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Abstract

In an object-oriented language such as Java, every
class requires implementations of two special methods,
one for determining equality and one for computing
hash codes. Although the specification of these methods
is usually straightforward, they can be hard to code (due
to subclassing, delegation, cyclic references, and other
factors) and often harbor subtle faults. A technique is
presented that simplifies this task. Instead of writing
code for the methods, the programmer gives, as a brief
annotation, an abstraction function that defines an ab-
stract view of an object’s representation, and sometimes
an additional observer in the form of an iterator method.
Equality and hash codes are then computed in library
code that uses reflection to read the annotations. Exper-
iments on a variety of programs suggest that, in com-
parison to writing the methods by hand, our technique
requires less text from the programmer and results in
methods that are more often correct.

1 Introduction

Determining equality between objects in an object-
oriented language is tricky. The subtle pitfalls that face
programmers have been described in numerous tutori-
als (see, eg, [5, 16]), and automated fault finders often
specifically target equality errors [7, 10, 17].

This paper pursues a complementary goal: generat-
ing equality code automatically to make it correct by
construction. The technique proposed is simple and can
work (by using reflection, eg) in a standard Java envi-
ronment, requiring no special tools for preprocessing or
execution.

In our framework, two objects are regarded as equal
if they represent the same abstract value. The program-
mer specifies an abstraction function that maps objects
to their abstract counterparts, which is then used at run-
time by reflective library code to compute and compare
the abstract values.

The programmer can still, of course, make a mis-
take by giving the wrong abstraction function. Our ex-
periments suggest, however, that the equality faults that
plague programs arise not because programmers fail to
understand what they should be comparing, but rather
because of (a) simple errors implementing the compar-
ison, or (b) subtle errors related to subclassing, delega-
tion, cyclic references, etc (§5). Both kinds of errors are
eliminated in our technique.

Furthermore, the most insidious outcome of defec-
tive equality implementations is that basic equivalence
properties – symmetry, reflexivity and transitivity – are
violated [5]. Even if the abstraction function fails to
match the programmer’s intent, our technique still guar-
antees that equality will be an equivalence, and that – in
Java terms – every class will satisfy the ‘object contract’.
This property follows from the observation that any total
function induces an equivalence relation on its domain.
That is, the equality ≈ defined by

a ≈ b ⇔ f(a) = f(b)

is an equivalence by definition. Moreover, for any equal-
ity ≈, a function f exists with this property (in particu-
lar, the function f that maps each object to its equiva-
lence class). The abstraction function approach is there-
fore also complete in the sense that a function exists for
any notion of equality we might need.

Abstraction functions have long been advocated as
essential (but informal) documentation [13], are in-
cluded in specification languages (for example, as
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‘model fields’ in JML [12]), and are exploited by verifi-
cation tools (such as ESC/Java [6]). Exploiting abstrac-
tion functions for equality thus gives them additional
leverage, increasing the benefit they bring. Furthermore,
to minimize the cost of writing an abstraction function,
we chose to use a scheme that makes use of code already
written. Rather than specifying model fields, we assume
that every object can be represented as a sequence of ob-
jects. The programmer simply provides an iterator that
yields this sequence, along with a directive indicating
whether the order of elements in the sequence is sig-
nificant. Because this iterator has usually been written
anyway, the marginal cost of providing an abstraction
function is often just the directive alone.

In order to evaluate our technique, we took some pro-
grams with existing implementations of equality, and re-
placed them with new implementations using abstrac-
tion functions instead. We then compared the code
sizes of the two versions, and tested both versions us-
ing the Randoop tool [17] for conformance to the object
contract and the vendor test suites for regressions. In
short, we found that the new versions were both smaller
and more robust. Each of the programs we examined
had faults in their implementations of equality, none of
which are present in our annotated versions.

2 Equality and Abstraction

In an object-oriented language, two objects that are
distinct may nevertheless need to be treated as equiva-
lent. In the physical world, there is no such notion; each
object is unique and related to others only by sharing
some of its properties. But the execution of a program
usually produces multiple copies of the same conceptual
object and it is necessary to be able to determine when
these copies represent the same underlying object.

Equality can be defined in various ways, according to
its intended usage. A common approach says that two
objects are equal if and only if they are observationally
equivalent: that is, any sequence of operations on the
two objects will produce the same results. In a language
with data abstraction, an object is observed through its
public methods, so comparing concrete representations
is too strong.

