
Maintaining and Evolving GUI-Directed Test Scripts

Mark Grechanik, Qing Xie, and Chen Fu
Accenture Technology Labs

Chicago, IL 60601
{mark.grechanik, qing.xie, chen.fu}@accenture.com

Abstract

Since manual black-box testing of GUI-based APplica-
tions (GAPs) is tedious and laborious, test engineers cre-
ate test scripts to automate the testing process. These test
scripts interact with GAPs by performing actions on their
GUI objects. An extra effort that test engineers put in writ-
ing test scripts is paid off when these scripts are run re-
peatedly. Unfortunately, releasing new versions of GAPs
with modified GUIs breaks their corresponding test scripts
thereby obliterating benefits of test automation.

We offer a novel approach for maintaining and evolv-
ing test scripts so that they can test new versions of their
respective GAPs. We built a tool to implement our ap-
proach, and we conducted a case study with forty five pro-
fessional programmers and test engineers to evaluate this
tool. The results show with strong statistical significance
that users find more failures and report fewer false positives
(p < 0.02) in test scripts with our tool than with a flagship
industry product and a baseline manual approach. Our tool
is lightweight and it takes less than eight seconds to analyze
approximately 1KLOC of test scripts.

1 Introduction

Manual black-box testing of Graphical User Interface
(GUI)-based APplications (GAPs) is tedious and laborious,

since nontrivial GAPs contain hundreds of GUI screens and

thousands of GUI objects. Test automation plays a key role

in reducing high cost of testing GAPs [9][10][6]. In order

to automate this process, test engineers write programs us-

ing scripting languages (e.g., JavaScript and VBScript), and

these programs (test scripts) mimic users by performing ac-

tions on GUI objects of these GAPs using some underly-

ing testing frameworks. An extra effort put in writing test

scripts is paid off when these scripts are run repeatedly to

determine if GAPs behave as desired.

Crafting test scripts from scratch is a significant invest-

ment. Test engineers implement sophisticated testing logic,

specifically they write code that processes input data, uses

this data to set values of GUI objects, acts on them to cause

GAPs to perform computations en route, retrieves the re-

sults of these computations from GUI objects, and com-

pares these results with oracles to determine if GAPs behave

as desired. Reusing testing logic repeatedly is the ultimate

goal of test automation.

Unfortunately, releasing new versions of GAPs with

modified GUIs breaks their corresponding test scripts

thereby obliterating the benefits of test automation [12][5].

Consider a situation when a list box is replaced with a text

box in the successive release of some GAP. Test script state-

ments that select different values in this list box will result

in exception when executed on the text box. This simple

modification may invalidate many statements in test scripts

that reference this GUI object. This and many other simi-

lar modifications are typical between successive releases of

different GAPs, including such well-known GAPs as Adobe

Acrobat Reader and Microsoft Word. As many as 74% of

the test cases become unusable during GUI regression test-

ing [16], and internal evaluations of automated testing in

Accenture show that even simple modifications to GUIs re-

sult in 30% to 70% changes to test scripts. To reuse these

scripts, test engineers should fix them, and this process is

laborious and intellectually intensive.

Given the complexity of these scripts, it takes from hours

to days to fix them, so that they can test successive releases

of the corresponding GAPs. Existing tools detect excep-

tions in test scripts at runtime, i.e., test engineers must run

these scripts (often for many hours because these scripts

contain loops) in order to execute statements that reference

modified GUI objects. Exceptions interrupt continuous test-

ing and they require human intervention to fix them, and it

defeats the purpose of test automation.

After interviewing professional testers at different com-

panies we determined that they often discard old test scripts

and write new ones from scratch when new versions of

GAPs are released, due to the reasons mentioned above.

When rewriting scripts under time pressure, test engineers

often implement key components of testing logic poorly.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 408

Since test scripts are not shipped with their corresponding

GAPs to customers, these scripts are rarely checked for ad-

herence to requirements. In general, newly written scripts

are less sophisticated and effective than the old scripts,

which have been used and refined for some time.

Test engineers often lack time and necessary skills to un-

derstand and fix old scripts, especially if these scripts were

created by other engineers. Existing approaches provide lit-

tle help to address this pervasive and big problem. Cur-

rently, over six thousand of test personnel at Accenture deal

with test scripts. The annual cost of manual maintenance

and evolution of test scripts is estimated to be between $50

to $120 millions just in Accenture alone.

Models of GUIs can guide script-based testing by check-

ing operations in scripts against elements of GUI models.

Specifically, model-based GUI regression testing involves

building and comparing high-level models of GAPs before

applying algorithms that construct test cases for evolved

GAPs [21]. GUI models can also be extracted from the

source code of GAPs. However, there are two fundamental

limitations to extracting models from GAPs’ source code.

First, in black-box testing, source code of GAPs is not

available [4], and GUI testing is inherently black-box since

operations are performed on GUI objects rather than objects

in the source code. Currently, testing is often outsourced

to external organizations, and the source code is not shared

with these organizations for many reasons. Thus, testing or-

ganizations must proceed with black-box testing, and deriv-

ing precise GUI models from source code is not an option.

Second, even if the source code is available, there are

limitations that render approaches of deriving GUI models

from source code ineffective. Consider a situation when

GUI objects are created using the Application Programming
Interface (API) call CreateWindow, which is used in a

large number of Windows GAPs. This API call takes a num-

ber of parameter variables including a string variable that

holds the value of the type of the GUI object. The value

of this variable is often known only at runtime, making it

impossible to derive GUI models from the source code.

