUSA plugins

to detect errors made during development. After the deliv-

ery of the first release, we evaluated (1) how easy it was

to express these invariants in ATUSA; and (2) whether the

(generic or application-specific) plugins were capable of de-

tecting faults.

Application-Specific Invariants. Two sets of invari-

ants were proposed by the developers. The first essentially

documented the (external) treeview component, capable

of (un)folding tree structures (such as a table of contents).

The treeview component operates by setting HTML

class attributes (such as collapsible, hit-area, and

lastExpandable-hitarea) on nested list structures. The

corresponding style sheet takes care of properly displaying

the (un)folded (sub)trees, and the JAVASCRIPT intercepts

clicks and re-arranges the class attributes as needed.

Invariants were devised to document constraints on the

class attributes. As an example, the div-element imme-

diately below a li-element that has the class expandable
should have class expandable-hitarea. Another invari-

11jquery.com

217

Failure Cause Violated Invariant Invariant type
Images not displayed Base URL in dynamic load Dead Clickables Generic

Broken synchronization in IE Invalid HTML id DOM-validator Generic

Inconsistent history Issue in listen library Back-Button Generic

Broken synchronization in IE Backslash versus slash Consistent current page Specific

Corrupted table Coding error treeview invariants, Consistent current page Specific

Missing TOC Entries Incomplete input data Consistent current page Specific

Table 2. Faults found in CJZ-AJAX.

//case one: warn about collapsible divs within expandable items
String xpathCase1 = "//LI[contains(@class ,’expandable ’)]/DIV[contains(@class ,’collapsable ’)]";

//case two: warn about collapsible items within expandable items
String xpathCase2 = "//LI[contains(@class ,’expandable ’)]/UL/LI[contains(@class ,’collapsable ’)]";

Figure 3. Example invariants expressed using XPath in Java.

ant is that expandable list items (which are hidden) should

have their CSS display type set to “none”.

The second set of invariants specifically dealt with the

code written by the developers themselves. This code took

care of synchronizing the interactive display of the table of

contents with the actual page shown. Clicking links within

the page affects the display of the table of contents, and vice

versa.

This resulted in essentially two invariants: one to ensure

that within the table of contents at most one path (to the

current page) would be open, and the other that at any time

the current page as marked in the table of contents would

actually be displayed in the content pane.

Expressing such invariants on the DOM-tree was quite

easy, requiring a few lines of Java code using XPath. An

example is shown in Figure 3.

Failures Detected. At the end of the development

week, ATUSA was used to test the new AJAX interface. For

each type of application-specific invariant, an inCrawling
plugin was added to ATUSA. Six types of failures were

automatically detected: three through the generic plugins,

and three through the application-specific plugins just de-

scribed. An overview of the type of failures found and the

invariant violations that helped to detect them is provided in

Table 2.

The application-specific failures were all found through

two invariant types: the Consistent current page, which ex-

presses that in any state the table and the actual content

should be in sync, and the treeview invariants. Note that for

certain types of faults, for instance the treeview corrupted

table, a very specific click trail had to be followed to expose

the failure. ATUSA gives no guarantee of covering the com-

plete state of the application, however, since it tries a huge

combination of clickables recursively, it was able to detect

such faults, which were not seen by developers when the

application was tested manually.

Findings. Based on these observations we conclude

that: The use of ATUSA can help to reveal bugs that are

likely to occur during AJAX development and are difficult

to detect manually; Application-specific invariants can help

to document and test the essence of an AJAX application,

such as the synchronization between two widgets; The man-

ual effort in coding such invariants in Java and using them

through plugins in ATUSA is minimal.

10 Discussion

Automation Scope. User interface testing is a broad

term, dealing with testing how the application and the user

interact. This typically is manual in nature, as it includes in-

specting the correct display of menus, dialog boxes, and the

invocation of the correct functionality when clicking them.