The notion of observational equivalence, while con-
ceptually straightforward, does not lead directly to a
generic implementation, since each datatype typically
has its own set of observer methods. An alternative
approach regards each object as representing some ab-
stract value, obtained by applying an abstraction func-
tion [9] to the concrete object. Since the abstract value

presumably captures exactly the observable properties,
we can determine whether two objects are observation-
ally equivalent simply by testing mathematical equality
of their abstract values.

To realize this idea, we require each datatype to de-
clare a standard observer method that implements the
abstraction function by mapping the object to a sequence
(concretely, an Iterator). Using a sequence gives unifor-
mity, but does ‘bias’ [11] the representation of the ab-
stract value. We therefore allow the user to indicate with
annotations that certain features of this sequence – such
as the order of elements – are to be ignored.

3 Object Contract Specification

This section outlines the properties we expect of im-
plementations of equals and hashCode, and which are
guaranteed by the correct use of our technique. Since
these properties are consistent with the Java object con-
tract, our technique allows all legal uses of equality in
Java programs that satisfy it. In addition, our technique
supports the more stringent approach of Liskov and Gut-
tag [13].

Observational equivalence requires that equality be a
mathematical equivalence:

reflexive: x.equals(x)
symmetric: x.equals(y) ⇔ y.equals(x)
transitive: x.equals(y) ∧ y.equals(z) ⇒ x.equals(z)

It further stipulates that equal objects be substitutable:
x.equals(y) ⇒ f (x).equals(f (y))

for all observer methods f ; and that objects that can be
distinguished by observation are not equal:
¬x.equals(y) ⇒ ¬f (x).equals(f (y))

for some observer f .
The Java object contract for hashCode stipulates that

it be consistent with equals:
x.equals(y) ⇒ (x.hashCode() == y.hashCode())
As in Java, comparisons to null return false. In

addition, equals and hashCode always terminate and
are side-effect free. Following Scheme [1, §11.5], two
cyclic structures are equal when the (possibly infinite)
tree unfoldings of their abstract state are element-wise
equal.

Liskov and Guttag [13] note that equality should
also be temporally consistent so that the result of a
comparison of two objects doesn’t change over time.
This approach requires that mutable objects be com-
pared by reference. Java’s object contract has a weaker
(and more complicated) notion of temporal consistency,
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which conveniently allows two collections to be re-
garded as equals if they contain the same elements, but
which can create problems when mutable objects act as
keys in associative containers. Our technique supports
both approaches.

4 Semantics

The heap of an executing program is usually viewed
as a graph of object references linked by labeled edges
corresponding to fields. To enable a more uniform
traversal of the abstract state, we view the abstract heap
as a similar graph, but with edges labeled by integer in-
dices (as in [1]) so that the elements of collections can
be treated in the same way as the named components of
fixed size objects.

The abstraction function, A, therefore maps a con-
crete object to a sequence of parts, representing the ob-
jects referenced by these indexed outgoing edges.

The abstract contents of an object are not sufficient
to characterize it. Objects of different types, even with
the same content, are often considered unequal. For ex-
ample, consider an employee object and a bank account
object: the employee has only a social security num-
ber, and the bank account has only an account number.
Even if these two numbers are the same, the two ob-
jects are not equals. On the other hand, it is sometimes
desirable to equate objects of different types. In Java,
two sets containing the same elements are considered
equal even if one is implemented as a HashSet and the
other as a TreeSet. We therefore allow the user to asso-
ciate each Java class X with an equality type E(X), which
will be a supertype of X (or X itself). The employee
and bank account classes would have different equality
types, but HashSet and TreeSet share the Set equality
type. For convenience, we overload E , and write E(x)
for the equality type associated with the class of an ob-
ject x.

Each equality type T has an associated boolean or-
dering property, O(T ). If the order of the elements re-
turned by the abstraction function for T is signficant,
then O(T ) is true; otherwise false.

Equality. Two objects x and y are equals if the fol-
lowing conditions hold:

1. same equality type:
E(x) = E(y)

2. same overall number of parts:
A(x).size() = A(y).size()

3. each part occurs the same number of times:
∀i : 0..A(x).size() |
N (A(x),A(x)[i]) = N (A(y),A(x)[i]),
where N (s, e) counts the occurrences of
element e in sequence s

4. if ordered, parts occur in the same order:
O(E(x)) ⇒
∀i : 0..A(x).size() | A(x)[i].equals(A(y)[i])

These conditions alone make equality an equivalence re-
lation (provable by induction over the structure of A).