In addition, deriving models from the source code

depends on knowing the precise semantics of API

calls that create and manipulate GUI objects (e.g.,

CreateWindow), building appropriate parsers and ana-

lyzers for languages which are used to create GUI appli-

cations, and developing Integration Development Environ-
ment (IDE)-specific tools that extract GUI models from IDE

GUI resource repositories. The number of tuples is mea-

sured in tens of thousands in the Cartesian product of API

calls × programming languages × IDEs. This large num-

ber of combinations makes it difficult to come up with an

approach that would work with source codebases of differ-

ent GUI applications.

As it turns out, multiple disparate type systems make au-

tomated GUI testing very difficult. Existing regression test-

ing approaches work in settings where test harnesses are

written in the same language and use the same type system

as the programs that these harnesses test (e.g., JUnit test

harnesses are applied to Java programs). In contrast, when

testing GAPs two type systems are involved: the type sys-

tem of the language in which the source code of the GAP

is written and the type system of the language in which test

scripts are written. When the type of the GUI object is mod-

ified, the type system of the test script “does not know” that

this modification occurred, thereby aggravating the process

of maintaining and evolving test scripts.

Our contribution is a novel approach that automatically

identifies changes between GUI objects and locates test

script statements that reference these modified GUI objects.

The input is GUIs of the successive releases of the same

GAP and the test script for the prior release of the GAP.

These GUIs are compared and modified GUI objects are

located. Then, the test script is analyzed statically to inval-

idate statements that reference these modified GUI objects.

This analysis results in warnings that enable test engineers

to fix errors in test scripts in a way similar to how compilers

issue warnings that enable programmers to fix programs.

We built a tool based on our approach as an Eclipse plu-

gin, it is lightweight, and it takes less than eight seconds

to analyze approximately 1KLOC of test scripts. We con-

ducted a case study with 45 professional programmers and

test engineers to evaluate our approach. The results showed

with strong statistical significance that users find more test

script statements and report fewer false positives (p< 0.02)

in test scripts with our tool than with a flagship industry

testing tool and a manual approach.

2 The Problem

In this section, we give background on test automation

with scripts and formulate the problem statement.

2.1 Background

The objectives of test automation are, among other

things, to reduce the human resources needed in the test-

ing process and to increase the frequency at which software

can be tested. Traditional capture/replay tools provide a ba-

sic test automation solution by recording mouse coordinates

and user actions as test scripts, which are replayed to test

GAPs. Since these tools use mouse coordinates, test scripts

break even with the slightest changes to the GUI layout.

Modern capture/replay tools (e.g., Quick Test Profes-
sional (QTP)1, Abbot2, Selenium3, and Rational Functional

1http://en.wikipedia.org/wiki/QuickTest Professional
2http://abbot.sourceforge.net
3http://selenium.openqa.org

409

Tester (RFT)4 avoid this problem by capturing values of dif-

ferent properties of GUI objects rather than mouse coordi-

nates. This method is called testing with object maps, and

its idea is to reference GUI objects by using unique names

in test scripts. Test engineers assign unique names to col-

lections of the values of the properties of GUI objects, and

they use these names in test script statements to reference

these objects.

In testing with object maps, the pairs (uname,

{<p,v>}), where {<p, v>} is the set of the pairs of val-

ues v of the properties p of a GUI object, are collected dur-

ing capture and stored in object repositories (ORs) under

the unique name uname. During playback, the references

to “uname” in scripts are translated into operations that re-

trieve {<p,v>} from ORs, and the referenced GUI object

is identified on the screen by matching the retrieved values

against its properties. This extra level of indirection adds

some flexibility since cosmetic modifications to GUI ob-

jects may not require changes to test scripts. Changing the

GUI object property values in the OR ensures that the cor-

responding GUI objects will be identified during playback.

However, many changes still break scripts, for exam-

ple, changing the type of a GUI object from the list box

to the text box. We define test script statements that access

and manipulate GUI objects as failures if these statements

are broken because of modifications made to the referenced

GUI objects in the successive releases of GAPs. Test en-

gineers put a lot of efforts in detecting and understanding

failures, so that they can fix test scripts to make them work

on modified versions of GAPs.

2.2 Test Automation Model

A test automation model that illustrates interactions be-

tween test scripts and GAPs is shown in Figure 1. State-

ments of test scripts are processed by the scripting language

interpreter that is supplied with a testing platform. When

the interpreter encounters statements that access and manip-

ulate GUI objects, it passes the control to the testing plat-

form that translates these statements into a series of instruc-

tions that are executed by the underlying GUI framework

and the operating system.

At an abstract level we can view the layers between test

scripts and GAPs as a reflective connector. A connector is a

channel that transmits and executes operations between test

scripts and GAPs. Reflection exposes the type of a given

GUI object, and it enables test scripts to invoke methods

of objects whose classes were not statically known before

the GAP is run. This model combines a connector between

scripts and GAPs with reflection so that test scripts can ac-

cess and manipulate GUI objects at run-time.

4http://www-306.ibm.com/software/awdtools/tester/functional

Figure 1. A model of interactions between
test scripts and GAPs.

Each statement in test scripts, which accesses and ma-

nipulates GUI objects consists of the following operations:

(1) navigate to some destination GUI object and (2) in-

voke methods to perform actions on this object, includ-

ing getting and setting values. Using implementations of

the concepts of reflection and connector, statements in test

scripts can navigate GUI objects in GAPs and perform op-

erations on these objects. This is the essence of the current

implementations of test automation tools.