The type of user interface testing that we propose does not

replace this manual testing, but augments it: Our focus is

on finding programming faults, manifested through failures

in the DOM tree. As we have seen, the highly dynamic na-

ture and complexity of AJAX make it error-prone, and our

approach is capable of finding such faults automatically.

Invariants. Our solution to the oracle problem is to

include invariants (as also advocated by, e.g., Meyer [17]).

AJAX applications offer a unique opportunity for specify-

ing invariants, thanks to the central DOM data structure.

Thus, we are able to define generic invariants that should

hold for all AJAX applications, and we allow the tester to

use the DOM to specify dedicated invariants. Furthermore,

the state machine derived through crawling can be used to

express invariants, such as correct Back-button behavior.

Again, this state machine can be accessed by the tester to

specify his or her own invariants. These invariants make

our approach much more sophisticated than smoke tests for

user interfaces (as proposed by e.g., Memon [13]) — which

we can achieve thanks to the presence of the DOM and state

machine data structures. Note that just running CRAWLJAX

would correspond to conducting a smoke test: the difficulty

with web applications (as opposed to, e.g., Java Swing ap-

plications) is that it is very hard to determine when a failure

218

occurs – which is solved in ATUSA through the use of in-

variants.

Generated versus hand-coded JAVASCRIPT. The

case studies we conducted involve two different popular

JAVASCRIPT libraries in combination with hand-written

JAVASCRIPT code. Alternative frameworks exist, such as

Google’s Web Toolkit (GWT)12 in which most of the client-

side code is generated. ATUSA is entirely independent of

the way the AJAX application is written, so it can be applied

to such systems as well. This will be particularly relevant

for testing the custom JAVASCRIPT code that remains to be

hand-written, and which can still be tricky and error-prone.

Furthermore, ATUSA can be used by the developers of such

frameworks, to ensure that the generated DOM states are

correct.

Manual Effort. The manual steps required to run

ATUSA consist of configuration, plugin development, and

providing custom input values, which for the cases con-

ducted took less than an hour. The hardest part is decid-

ing which application-specific invariants to adopt. This is a

step that is directly connected with the design of the applica-

tion itself. Making the structural invariants explicit not only

allows for automated testing, it is also a powerful design

documentation technique. Admittedly, not all web develop-

ers will be able to think in terms of invariants, which might

limit the applicability of our approach in practice. Those ca-

pable of documenting invariants can take advantage of the

framework ATUSA provides to actually implement the in-

variants.

Performance and Scalability. Since the state space of

any realistic web application is huge and can cause the well-

know state explosion problem, we provide the tester with a

set of configurable options to constrain the state space such

as the maximum search depth level, the similarity threshold,

maximum number of states per domain, maximum crawling

time, and the option of ignoring external links and links that

match some pre-defined set of regular expressions.The main

component that can influence the performance and scala-

bility is the crawling part. The performance of ATUSA in

crawling an AJAX site depends on many factors such as the

speed at which the server can handle requests, how fast the

client-side JAVASCRIPT can update the interface, and the

size of the DOM tree. ATUSA can scale to sites comprised

of thousands of states easily.

Application Size. The two case studies both involve

around 10,000 lines of JAVASCRIPT library code, and sev-

eral hundred lines of application code. One might wonder

whether this is too small to be representative. However, our

results are based on dynamic analysis rather than static code

analysis, hence the amount of code is not the determining

factor. Instead, the size of the derived state machine is the

factor limiting the scalability of our approach, which is only

12http://code.google.com/webtoolkit/

moderately (if at all) related to the size of the JAVASCRIPT

code.