Hashing. The hash code of an object is a composition
of the hash codes of its parts. Let AH(x) be the subse-
quence of parts inA(x) that are used for hashing – from
the empty sequence (which will result in many hash col-
lisions) to A(x) itself (which may make computing the
hash code expensive).

Further, let ⊗ be the hash composition function. If
¬O(E(x)), then ⊗ must be associative and commuta-
tive; otherwise the function recommended by Bloch [5]
may be used. Hashing is then defined recursively as fol-
lows:

H(x) =
{

k isCyclic(AH(x))
reduce(⊗, map(H,AH(x))) otherwise

where k is some pre-defined constant.
So long as the implementation of A is deterministic,

side-effect free, terminates, and faithfully represents the
abstract state, these conditions for equality and hashing
– as implemented in our technique – will guarantee the
conditions of the contract discussed in §3.

5 Why Equality and Hashing are Hard

Achieving observational equality without breaking
the object contract is known to be tricky (eg, [5]). This
section discusses five areas of difficulty, and notes how
the systematic technique presented in this paper resolves
them.

Simple Errors. Programming requires organizing
many details, some of which are often overlooked. In
the programs we studied, simple errors (such as imple-
menting equals but forgetting to implement hashCode)
were common. Additionally, as programs evolve, main-
tenance of equality and hashing methods is frequently
neglected. When a class is modified by a change to its
fields, its equals and hashCode methods (as well as the
equals and hashCode methods of its subclasses) should
likely be updated, too.
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If these methods are generated automatically, as they
are in our technique, programmers are no longer bur-
dened with the repetitive task of maintaining them, and
their correctness is guaranteed.

Subclassing. The equals method of a subclass will
usually need to reference the fields of the superclass, but
these may not even be in scope. A common approach is
to call the superclass equals method, but because of the
asymmetry of dynamic dispatch, this may cause viola-
tions of the symmetry condition of the object contract.

This dilemma is easily resolved in our technique by
assigning distinct equality types to the subclass and su-
perclass.

Delegation. Decorator/wrapper classes are used to
add features to an existing class. This pattern is often
used to make a thread-safe class from a thread-unsafe
one. For example, a common implementation of equals
in such a class is:

boolean equals(Object that) {
synchronized (this) { return this.w.equals(that); } }

If the wrapped implementation of equals is faulty, then
this implementation may exhibit a reflexivity violation.
We can guard against such violations by introducing a
reference equality check:

boolean equals(Object that) {
if (this == that) return true;
synchronized (this) { return this.w.equals(that); } }

Programmers often forget to include this reference
equality check in their wrapping classes.

The code generated by our technique includes this ex-
tra check and avoids this violation. Delegation can also
lead to symmetry violations, which are similarly han-
dled.

Objects of Different Classes. Sometimes objects
should be regarded as equal even when they belong to
different classes. The JDK Collections contain many
such cases: a HashSet, for example, can be compared to
a TreeSet, and the two will be considered equal if they
contain the same set of elements, even though they use
different implementations internally.

Unlike all other approaches to automating equality,
our technique easily handles this case by allowing the
programmer to assign the same equality type (in this
case Set) to the two classes.

Cyclic Object Graphs Cyclic object graphs – which
are not uncommon in object-oriented programs – are
even more challenging for equality and hashing than

they are for serialization. Programmers often try to
sidestep the problem by defining equality only on fields
that do not contain cycles (violating our condition that
A be faithful to the abstract state), or they simply allow
a comparison to overflow the stack.

Proper handling of equals and hashCode in the pres-
ence of cycles is, however, not impossible. Using an ap-
proach similar to that of Eiffel [14], our technique gener-
ates equals and hashCode methods that are guaranteed
to terminate with a correct answer, even in the presence
of cycles.

We test equality by assuming that the objects being
compared are equals and searching for evidence to re-
fute that assumption, traversing the object graph and
adding new assumptions to a global table as we en-
counter new objects. If, in any step of the algorithm,
no new assumptions are added and no assumption can
be refuted, then the original objects must be equals.

When computing hashCode, if a cycle is detected
within an object structure, a constant is returned as the
hashCode for the entire structure. Thus, any cyclic
structure will hash to the same constant value. This ap-
proach may lead to hash collisions, but it does respect
the object contract.

6 Annotations

Our technique generates equals and hashCode im-
plementations for classes annotated with an equality
type and an abstraction function. Table 1 presents a sum-
mary of these annotations.