2.3 Fundamental Problems

Several fundamental problems make it difficult to main-

tain and evolve test scripts. First, specifications for GUI

objects are often not available, and these objects are cre-

ated dynamically in the GAPs’ processes and the contexts

of the underlying GUI frameworks (e.g., Windows or Java

SWT). In this paper we deal with black-box testing, so ob-

taining information about GUI objects from the source code

of GAPs is not an option. Therefore, test engineers have to

use capture/replay tools to extract values of properties of

GUI objects, so that these objects can be later identified on

GUI screens by matching these prerecorded values with the

properties of GUI objects that are created at runtime. Be-

cause complete specifications of GUI objects are not avail-

able, it is difficult to analyze statically how GUI objects are

accessed and manipulated by test script statements.

The other problem is that test scripts are run on testing

platforms externally to GAPs, and therefore cannot access

GUI objects as programming objects that exist within the

same programs. Using API calls exported by testing plat-

forms is a primary mode of accessing and manipulating GUI

objects, and these API calls lead to various run-time errors

in test scripts especially when their corresponding GAPs are

modified.

Consider a test script statement written using QTP

VbWindow("Login").VbButton("DoIt").Click.

410

The API calls VbWindow and VbButton are exported by

the QTP testing framework. Executing these API calls iden-

tifies a window whose property values match those stored in

some OR under the name “Login,” and this window con-

tains a button whose property values match those stored in

some OR under the name “DoIt”. By calling the method

Click, this button is pressed. Since API calls take names

of the property values of GUI objects as string variables,

and GUI objects are identified only at runtime, it is impos-

sible to apply effective sound checking algorithms. These

problems exacerbate the process of detecting and under-

standing failures in test scripts, making maintenance and

evolution of these scripts expensive and prohibitive.

Our investigation revealed that these fundamental prob-

lems are inherent for most existing open-source and com-

mercial automated testing tools. In this paper, we concen-

trate on QTP, a flagship automated testing tool manufac-

tured by Hewlett-Packard Corp5.

2.4 Current Approach

Currently, test engineers run test scripts that are writ-

ten for the previous releases of a GAP on the successive

releases of this GAPs to determine if these scripts can be

reused. They use some existing tool that includes a script

debugger (e.g., QTP). Once a statement that accesses a

modified GUI object is reached, the testing platform gener-

ates an exception and terminates the execution of the script.

The engineer analyzes the exception, fixes the statement,

and reruns the script again. This process is repeated until

the script runs without throwing any exceptions.

Often it takes a long time until statements that refer-

ence changed GUI objects are executed. Test scripts con-

tain loops, branches, and fragments of code that implement

complicated testing logic in addition to statements that ac-

cess GUI objects. Consider a test script that contains a loop

with code that reads in and analyzes data from files, com-

putes some result from this data, and inserts it in some GUI

object. Computing this result may take hours depending

on the sizes of the files. Test scripts often contain multiple

computationally intensive loops that are interspersed with

statements that access GUI objects. Each time an excep-

tion is thrown because of a failure, the results of the execu-

tion are discarded, and the script should be rerun after en-

gineers fix this failure. Commenting out loops (when pos-

sible) speeds up execution, but it changes the logic of test

scripts, and subsequently the quality of repairs.

In addition, existing testing tools provide little informa-

tion about how to fix failures in test scripts. When a test

script is executed against a new version of the GAP, exist-

ing tools have no information about changes between GUI

5While the worldwide market for automated test tools is over $1.1Bil,

QTP is used by over 90% of Fortune 500 companies [3].

objects that lead to exceptions. As a result, test engineers

must analyze GUIs manually to obtain this information and

relate it to the exceptions, and this is a laborious and intel-

lectually intensive process.

2.5 The Problem Statement

Our approach helps test personnel only when modifica-

tions of GUI objects affect corresponding test scripts. We

do not consider cases when test scripts should be evolved

independently of GUI changes, for example, when test en-

gineers determine that they should add new testing logic to

test scripts.

We do not attempt to make our approach sound and com-

plete. A sound approach ensures the absence of failures in

test scripts if it reports that no failures exist, or if all reported

failures do in fact exist, and a complete approach reports

all failures, or no failures for correct scripts. Our approach

should statically detect failures that result from modifica-

tions of GUI objects with a high degree of automation and

good precision.

3 Our Solution

In this section, we present core ideas behind our ap-

proach that we call Reducing Effort in Script-based Testing
(REST) and we describe the REST architecture.

3.1 Core Ideas

In order to enable checking of references to GUI objects

in test scripts statically, we base our solution on three core

ideas. First, we should compare GUIs of the successive re-

leases of GAPs to determine what GUI objects are modified.

Second, using the results of this comparison we detect what

references to GUI objects in test scripts are affected by mod-

ified GUI objects. Finally, once it is known what statements

in test scripts are affected by the modifications to GUIs, we

should analyze these scripts to determine what other state-

ments are affected as a result of using values computed by

the statements that reference modified GUI objects.

3.2 Architecture

The architecture of REST is shown in Figure 2. Solid ar-

rows show command and data flows between components,

and numbers in circles indicate the sequence of operations

in the workflow. The inputs to REST are two GUIs of the

versions N and N+1 of the running GAP, the OR, and the

test script for the GAP of the version N.

The first step involves modeling the GAPs. GUIs of

GAPs are modeled as trees whose nodes are composite

GUI objects (e.g., frame) that contain other GUI objects,

411

leaves are primitive or simple GUI objects (e.g., buttons),

and parent-child relationships between nodes (or nodes and

leaves) defines a containment hierarchy. The root of the tree

is the top container window.

The GUI Modeler (1) obtains information about the

structure of the GUI and all properties of individual objects

and it outputs (2) GUI trees GTn and GTn+1 for the ver-

sions N and N+1 respectively. These trees are compared

(3) by the GUI tree Comparator in order to determine what

GUI objects are modified between the versions of the GAPs.

The Comparator outputs (4) the GUI difftree that is a com-

bination of the GUI trees GTn and GTn+1 with matched GUI

objects mapped to each other.