Threats to Validity. Some of the issues concerning

the external validity of our empirical evaluation have been

covered in the above discussion on scope, generated code,

application size, and scalability. Apart from the two case

studies described in the paper, we conducted two more (on

TaskFreak13 and the Java PETSTORE 2.014), which gave

comparable results. With respect to internal validity, we

minimized the chance of ATUSA errors by including a rig-

orous JUnit test suite. ATUSA, however, also makes use

of many (complex) third party components, and we did en-

counter several problems in some of them. While these bugs

do limit the current applicability of our approach, they do

not affect the validity of our results. As far as the choice of

faults in the first case study is concerned, we selected them

form the TUDU bug tracking system, based on our fault

models which we believe are representative of the types of

faults that occur during AJAX development. The choice is,

therefore, not biased towards the tool but the fault mod-

els we have. With respect to reliability, our tools and the

TUDU case are open source, making the case fully repro-

ducible.

Ajax Testing Strategies. ATUSA is a first, but essen-

tial step in testing AJAX applications, offering a solution for

the reach/trigger/propagate problem. Thanks to the plugin-

based architecture of ATUSA, it now becomes possible to

extend, refine, and evaluate existing software testing strate-

gies (such as evolutionary, state-based, category-partition,

and selective regression testing) for the domain of AJAX

applications.

11 Concluding Remarks

In this paper we have proposed a method for testing

AJAX applications automatically. Our starting point for

supporting AJAX-testing is CRAWLJAX, a crawler for AJAX

applications that we proposed in our earlier work [14],

which can dynamically make a full pass over an AJAX ap-

plication. Our current work resolves the subsequent prob-

lems of extending the crawler with data entry point handling

to reach faulty AJAX states, triggering faults in those states,

and propagating them so that failure can be determined. To

that end, this paper makes the following contributions:

1. A series of fault models that can be automatically

checked on any user interface state, capturing dif-

ferent categories of errors that are likely to occur in

AJAX applications (e.g., DOM violations, error mes-

sage occurrences), through (DOM-based) generic and

application-specific invariants which server as oracle.

13 http://www.taskfreak.com
14 https://blueprints.dev.java.net/petstore/

219

2. An algorithm for deriving a test suite achieving all

transitions coverage of the state-flow graph obtained

during crawling. The resulting test suite can be refined

manually to add test cases for specific paths or states,

and can be used to conduct regression testing of AJAX

applications.

3. An open source tool called ATUSA implementing

the approach, offering generic invariant checking

components as well as a plugin-mechanism to add

application-specific state validators and test suite gen-

eration.

4. An empirical validation, by means of two case studies,

of the fault revealing capabilities and the scalability of

the approach, as well as the level of automation that

can be achieved and manual effort required to use the

approach.

Given the growing popularity of AJAX applications,

we see many opportunities for using ATUSA in practice.

Furthermore, the open source and plugin-based nature of

ATUSA makes it a suitable vehicle for other researchers

interested in experimenting with other new techniques for

testing AJAX applications.

Our future work will include conducting further case

studies, as well as the development of ATUSA plugins, ca-

pable of spotting security vulnerabilities in AJAX applica-

tions.

References

[1] A. Andrews, J. Offutt, and R. Alexander. Testing web ap-

plications by modeling with FSMs. Software and Systems
Modeling, 4(3):326–345, July 2005.

[2] S. Artzi, A. Kieżun, J. Dolby, F. Tip, D. Dig, A. Paradkar,

and M. D. Ernst. Finding bugs in dynamic web applica-

tions. In Proc. Int. Symp. on Software Testing and Analysis
(ISSTA’08), pages 261–272. ACM, 2008.

[3] M. Benedikt, J. Freire, , and P. Godefroid. VeriWeb: Auto-

matically testing dynamic web sites. In Proc. 11th Int. Conf.
on World Wide Web (WWW’02), 2002.

[4] A. Bertolino. Software testing research: Achievements,

challenges, dreams. In ICSE Future of Software Engineering
(FOSE’07), pages 85–103. IEEE Computer Society, 2007.

[5] R. V. Binder. Testing object-oriented systems: models, pat-
terns, and tools. Addison-Wesley, 1999.

[6] E. Bozdag, A. Mesbah, and A. van Deursen. Performance

testing of data delivery techniques for Ajax applications.