In the most common case, the @ConcreteEquality an-
notation can be used to say that the equality type is the
class itself, and the abstraction function is an iterator
over the fields of the object (an implementation of this
iterator is provided by our implementation). For exam-
ple, we annotate the simple class Point { int x,y; } with
@ConcreteEquality.

If we wish to equate objects of different concrete
classes, then we must introduce @EqualityTypeDefn and
@AbstractionFunction annotations. For example, in the
Java Collections, we can compare an ArrayList and a
LinkedList for equality, and we will find that they are
equal if they have the same contents in the same or-
der. To indicate this, we add two annotations to the List
interface: @EqualityTypeDefn(Ordering.Total) and @Ab-
stractionFunction(“iterator”). These annotations indicate
that List will serve as the equality type for all classes
that implement it, and that the ordering of the contents
of a List is significant in determining equals. Our tech-
nique then generates equals and hashCode methods for
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Table 1 Annotations for expressing equality types and abstraction functions

Annotation + Description Example(s)

@EqualityTypeDefn Declares that this Java type
represents an equality type and indicates whether
or not its objects’ parts are ordered.

@EqualityTypeDefn(Ordering.Total) interface List {...}
@EqualityTypeDefn(Ordering.None) interface Set {...}

@AbstractionFunction Names the method that
provides an iterator over the parts of this object.

@AbstractionFunction(”iterator”) interface Collection {...}

@ConcreteEquality Indicates that the abstract
parts of object x are the objects its fields refer to.

@ConcreteEquality class Point { int x, y; }

@NotKey Used with @ConcreteEquality to ex-
clude fields from A(x).

@ConcreteEquality class BankAccount { final int id;
@NotKey double currentBalance; ... }

@ReferenceEquality Indicates that the unique
identifier for this object should be used for equal-
ity, and so no other object can be equal to this one.

@ReferenceEquality interface Iterator {...}

all classes that implement the List interface. Each class
must provide its own implementation of the abstraction
function (ie, the iterator method), but the generated im-
plementations of equals and hashCode are the same.

Similarly, we add the following annotations to the Set
interface: @AbstractionFunction(“iterator”) and @Equal-
ityTypeDefn(Ordering.None), indicating that the contents
of a Set are not ordered.

Finally, to implement the Liskov and Guttag [13] ap-
proach to equality for mutable datatypes, the @Refer-
enceEquality annotation can be used.

Writing these annotations puts far less burden on
the programmer than writing the equals and hashCode
methods they replace. The most common case is cov-
ered by @ConcreteEquality; a custom iterator is needed
only when the abstract and concrete states differ. Even
when needed, however, the definition of this iterator is
frequently simpler and less prone to error than the equals
method it replaces. Moreover, the automatically gener-
ated methods are guaranteed to fulfill the object contract,
eliminating many subtle bugs.

6.1 Subtypes and Equality Types

An equality type is assigned not only to the class or
interface it explicitly annotates, but also to all subtypes.
Any class lacking an ancestor marked as an equality type
is treated as having its own unique equality type.

To ensure that this identifies a class’s equality type
unambiguously in the presence of multiple supertypes,
we require that at most one supertype of a class be an-
notated with @EqualityTypeDefn.

Our prototype implementation includes a static anal-
ysis tool that enforces this condition at compile time. It
would correctly reject a class that attempted to imple-
ment, for example, both Set and List. Though not gen-
erally enforced, the stipulation that this situation should
be impossible is informally stated in the documentation
of Collection.equals().

7 Evaluation

Four questions come to mind for evaluating our tech-
nique: (1) Is it sufficiently expressive to replace the
equals and hashCode implementations that program-
mers write in practice? (2) What effect does it have on
correctness? (3) Is it easier or more difficult than imple-
menting equals and hashCode by hand? (4) How does
our (prototype) implementation compare in performance
to hand-coded methods?

To answer these questions, we annotated three widely
used programs: the JDK Collections library v1.4 (a sub-
set of java.util), the Apache Commons Collections li-
brary v3.2, and JFreeChart 1.0.0 (an open source plot-
ting program that is a member of the DaCapo Bench-
mark Suite [4]).

7.1 Expressiveness

Our technique was able to replace almost all the
equals and hashCode methods of the three benchmark
programs, as shown by Table 3. Those that we were
not able to replace were within classes that either in-
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Table 2 Test results. ‘Errors’ are test cases that throw unexpected exceptions. ‘Failures’ are test cases that compute
incorrect results.