In general, it is an undecidable problem to compute a

correct mapping function between two GUI trees fully auto-

matically. We briefly describe our semiautomatic mapping

algorithm in the Section 4.2, and we provide a utility (5)
for the user to modify mappings between GUI objects man-

ually. Normally, given that GUI screens contain less than a

hundred GUI objects, fixing incorrectly identified mappings

manually does not require any serious effort.

The Script Analyzer is a component that analyzes test

scripts to determine the impact of GUI changes on these

scripts. To do that, (7) the script for GAP of the version N
is parsed using the Script Parser and (8) the parse tree is

generated. This tree contains an intermediate tree represen-

tation of the test script where references to GUI objects are

represented as nodes.

Recall that GUI objects are described using unique

names with which property values of these objects are in-

dexed in ORs. These names are resolved (10) into the

values of properties of GUI objects using the component

OR Lookup (11) with which the Script Analyzer interacts

when it performs analyses.

Thus the Script Analyzer takes (9) the parse tree, (6)
the GUI difftree, and (11) values of properties of GUI ob-

jects as its inputs and (12) produces a change guide that

contains messages about possible failures in test scripts.

Script
Analyzer

Parse tree

………
………
………
………

5

8 9

6

12

13

14

7

GAP Version N

GAP Version N+1

GUI diff tree

Script for
GAPN+1

Change
Guide

Script
Parser

1 2

G
U

I M
odeler C

om
pa

ra
to

r…………
GTn

…………
GTn+1

3
4

OR
Lookup

10Object
Repository

(OR)

11

Script for
GAPN

Figure 2. The architecture of REST.

For example, a message says that at line 23 the script S
sets a value of GUI object 〈Login, Name〉, however, the

type of this object is changed from EditBox to ListBox.

Test engineers (13) review these messages and modify the

original test script for the GAP of the version N so that it

can test the successive version N+1 of this GAP. In addi-

tion, they make corresponding modifications to the property

values of the GUI objects in the OR.

We built REST as a plugin for Eclipse based on this ar-

chitecture, and we briefly review core features of our imple-

mentation in the next section. A short movie demonstrating

how REST works is available at our website6.

4 Implementation

There are two challenging aspects of our implementa-

tion of REST: a reflective connector and an impact analysis

component that uses the results of a GUI model comparison

algorithm. In this section, we briefly describe our imple-

mentation of these components of REST.

4.1 Accessibility As a Connector

Since we cannot access and manipulate GUI objects as

pure programming objects (they only support user-level in-

teractions), we use accessibility technologies as a universal

mechanism that provides programming access to GUI ob-

jects. Accessibility technologies provide different aids to

disabled computer users (e.g., screen readers for the visu-

ally impaired). Most computing platforms include accessi-

bility technologies since it is mandated by the law [1].

The main idea of most implementations of accessibil-

ity technologies is that GUI objects expose a well-known

interface that exports methods for accessing and manipu-

lating these objects. For example, a Windows GUI object

should implement the IAccessible interface in order to

be accessed and controlled using the Microsoft Active Ac-
cessibility (MSAA) API calls. In REST, accessibility serves

as a uniform reflective connector that enables test scripts to

access and control GUI objects of GAPs (as described in

Section 2.2), so that REST does not depend on specific (and

often proprietary) testing platforms.

4.2 Impact Analysis

The impact analysis component computes the impact of

modified GUI objects on statements that reference these ob-

jects, and the impact of affected statements on other state-

ments in test scripts. The latter is accomplished by a combi-

nation of routine control and data-flow analyses, while the

former is a function of GUI object modifications.

6http://www.markgrechanik.com/Rest/Rest.html

412

Using MSAA, REST traverses the GUI tree starting from

the root, i.e., the top container window. Once at some GUI

object, REST extracts values of its properties and encodes

them in an internal representation format. These properties

are the name of the object, its coordinates, type, position

in the tree hierarchy, and the style (e.g., color, type of the

border, modality). These properties are used to compare

trees in order to find modified GUI objects.

We designed and built a comparison algorithm for com-

puting mappings between GUI objects of GUI trees. This

algorithm takes as its input the GUI trees Γn and Γn+1 for

two successive releases of the same GAP and computes

the mapping set μ that contains relations between GUI ob-

jects θ and ρ of these trees along with their match score σ,

((θ,ρ) ∈ μ,σ),θ ∈ Γn,ρ ∈ Γn+1,0 ≤ σ ≤ 1. The main idea

of the algorithm is to compute the match score σ for each

pair of GUI objects between successive releases of the GAP,

and the final mappings between GUI objects are determined

on a basis of the highest scores.

The score is computed as the normalized weighted sum

σ = Σwp|pθ − pρ|, where pθ and pρ are the values of the

property p of the GUI objects θ and ρ, and 0≤wp ≤ 1 is the

weight that is assigned to the property p. When σ = 1, the

objects are identical, when σ = 0, the objects do not match

at all, and when 0 < σ < 1, the match is partial. Given

m objects in the GUI trees Γn and n objects in Γn+1, the

algorithm produces mn scores for each pair of objects. The

mapping is confirmed if σ exceeds a certain threshold value,

0.1, which we chose experimentally.

The weights for the properties of GUI objects were also

chosen experimentally. Experimental results showed that

using this algorithm between 60% to 80% of mappings are

identified correctly. Incorrectly computed mappings affect

the precision with which REST identifies failures in test

scripts, leading to more false positives. However, as the

case study showed, even with this precision REST performs

better than competitive approaches.