Journal of Web Engineering, 0(0), 2009. To appear.

[7] S. Elbaum, S. Karre, and G. Rothermel. Improving web

application testing with user session data. In Proc. 25th
Int Conf. on Software Engineering (ICSE’03), pages 49–59.

IEEE Computer Society, 2003.

[8] J. Garrett. Ajax: A new approach to web applications. Adap-

tive path, February 2005. http://www.adaptivepath.
com/publications/essays/archives/000385.php.

[9] W. Halfond and A. Orso. Improving test case generation for

web applications using automated interface discovery. In

Proceedings of the ESEC/FSE conference, pages 145–154.

ACM, 2007.
[10] Y.-W. Huang, C.-H. Tsai, T.-P. Lin, S.-K. Huang, D. T.

Lee, and S.-Y. Kuo. A testing framework for web appli-

cation security assessment. Journal of Computer Networks,

48(5):739–761, 2005.
[11] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic. Secubat: a

web vulnerability scanner. In Proc. 15th int. conf. on World
Wide Web (WWW’06), pages 247–256. ACM, 2006.

[12] A. Marchetto, P. Tonella, and F. Ricca. State-based testing

of Ajax web applications. In Proc. 1st IEEE Int. Conference
on Sw. Testing Verification and Validation (ICST’08), pages

121–130. IEEE Computer Society, 2008.
[13] A. Memon. An event-flow model of GUI-based applica-

tions for testing: Research articles. Softw. Test. Verif. Re-
liab., 17(3):137–157, 2007.

[14] A. Mesbah, E. Bozdag, and A. van Deursen. Crawling Ajax

by inferring user interface state changes. In Proc. 8th Int.
Conference on Web Engineering (ICWE’08), pages 122–

134. IEEE Computer Society, 2008.
[15] A. Mesbah and A. van Deursen. Migrating multi-page

web applications to single-page Ajax interfaces. In Proc.
11th Eur. Conf. on Sw. Maintenance and Reengineering
(CSMR’07), pages 181–190. IEEE Computer Society, 2007.

[16] A. Mesbah and A. van Deursen. A component- and push-

based architectural style for Ajax applications. Journal of
Systems and Software, 81(12):2194–2209, 2008.

[17] B. Meyer. Seven principles of software testing. IEEE Com-
puter, 41(8):99–101, August 2008.

[18] L. Morell. Theoretical insights into fault-based testing. In

Proc. 2nd Workshop on Software Testing, Verification, and
Analysis, pages 45–62, 1988.

[19] F. Ricca and P. Tonella. Analysis and testing of web applica-

tions. In ICSE’01: 23rd Int. Conf. on Sw. Eng., pages 25–34.

IEEE Computer Society, 2001.
[20] D. Richardson and M. Thompson. The RELAY model of

error detection and its application. In Proc. 2nd Workshop
on Software Testing, Verification, and Analysis, pages 223–

230, 1988.
[21] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Auto-

mated replay and failure detection for web applications. In

ASE’05: Proc. 20th IEEE/ACM Int. Conf. on Automated Sw.
Eng., pages 253–262. ACM, 2005.

[22] S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and

S. Ecott. Automated oracle comparators for testing web ap-

plications. In Proc. 18th IEEE Int. Symp. on Sw. Reliability
(ISSRE’07), pages 117–126. IEEE Computer Society, 2007.

[23] B. Stepien, L. Peyton, and P. Xiong. Framework testing of

web applications using TTCN-3. Int. Journal on Software
Tools for Technology Transfer, 10(4):371–381, 2008.

[24] E. J. Weyuker. On testing non-testable programs. The Com-
puter Journal, 25(4):465–470, 1982.

[25] J. Y. Yen. Finding the k shortest loopless paths in a network.

Manag. Sci., 17(11):712–716, 1971.
[26] R. K. Yin. Case Study Research: Design and Methods.

SAGE Publications Inc, 3d edition, 2003.

220

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