Randoop Tests Vendor Tests
Total Original Annotated Total Original Annotated

Errors Failures Errors Failures Errors Failures Errors Failures
JDK 20661 1 184 0 0 1366 2 5 2 7
Apache 3415 0 7 0 0 2443 0 0 0 0
JFreeChart 59 2 57 2 0 1038 1 8 0 3

tentionally violated the object contract (such as Identity-
HashMap) or used weak references to control interaction
with the garbage collector.

Table 3 Number of manually written equals and hash-
Code implementations in original program, and remain-
ing after code was converted to use our technique.

Case Study Before After

JDK equals 24 2
hashCode 24 3

Apache equals 56 6
hashCode 57 9

JFreeChart equals 263 0
hashCode 114 0

7.2 Correctness

To evaluate correctness, we ran two sets of unit tests
on each of the benchmark programs: a set generated by
the Randoop tool [17] and the standard set provided by
the program’s author.

The annotated versions of these programs are more
correct than the originals. This is primarily shown in
Table 2, where it can be seen that the annotated versions
usually pass more test cases than the original versions.
Where they do not, the test cases themselves either con-
tain hard-coded constants tied to particular implementa-
tions or are faulty, as discussed below.

Table 7 classifies the faults we found according to the
parts of the object contract violated (§3) and according
to the reasons that writing correct implementations of
equals and hashCode are difficult (§5). The application
of our technique fixed all faults found.

JDK Collections Faults. We found the same faults in
the JDK 1.4 collections that Pacheco et al. [17] found

previously: namely that some of the wrapper sets and
maps had reflexivity and symmetry faults.

There is an interesting case where our technique
forced us to restructure some of the JDK code, from
an original design that produced some surprising be-
havior to a more conventional design. Originally, the
IdentityHashMap.Entry class implemented both the Iter-
ator and Map.Entry interfaces. When one called next() on
the iterator, it returned itself in the guise of a Map.Entry.
A programmer retaining a reference to this entry from
a previous iteration of the loop would be surprised to
find that its key and value were now the key and value
for the current iteration. This design saved allocating a
Map.Entry object for each iteration of the loop, at the
cost of surprising mutation behavior (which is docu-
mented as Bug #6312706 in the Sun/Java bug database).

Our technique forced us to split this class into two
classes, because Iterator and Map.Entry are different
equality types, and so no single class may implement
both of them.

Failing JDK Collections test cases. Our annotated
JDK Collections code fails two test cases that the
original code passed: BitSet.hashCodeTests and Vec-
tor.ToStringTests. Both of these test cases have hard-
coded values (such as hash codes and string encodings)
that are computed differently (but still correctly) in our
implementation.

Apache Collections Faults. Delegation issues led to
symmetry faults in SynchronizedBuffer.equals() and Ref-
erenceMap.equals(), and a reflexivity fault in Map-
BackedSet.equals().

PriorityBuffer.equals() was not implemented, even
though it was clear from the usage that an implemen-
tation was expected.

JFreeChart Faults. We found 32 classes in
JFreeChart that implement equals but not hashCode.
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AbstractObjectList.equals() was actually performing
a prefix test, rather than an equality test, because it ne-
glected to compare the size of the lists. This caused sym-
metry and transitivity failures. Furthermore, the equals
and hashCode implementations in this class failed to ter-
minate on cyclic inputs.

ShapeUtilities.equals(GeneralPath,GeneralPath) had
a copy-paste error that resulted in it comparing the first
argument to itself, and so it always returned true.

XYImageAnnotation had a ‘todo’ indicating that the
image field should be serialized. After de-serialization,
the image field was null, and so the equality test failed.

Range had a fault caused by the special primitive
double value NaN (not-a-number). The programmer
mistakenly expected == to be reflexive, when in fact it is
not: all boolean operations involving NaN return false,
including NaN==NaN. java.awt.geom.Point2D, which is
used by JFreeChart, had a similar fault.

We found 14 classes in JFreeChart that neglected
parts of their abstract state in their equals and hashCode
implementations in order to avoid potential cycles.

Faulty JFreeChart test cases. We found faults in five
of JFreeChart’s vendor-supplied unit tests. Interestingly,
these tests did not exhibit failures when run against the
original JFreeChart code because of the fault in Abstrac-
tObjectList.equals(): two wrongs made a right. Once we
fixed the fault in AbstractObjectList, we found that these
test cases failed. Upon inspection, we discovered that
the test cases had incorrect expectations about which ob-
jects are equals. The numbers in Table 2 reflect the cor-
rected versions of these tests cases. The five test cases
in question were:

• XYAreaRendererTests.testSerialization()
• StackedXYAreaRenderer.testSerialization()
• CombinedRangeCategoryPlotTests.testCloning()
• CombinedDomainCategoryPlotTests.testCloning()
• CategoryPlotTests.testCloning().