5 Case Study Design

To determine how effective REST is, we conduct a case

study with 45 participants. Our goal is to evaluate how well

these participants can find failures in test scripts (when run-

ning against the new version of the GAP) using three dif-

ferent approaches: manual, using Quick Test Pro (QTP) (a

flagship industrial testing tool from HP), and using REST

as a guiding tool. Specifically, we want to determine us-

ing what approach users can report more correctly identified
failures (CIF) in test scripts that result from changed GUI

objects between successive releases of the subject GAPs,

and with what approach users report fewer false positives

(FPs), i.e., correct statements in test scripts that participants

report as failures by mistake.

5.1 Hypotheses

We introduce the following null and alternative hypothe-

ses to evaluate how close the means are for the CIFs and FPs

for control and treatment groups. Unless we specify other-

wise, participants of the treatment group use REST, and par-

ticipants of the control group use either manual approach or

QTP. We seek to evaluate the following hypotheses at a 0.05

level of significance.

H0 The primary null hypothesis is that there is no differ-

ence in the numbers of CIFs and FPs between partici-

pants who attempt to locate failures in test scripts man-

ually, using QTP, or REST.

H1 An alternative hypothesis to H0 is that there is statisti-

cally significant difference in the numbers of CIFs and

FPs between participants who attempt to locate failures

in test scripts manually, using QTP, or REST.

Once we test the null hypothesis H0, we are interested

in the directionality of means, μ, of the results of control

and treatment groups. We are interested to compare the ef-

fectiveness of REST versus the QTP and a baseline manual

approach with respect to CIFs and FPs.

H1 (CIFs of REST versus QTP) The effective null hy-

pothesis is that μQTPci f = μRESTci f , while the true null hy-

pothesis is that μQTPci f ≥ μRESTci f . Conversely, the alterna-

tive hypothesis is that μQTPci f < μRESTci f .

H2(FPs of REST versus QTP) The effective null hypoth-

esis is that μQTPf p = μRESTf p , while the true null hypoth-

esis is that μQTPf p ≤ μRESTf p . Conversely, the alternative

hypothesis is that μQTPf p > μRESTf p .

H3(CIFs of REST versus Manual) The effective null hy-

pothesis is that μMci f = μRESTci f , while the true null hy-

pothesis is that μMci f ≥ μRESTci f . Conversely, the alterna-

tive hypothesis is that μMci f < μRESTci f .

H4(FPs of REST versus Manual) The effective null hy-

pothesis is that μMf p = μRESTf p , while the true null hy-

pothesis is that μMf p ≤ μRESTf p . Conversely, the alterna-

tive hypothesis is that μMf p > μRESTf p .

In addition, we want to know if the performance of the

participants who have testing experience differs from those

who do not have any testing experience. The categorical

variables are testing experience and reported CIFs and FPs.

H5 (Independence of testing experience from CIFs) the

testing categorical variable is independent from the

variable CIF; the alternative is that they are associated.

413

H6 (Independence of testing experience from FPs) the test-

ing categorical variable is independent from the vari-

able FP; the alternative is that they are associated.

5.2 Subject GAPs and Test Scripts

We selected four open source subject GAPs based on the

following criteria: easy-to-understand domain, limited size

of GUI (less than 200 GUI objects), and two successive re-

leases of GAPs with modified GUI objects. Twister (ver-

sions 2.0 and 3.0.5) is a real-time stock quote downloading

programming environment that allows users to write pro-

grams that download stock quotes7. mRemote (versions

1.0 and 1.35) enables users to manage remote connections

in a single place by supporting various protocols (e.g., SSH,

Telnet, and HTTP/S)8. University Directory (ver-

sions 1.0 and 1.1) allows users to obtain data on different

universities9. Finally, Budget Tracker (versions 1.06

and 2.1) is a program for tracking budget categories, budget

planning for each month and keeping track of expenses10.

Most of these applications are nontrivial, they are highly

ranked in Sourceforge with the activity over 95%.

Next step was to obtain test scripts for subject GAPs.

We obtained existing test scripts from sample script li-

braries that come with QTP. These scripts contained both

GUI and non-GUI related code (e.g., setting values of envi-

ronment variables and reading and manipulating directories

contents). To make these scripts thorough, we generated

statements that referenced GUI objects in the subject GAPs

using QTP. Then we interspersed and replicated the gener-

ated statements throughout the test scripts. Information on

subject GAPs and test scripts can be found in Table 1.

5.3 Methodology

We used a cross validation study design in a cohort of 45

participants who were randomly divided into three blocks

labeled using different color labels. The study was sec-

tioned in three experiments in which each block was given

a different approach (manual, QTP, or REST) to apply to

the subject GAPs. Thus each participants used each ap-

proach on different GAPs in the process of the case study.

We randomly distributed participants so that each block has

approximately the same number of participants with and

without testing experience. Before the study we gave three

one-hour tutorials on using each of these approaches on a

GAP (mRemote) that was not used during the experiments

thereby eliminating the knowledge of the GAP as a possible

confounding factor.

7http://sourceforge.net/projects/itwister/
8http://sourceforge.net/projects/mremote/
9http://sourceforge.net/projects/universitydir/

10http://sourceforge.net/projects/budgettracker/

All participants are Accenture employees who work on

consulting engagements as programmers and managers for

different client companies. These participants have dif-

ferent backgrounds, experience, and belong to different

groups of the total Accenture workforce of approximately

180,000 employees. Out of 45 participants (14 of whom are

women), 23 had prior testing experience ranging from three

weeks to ten years, and 18 participants reported prior ex-

perience with writing programs in scripting languages, in-

cluding test scripts. Seven participants reported prior expe-

rience with QTP (which is used in this case study), six par-

ticipants reported prior experience with other GUI testing

tools. Twenty nine participants have bachelor degrees and

ten have master degrees in different technical disciplines.