Failing JFreeChart test cases. As shown in Table 2,
our annotated version of JFreeChart still fails three tests
– which also failed when run with the original code.

XYImageAnnotationTests.testSerialization() fails be-
cause of the previously mentioned serialization/equality
fault in XYImageAnnotation.

XYPlotTests.testGetDatasetCount() has expectations
that are inconsistent with the behavior of the XYPlot con-
structor.

SegmentedTimelineTests.testMondayThroughFriday-
Translations() imprecisely transforms one representation
of time to another.

Observations. On the basis of this, albeit limited,
sample of programs we might infer that:

1. When programmers wish to simply compare the
concrete state of two objects, the kinds of mistakes
they make amount to simple oversights, rather than
the more subtle issues discussed in §5.

2. When an abstract view is needed in order to com-
pare objects of different concrete classes, program-
mers tend to make mistakes due to the more subtle
difficulties, most often delegation.

3. When equality makes use of an iterator, mistakes
occur in the code that calls the iterator, rather than
in the iterator itself.

4. Cyclic object graphs are not handled well. The two
most common approaches that we observed were:
(1) allowing the stack to overflow, and (2) neglect-
ing parts of the abstract state that may lead to a cy-
cle (but whose omission violates the condition that
A is faithful to the abstract state (§3)).

If these observations hold in general, they suggest that
our technique provides appropriate automation and fo-
cuses programmer effort in the right places. We did not
observe a single case of a programmer implementing an
iterator incorrectly, which is the one thing our technique
requires the programmer to do. All of the faults we ob-
served were due to simple oversights or to subtle issues
concerning the implicit definition of equality types or
the use of abstraction functions. In our technique, all of
these issues are handled mechanically.

7.3 Ease of Use

To assess ease of use, we measured the number of
annotations that we added (Table 4) to each benchmark
program, as well as the number of classes and methods
added and removed (Table 5).

The total number of annotations that we added is
similar to, or less than, the net number of methods re-
moved, suggesting that the use of our technique is cer-
tainly not more difficult than implementing equals and
hashCode by hand. Moreover, assuming that all meth-
ods are equally difficult to write, and that annotations are
easier to write than methods, these numbers suggest that
it is in fact easier to use our annotations. This conclusion
is consistent with our subjective experience.

From an ease of use perspective, there seem to be
three cases: where the programmer requires (1) concrete
equality or reference equality; (2) explicit equality types

348



Table 4 Number of annotations added to benchmark
programs.
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JDK 23 2 0 4 5 34
Apache 37 18 0 4 3 62
JFreeChart 0 130 27 8 4 169

where abstraction functions (iterators) have already been
defined; or (3) explicit equality types where abstraction
functions have not already been defined. In the first two
cases, our technique is clearly easier to use than imple-
menting equals and hashCode by hand. The first case is
also the most common. In the third, and least common,
case, there does not seem to be significant difference in
the level of effort required.

For example, in JFreeChart many of the methods
added were actually unrelated to our technique. Fully
half were concerned with JFreeChart’s special treatment
of the equality of java.awt.GradientPaint objects. Nor-
mally this extra code would not be required to use our
technique.

The third usability case, where the abstraction func-
tion was not already implemented, was indeed rare. Of
the four @EqualityTypeDefn annotations we added to the
JDK Collections, three of them already had iterators de-
fined (Set, List, Map), and only one required us to im-
plement the abstraction function ourselves (Map.Entry).
The Map.Entry case required some work: 9 classes im-
plement the Map.Entry interface, and 35 of the 50 meth-
ods we added were concerned with Map.Entry objects.

In JFreeChart, @EqualityTypeDefn is applied only
to MonthDateFormat, QuarterDateFormat, and various
type-specific subclasses of AbstractObjectList. Only the
first two of these required manually implementing an ab-
straction function. These two cases were, subjectively,
easier than the Map.Entry case in the JDK Collections.

7.4 Performance

Our prototype is implemented using Java reflection.
A faster implementation would statically generate code.
Such an implementation is clearly feasible, but would

Table 5 Changes to benchmark programs. ‘Base’ in-
dicates the number of classes or methods in the origi-
nal program. ‘+’ indicates classes or methods added to
switch to our technique. ‘−’ indicates classes or meth-
ods removed.