5.4 Normalizing Sources of Variations

Sources of variation are all things that could cause an ob-

servation to have a different value from another observation.

We identify sources of variation as the prior experience of

the participants with tools, GAPs, and test scripts used in

this study, the amount of time they spend on learning how

to use tools, and different computing environments which

they use during the case study. The latter is extremely sen-

sitive since some participants who use slow laptops with

limited form-factor are likely to be less effective than other

participants who use much better computing systems.

We design this experiment to drastically reduce the ef-

fects of covariates (i.e., nuisance factors) in order to normal-

ize sources of variations. Using the cross-validation design

we normalize variations to a certain degree since each par-

ticipant uses all three approaches on different subject GAPs.

We selected participants who had no prior knowledge of the

subject GAPs. At the same time, subject GAPs belong to

domains that are easy to understand, and these GAPs have

similar complexity, so variations between them are negli-

gent. However, different computing environments and prior

experience of users with testing scripts and subject GAPs

are major covariates.

We eliminated the effect of the computing environments

by providing all participants with Dell Latitude D630 lap-

tops with Intel Core 2 Duo Processor 2.4GHz with 4MB L2

Cache, 1Gb RAM, and 14.1” WXGA+ displays. Technical

support at Accenture burnt the same standard Windows XP-

based image on these laptops. We installed GAPs, scripts,

and tools in a virtual machine that runs on top of the Mi-

crosoft Virtual PC thereby allowing participants to obtain a

common environment of the entire experimental setup. This

virtual machine can be downloaded from our website11.

11http://www.markgrechanik.com/Rest/RestVM.zip

414

Size Analysis, sec Me- Failures

Subject Script Refd Model, Model Add, Del APIs, Gene- Fail mory, CIFs False

Program LOC GUI, Vn Vn+1 GUI GUI No. of rate Det- Mb Posi-

objs Kb Kb objs objs calls model ect tives

Twister 492 54 30 38 81 12 42 1.7 5.2 105 16 19

mRemote 538 17 46 50 42 20 28 1.6 6.4 106 17 9

Univ Dir 920 36 33 35 35 9 29 1.4 6.2 105 13 2

Budget Tr 343 8 31 32 18 5 17 1.3 4.1 106 14 1

Table 1. Experimental results of applying REST to subject GAPs. Column Size contains seven subcolumns

reporting the numbers of LOC in test scripts, the number of GUI objects that are referenced in the script, sizes of GUI models for

versions Vn and Vn+1, numbers of added and deleted GUI objects, and the numbers of API calls that reference GUI objects. The

column Analysis reports times to generate GUI models and to detect failures, followed by the column that shows the REST

maximum memory consumption. The column Failures show the number of CIFs and False Positives reported by REST.

5.4.1 Tests and The Normality Assumption

We use one-way ANOVA, t-tests for paired two sample for

means, and χ2 to evaluate the hypotheses. These tests are

based on an assumption that the population is normally dis-

tributed. The law of large numbers states that if the pop-

ulation sample is sufficiently large (between 30 to 50 par-

ticipants), then the central limit theorem applies even if the

population is not normally distributed [20, page 244-245].

Since we have 45 participants, the central limit theorem ap-

plies, and the above-mentioned tests have statistical signifi-

cance.

5.5 Threats to Validity

A threat to the validity of this case study is that our sub-

ject GAPs have GUI screens that are of small to moderate

size (a couple of hundreds of GUI objects). Increasing the

size of GUIs of GAPs to thousands of GUI objects may

lead to a nonlinear increase in the analysis time and space

demand for REST. If it turns out to be the case, future work

could focus on making REST scalable.

Since seven participants reported prior experience with

QTP, this case study can be viewed as biased towards QTP

versus the manual approach and REST. To reduce this bias,

we provided a comprehensive tutorial on QTP for all par-

ticipants of the study, and given the large number of par-

ticipants we expect this bias to be negligent. However, the

results of this study show that participants who had prior

experience with QTP performed better with other competi-

tive approaches. In addition, prior testing experience of the

participants remains a source of variation.

We used nontrivial test scripts that contained code writ-

ten by different test engineers, however, we cannot present

metrics of how representative these scripts are of those used

to test GAPs. In addition, we could not find any data that re-

port percentage of coverage of GUI objects by test scripts.

Finally, subject test scripts contain references to GUI ob-

jects that are located on one GUI screen per GAP. We re-

lied on the fact that test personnel within Accenture is re-

quired to enforce modularity by writing one test script per

GUI screen. Extending REST to support test scripts whose

statements reference objects on different GUI screens is a

routine exercise.

6 Results

6.1 Benchmark Evaluation

To measure characteristics of REST, we carried out ex-

periments using Windows XP Pro that ran on a computer

with Intel Pentium IV 3.2GHz CPU and 2GB of RAM.

Experimental results of applying REST to the subject pro-

grams and scripts are shown in Table 1.

6.2 Case Study Results

In this section, we report the results of the case study

and evaluate null hypotheses. We use one-way ANOVA, t-

tests for paired two sample for means, and χ2 to evaluate

the hypotheses that we stated in Section 5.1.

6.2.1 Variables

A main independent variable is the approach (manual, QTP,

REST) that participants use to find failures in test scripts.

The other independent variable is participants’ testing ex-

perience. Dependent variables are the numbers of correctly

identified failures (CIFs) and false positives (FPs). We re-

port these variables in this section. The effect of other vari-

ables (GAPs, test scripts, prior knowledge) is minimized by

the design of this case study.

415

(a) Correctly Identified Failures (CIF). (b) False Positive (FPs) by approach.