Classes Methods
Base + − Base + −

JDK 159 7 2 1202 50 72
Apache 728 11 0 5544 39 121
JFreeChart 1158 4 0 8960 30 377

require more engineering effort, and would be less flex-
ible for research purposes.

We have made some modest efforts to tune the per-
formance of our prototype. It turns out that some opera-
tions, such as field access and method dispatch, execute
reasonably efficiently via reflection. Other operations,
such as examining annotations and the type hierarchy
are slower. Caching the results of these operations im-
proved the performance of our prototype significantly.

Table 6 compares the benchmark program execution
times before and after our annotations were added. For
all three benchmarks, we measured the time taken to run
both test suites (Randoop tests and vendor/author tests).
Unit tests tend to exercise equals and hashCode more
than a regular program execution would, so these prob-
ably provide an upper bound on the change in perfor-
mance. For JFreeChart, we also ran its “large” workload
from the DaCapo benchmark suite [4]. The DaCapo
benchmark suite is specifically designed to assess the
performance impacts of techniques that transform pro-
grams, and so this workload gives a more realistic in-
dication of what one might expect to see on a regular
program run.

Table 6 shows that the unit test execution times vary
from a speedup of 13% to a slowdown of 104%, with
an average slowdown of 23%. However, the slowdown
on the more realistic DaCapo workload was a mere 2%,
which would be quite acceptable for many real-world
applications.

The results reported in Table 6 were computed on a
single-core 3.6GHz Pentium4 with 3GB RAM.

8 Related Work

Automatic generation of concrete equality compar-
isons is not uncommon: there are tools (eg, Eclipse),
libraries (eg, Apache Commons Lang), annotations (eg,
[15]), built-in language features (eg, [1, 14, 16, 18]), and
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Table 6 Performance evaluation
Times in Randoop Tests Vendor Tests DaCapo Input Averages
milliseconds Before After Change Before After Change Before After Change
JDK 7374 7699 +4% 4410 3837 -13% . . . -4%
Apache 2231 2514 +13% 2479 5049 +104% . . . +58%
JFreeChart 669 986 +47% 20382 21217 +4% 21355 21827 +2% +18%
Averages +21% +32% +2% +23%

language extensions (eg, [3]) that accomplish this goal.
Most of these approaches are for functional lan-

guages or work only for record-like structures within
object-oriented languages.

Static code generation techniques can be fragile if the
programmer needs to remember to regenerate the code
each time a new field is added to a class. Approaches
based on annotations, reflection, built-in language fea-
tures, and language extensions are robust in this respect.

Many of these approaches are also fragile in the face
of cyclic object references; notable exceptions include
Eiffel [14] and Scheme [1]. We borrow the idea of treat-
ing the tree-unfolding of cyclic structures from Scheme
and the strategy of using an assumption set to compute
equality of cyclic structures from Eiffel.

Grogono and Sakkinen [8] and Vaziri et al. [19]
both have a concept of abstract state. However, neither
of these approaches allow objects of different concrete
classes to be considered equals. The two crucial ele-
ments of our technique that facilitate these kinds of com-
parisons are explicit equality types and rich abstraction
functions.

Grogono and Sakkinen [8] also distinguish fields as
‘essential’ or ‘accidental’ and use this distinction to
specify object ownership properties that are taken into
account when cloning objects.

Vaziri et al. [19] distinguish fields as either part of the
object’s identity or not. The identity of an object must
be immutable, whereas the other fields may refer to mu-
table objects. Object construction is controlled so that
there can never be two different objects with the same
type and the same identity. In other words, Vaziri et al.
[19] adopt the Liskov and Guttag [13] view of the con-
sistency of equality, but provide some linguistic mech-
anisms to make this discipline easier for practicing pro-
grammers to follow.

Object mutability (or immutability) plays an impor-
tant role in the ideas of Liskov, Guttag, Grogono, Sakki-
nen, and Vaziri et al. We think programmers would be
well-advised to follow their ideas. However, in this pa-
per, we do not offer any guidance on how programmers

should use mutable objects.
The object contract and difficulties in implementing

it have been discussed extensively elsewhere. Abiteboul
and Bussche [2], for example, present three formaliza-
tions of deep equality and prove that they are equiva-
lent. Their main concern is deep equality in the pres-
ence of cyclic object graphs. Bloch’s book [5], which
is a standard reference for Java programmers, explains
other common pitfalls (such as asymmetry due to sub-
classing) and how to avoid them. Odersky et al. [16]
also discuss common pitfalls, and provide some recipes
for implementing equals and hashCode manually.