Figure 3. Statistical summary of the results of the case study for CIFs and FPs.The central box represents

the values from the lower to upper quartile (25 to 75 percentile). The middle line represents the median. The thicker vertical line

extends from the minimum to the maximum value, excluding outside and far out values, which are displayed as separate circles and

small squares. The filled-out box represents the values from the minimum to the mean, and the thinner vertical line extends from the

quarter below the mean to the quarter above the mean. An outside value is defined as a value that is smaller than the lower quartile

minus 1.5 times the interquartile range, or larger than the upper quartile plus 1.5 times the interquartile range (inner fences). A far

out value is defined as a value that is smaller than the lower quartile minus three times the interquartile range, or larger than the

upper quartile plus three times the interquartile range (outer fences).

6.2.2 Testing the Null Hypothesis

We used ANOVA to evaluate the null hypothesis H0 that

the variation in an experiment is no greater than that due

to normal variation of individuals’ characteristics and er-

ror in their measurement. The results of ANOVA confirm

that there are large differences between the groups for CIF

with F = 19.4 > Fcrit = 3.08 with p ≈ 5.9 · 10−8 which is

strongly statistically significant. The mean CIF for the man-

ual approach is 0.84 with the variance 2.6, which is smaller

than the mean CIF for QTP, 1.84 with the variance 6.6,

which is smaller than the mean CIF for REST, 5.15 with

the variance 20.7. Based on these results we reject the null

hypothesis and we accept the alternative hypothesis H1.

A statistical summary of the results of the case study for

CIFs and FPs (median, quartiles, range and extreme values)

are shown as box-and-whisker plots in Figure 3(a) and Fig-

ure 3(b) correspondingly with 95% confidence interval for

the mean.

6.2.3 Comparing REST with QTP and Manual

To test the null hypothesis H1 and H2, we applied two t-

tests for paired two sample for means, for CIFs and FPs for

participants who used QTP and REST. The results of this

test for CIFs and for FPs are shown in Table 2. The column

Samples shows that 38 to 41 out of a total of 45 partic-

ipants participated in all experiments (several participants

missed one or two experiments). Based on these results we

reject the null hypotheses H1 and H2, and we accept the

alternative hypotheses that say that participants who use
REST report fewer false positives and correctly identify
more failures in test scripts than those who use QTP.

To test the null hypotheses H3 and H4, we applied two

t-tests for paired two sample for means, for CIFs and FPs

for participants who used the baseline manual approach and

REST. The results of this test for CIFs and for FPs are

shown in Table 2. Based on these results we reject the null

hypotheses H3 and H4, and we accept the alternative hy-

potheses that say that participants who use REST report
fewer false positives and correctly identify more failures
in test scripts than those who use a manual approach.

6.2.4 Testing Relationships

We construct a contingency table to establish a relationship

between CIFs and FPs for participants with and without

testing experience as shown in Table 3. To test the null

hypotheses H5 and H6 that the categorical variables CIFs

and FPs are independent from the categorical variable test-

ing experience, we apply two χ2-tests, χ2
ci f and χ2

f p for CIFs

and FPs respectively. We obtain χ2
ci f = 21.3 for p < 0.0001

and χ2
f p = 11.5 for p< 0.0031. The high values of χ2 allow

us to reject H5 and H6 in favor of the alternative hypothe-

ses suggesting that there is statistically strong relation-

416

H Var Approach Samples Min Max Median μ σ2 DF C p T Tcrit

H1 CIF
QTP 41 0 11 1 1.76 6.24

40 0.23 5.4 ·10−5 4.52 2.02
REST 41 0 14 4 5.0 20.15

H2 CIF
Manual 38 0 7 0 0.84 2.62

37 0.08 1.9 ·10−6 5.65 1.87
REST 38 0 14 5 5.16 20.73

H3 FP
QTP 41 0 8 2 2.95 8.45

40 0.03 0.02 2.45 2.02
REST 41 0 8 1 1.61 4.14

H4 FP
Manual 40 0 17 6 6.2 18.8

39 0.14 2.4 ·10−7 6.24 2.02
REST 40 0 8 1 1.73 4.31

Table 2. Results of t-tests of hypotheses, H, for paired two sample for means for two-tail distribution, for dependent

variable specified in the column Var (either CIF or FP) whose measurements are reported in the following columns. Extremal

values, Median, Means, μ, variance, σ2, degrees of freedom, DF, and the pearson correlation coefficient, C, are reported along with

the results of the evaluation of the hypotheses, i.e., statistical significance, p, and the T statistics.

Test CIFs FPs

Exp Man QTP REST Man QTP REST

Yes 29 30 115 128 85 33

No 3 40 81 104 33 32

Total 32 70 196 232 118 65

Table 3. Contingency table shows relation-
ship between CIFs and FPs for participants
with and without testing experience.

ship between testing experiences of participants and the
numbers of reported CIFs and FPs. T-tests reveal that

REST made a positive difference for inexperienced partic-

ipants, while those with testing experience still performed

better with REST than with QTP or the manual approach.

7 Related Work

GAPs present special challenges to regression testing be-

cause the input-output mapping does not remain constant

across successive versions of the software [17][15]. Nu-

merous techniques have been proposed to automate regres-

sion testing. These techniques usually rely on informa-

tion obtained from the modifications made to the source

code. Some of the popular regression testing techniques

include analyzing the program’s control-flow structure [2],

analyzing changes in functions, types, variables, and macro

definitions [7][13], using def-use chains [11], constructing

procedure dependence graphs [8][19], and analyzing code

and class hierarchy for object-oriented programs [14][18].

These techniques are not directly applicable to black-box

GUI regression testing, since regression information is de-

rived from changes made to the source code.

Closely related is a regression testing technique for GUIs

(GUITAR), which repairs test cases that have become unus-

able for the modified GUIs [16]. A key difference is that

REST works with arbitrary complex test scripts created by

different test engineers while GUITAR maintain test cases

that are generated by GUITAR itself. It is unclear if GUI-

TAR can be extended to arbitary test scripts.

Proponents of model-based GUI-directed regression

testing advocate building high-level models of GAPs before

applying algorithms that construct test cases for evolved

GAPs [21]. We consider REST complementary to this ap-

proach since it could enhance REST and improve its preci-

sion and usability by utilizing richer models.

8 Conclusion and Future Work

We offer a novel and effective approach called REST for

maintaining and evolving test scripts so that they can test

new versions of their respective GAPs. We built a tool to

implement our approach, and the results of evaluation show

that users find more failures and report fewer false posi-

tives in test scripts with our tool than with competitive ap-

proaches.

We consider REST as the first step towards develop-

ing different solutions for this big and pervasive problem.

Specifically, we envision the following areas of research.

GUI Models. Constructing and utilizing richer GUI mod-

els has significant untapped potential for solving the

problem of maintaining and evolving GUI-directed test

scripts.

GUI Comparison Algorithms. It is important to develop

algorithms that compare GUIs with a high degree of

automation and precision.

417

Testing Platforms. Extending testing platforms with the

capability to keep and process information about GUIs

may enable researchers to create solutions in which

these platform will “heal” broken test scripts.

Test Script Typechecking. A huge potential lies in de-

veloping type systems that enable typechecking test

scripts with respect to GUI objects of GAPs.

Static and Dynamic Analyses. Few case study partici-

pants strongly suggested that REST should be inte-

grated with QTP since the results of the REST static

analysis can easily be verified by running test scripts

under QTP. In addition, participants with testing expe-

rience reported that they used QTP during experiments

with REST to verify some reported failures, and they

thought it improved their productivity.

Acknowledgments

We warmly thank Sebastian Elbaum, Yannis Smarag-

dakis, Andrew Ko, and anonymous reviewers for their com-

ments and suggestions.

References

[1] Section 508 of the Rehabilitation Act.

http://www.access-board.gov/508.htm.

[2] T. Ball. On the limit of control flow analysis for regres-

sion test selection. In Proceedings of ISSTA-98, vol-

ume 23,2 of ACM Software Engineering Notes, pages

134–142, New York, Mar.2–5 1998.

[3] M.-C. Ballou. Worldwide distributed automated soft-

ware quality tools: 2007-2011 forecast and 2006 ven-

dor shares: Dominating quality. IDC Report 210132,

1, Dec. 2007.

[4] B. Beizer. Software Testing Techniques. Van Nostrand

Reinhold, New York, 2nd edition, 1990.

[5] S. Berner, R. Weber, and R. K. Keller. Observations

and lessons learned from automated testing. In ICSE
’05, pages 571–579, New York, NY, USA, 2005.

[6] A. Bertolino. Software testing research: Achieve-

ments, challenges, dreams. In FOSE ’07: 2007 Future
of Software Engineering, pages 85–103, Washington,

DC, USA, 2007. IEEE Computer Society.

[7] J. Bible, G. Rothermel, and D. S. Rosenblum. A com-

parative study of coarse- and fine-grained safe regres-

sion test-selection techniques. ACM Trans. Softw. Eng.
Methodol., 10(2):149–183, 2001.

[8] D. Binkley. Reducing the cost of regression testing by

semantics guided test case selection. In G. Caldiera

and K. Bennett, editors, ICSM, pages 251–263, Wash-

ington, Oct. 1995.

[9] E. Dustin, J. Rashka, and J. Paul. Automated Soft-
ware Testing: Introduction, Management, and Perfor-
mance. Addison-Wesley, September 2004.

[10] M. Fewster and D. Graham. Software Test Automa-
tion: Effective Use of Test Execution Tools. Addison-

Wesley, September 1999.

[11] M. J. Harrold, R. Gupta, and M. L. Soffa. A method-

ology for controlling the size of a test suite. ACM
Transactions of Software Engineering and Methodol-
ogy, 2(3):270–285, July 1993.

[12] C. Kaner. Improving the maintainability of automated

test suites. Software QA, 4(4), 1997.

[13] J.-M. Kim and A. A. Porter. A history-based test pri-

oritization technique for regression testing in resource

constrained environments. In ICSE, pages 119–129,

2002.

[14] D. C. Kung, J. Gao, P. Hsia, Y. Toyoshima, and

C. Chen. On regression testing of object-oriented

programs. The Journal of Systems and Software,

32(1):21–31, Jan. 1996.

[15] A. M. Memon. A Comprehensive Framework for Test-
ing Graphical User Interfaces. Ph.D. thesis, Depart-

ment of Computer Science, University of Pittsburgh,

July 2001.

[16] A. M. Memon and M. L. Soffa. Regression testing of

GUIs. In Proceedings of the ESEC and FSE-11, pages

118–127, Sept. 2003.

[17] B. A. Myers. Why are human-computer interfaces

difficult to design and implement? Technical report,

Pittsburgh, PA, USA, 1993.

[18] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Ches-

ley. Chianti: a tool for change impact analysis of java

programs. In OOPSLA, pages 432–448, 2004.

[19] R. A. Santelices, P. K. Chittimalli, T. Apiwattanapong,

A. Orso, and M. J. Harrold. Test-suite augmentation

for evolving software. In ASE, pages 218–227, 2008.

[20] R. M. Sirkin. Statistics for the Social Sciences. Sage

Publications, third edition, August 2005.

[21] Q. Xie and A. M. Memon. Model-based testing of

community-driven open-source GUI applications. In

ICSM, pages 145–154, 2006.

418

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