Finally, we note that Grogono and Sakkinen [8] con-
sider four different notions of equality, including a topo-
logical notion of equality that is not discussed elsewhere.
They use the term ‘structural equality’ for this topologi-
cal notion, and use the term ‘deep equality’ for what we
refer to as ‘concrete equality’ and some other authors
refer to as ‘structural equality.’

9 Conclusions

Implementing equals and hashCode by hand is te-
dious and error-prone. We have proposed a simple tech-
nique for defining equality in terms of abstraction func-
tions, and have shown that – at least for three non-trivial
programs – it is sufficiently expressive to replace the ma-
jority of handwritten equals and hashCode methods and
results in fewer bugs.

In the common case of concrete equality, the only
annotation required is @ConcreteEquality. Manual im-
plementations of concrete equality tend to have sim-
ple, rather than subtle, errors. Mechanization is clearly
feasible in this case, as demonstrated by a variety of
other languages and techniques. Our work lends further
support for this feature being included in every object-
oriented language.

Enhancing a language with explicit equality type dec-
larations (and an associated consistency checker) might
achieve many of the correctness improvements that we
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observed above, albeit without the advantage of auto-
matically generating method implementations.

The unique contribution of our technique is support
for the case where equality is to be defined over an ab-
stract state that differs from the concrete state. In these
cases, we observed that programmers tend to make more
subtle errors in their manual implementations of equals
and hashCode. These errors seem to involve either the
implicit definition of equality types, or the usage of the
abstraction function – but not the definition of the ab-
straction function itself, which programmers appear to
be able to implement correctly. By making equality
types explicit and mechanizing the usage of abstraction
functions, our technique completely avoids the errors
that programmers make in practice, while still providing
sufficient expressive power and, in most cases, requiring
less effort than manual implementations.
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Table 7 Classification of faults found (and fixed)
Object Contract Violations (§3) Difficulties (§5)
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JDK 1.4 Collections
SynchronizedSet.equals(Object) 1 1 1 1
UnmodifiableSet.equals(Object) 1 1 1 1
SynchronizedMap.equals(Object) 1 1 1 1
UnmodifiableMap.equals(Object) 1 1 1 1
Apache Commons Collections 3.2
MapBackedSet.equals(Object) 1 1 1 1
SynchronizedBuffer.equals(Object) 1 1 1 1
ReferenceMap.equals(Object) 1 1 1 1 1 1 1
PriorityBuffer.equals(Object) 1 1 1
JFreeChart 1.0.0
Classes implementing equals but not hashCode1 32 32
Classes ignoring abstract state/with cycle faults3 14 14
AbstractObjectList.equals(Object) 1 1 1 1 1 1 1
ShapeUtilities.equals(GeneralPath,GeneralPath) 1 1
XYImageAnnotation 1 1
Range.equals(Object) 1 1
Totals 8 8 1 1 2 2 17 32 2 37 6 8 15

1. The following JFreeChart classes implement equals but not hashCode: BlockBorder, ChartRenderingInfo,
Colorblock, CombinedDomainXYPlot, ContourPlot, DefaultBoxAndWhiskerCategoryDataset, DefaultDrawingSup-
plier, EntityCollection, FastScatterPlot, HistogramDataset, ItemLabelPosition, JFreeChart, KeyToGroupMap, Leg-
endGraphic, LegendItemCollection, MeterPlot, MiddlePinNeedle, PiePlot3D, PieSectionLabelGenerator, PinNee-
dle, PlotRenderingInfo, SimpleHistogramBin, SpiderWebPlot, StackedBarRenderer, StandardXYToolTipGenera-
tor, StandardXYZURLGenerator, SymbolicXYItemLabelGenerator, Task, TaskSeriesCollection, ThermometerPlot,
TimeTableXYDataset, XYPlot.

2. The equals implementations in the following JFreeChart ignore some part of their abstract state in order to avoid
potential cycles: CategoryPlot, CategoryTableXYDataset, ChartRenderingInfo, CombinedDomainCategoryPlot,
CombinedDomainXYPlot, CombinedRangeCategoryPlot, CombinedRangeXYPlot, DefaultTableXYDataset, Inter-
valXYDelegate, PlotRenderingInfo, TableXYDataset, XYPlotTests, XYSeriesCollection.
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