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Abstract

Programming languages such as Java and C++ provide
exception-handling constructs to handle exception condi-
tions. Applications are expected to handle these exception
conditions and take necessary recovery actions such as re-
leasing opened database connections. However, exception-
handling rules that describe these necessary recovery ac-
tions are often not available in practice. To address this
issue, we develop a novel approach that mines exception-
handling rules as sequence association rules of the form
“(FCL.FC") A FC, = (FCL..FC™)”. This rule de-
scribes that function call F'Cy, should be followed by a se-
quence of function calls (FCL...FC™) when FC, is pre-
ceded by a sequence of function calls (FCL...FC"). Such
form of rules is required to characterize common exception-
handling rules. We show the usefulness of these mined rules
by applying them on five real-world applications (includ-
ing 285 KLOC) to detect violations in our evaluation. Our
empirical results show that our approach mines 294 real
exception-handling rules in these five applications and also
detects 160 defects, where 87 defects are new defects that
are not found by a previous related approach.

1 Introduction

Programming languages such as Java and C++ provide
exception-handling constructs such as try-catch to han-
dle exception conditions that arise during program execu-
tion. Under these exception conditions, programs follow
paths different from normal execution paths; these addi-
tional paths are referred to as exception paths. Applications
developed based on these programming languages are ex-
pected to handle these exception conditions and take nec-
essary recovery actions. For example, when an application
reuses resources such as files or database connections, the
application should release the resources after the usage in
all paths including exception paths. Failing to release the
resources can not only cause performance degradation, but
can also lead to critical issues. For example, if a database
lock acquired by a process is not released, any other pro-
cess trying to acquire the same lock hangs till the database
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releases the lock after timeout. A case study [21] conducted
on a real application demonstrates the necessity of releas-
ing resources in exception paths for improving reliability
and performance. The case study found that there was a
surprising improvement of 17% in performance of the ap-
plication after correctly releasing resources in the presence
of exceptions.

Software verification can be challenging for exception
cases as verification techniques require specifications that
describe expected behaviors when exceptions occur. These
specifications are often not available in practice [10]. To
address this issue, association rules of the form “F'C, =
FC.” are mined as specifications [22], where both F'C, and
FC, are function calls that share the same receiver object.
These specifications are used to verify whether the function
call F'C,, is followed by the function call F'C., in all excep-
tion paths. However, simple association rules of this form
are often not sufficient to characterize common exception-
handling rules. The rationale is that there are various sce-
narios where F'C,, is not necessarily followed by F'C, when
exceptions are raised by F'C|,, although both function calls
share the same receiver object.

We next present an example using Scenarios 1 and 2
(extracted from real applications) shown in Figure 1. Sce-
nario 1 attempts to modify contents of a database through
the function call Statement .executeUpdate (Line 1.9),
whereas Scenario 2 attempts to read contents of a database
through the function call Statement.executeQuery
(Line 2.8). Consider a simple specification in the
form of an association rule “Connection creation =
Connection rollback”.  This rule describes that a
rollback function call should appear in exception paths
whenever an object of Connection is created. Although
a Connection object is created in both scenarios, this rule
applies only to Scenario 1 and does not apply to Scenario
2. The primary reason is that the rollback function call
should be invoked only when there are any changes made to
the database. This example shows that simple association
rules of the form “FC, = FC,.” are often insufficient to
characterize exception-handling rules.



Scenario 1

Scenario 2

1.1: ..

1.2: OracleDataSource ods = null; Session session = null;
Connection conn = null; Statement statement = null;

1.3: logger.debug("Starting update");

1.4:try {

1.5: ods = new OracleDataSource();

1.6: ods.setURL("jdbc:oracle:thin:scott/tiger@ 192.168.1.2:1521:catfish");

1.7: conn = ods.getConnection();

1.8: statement = conn.createStatement();

1.9: statement.executeUpdate("DELETE FROM table1"™);

1.10: connection.commit(); }

1.11: catch (SQLException se) {

1.12: if (conn != null) { conn.rollback(); }

1.13: logger.error("Exception occurred"); }

1.14: finally {

1.15: if(statement != null) statement.close();

1.16: if(conn != null) conn.close();

1.17: if(ods !'= null) ods.close();

1.18:}
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21
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2.4:
2.5:
2.6:
2.7:
2.8:
2.9:

: Connection conn = null;
: Statement stmt = null;
: BufferedWriter bw = null; FileWriter fw = null;
sty {
fw = new FileWriter("output.txt");
bw = BufferedWriter(fw);
conn = DriverManager.getConnection("jdbc:pl:db", "ps",
Statement stmt = conn.createStatement();
ResultSet res = stmt.executeQuery("SELECT Path FROM Files");
while (res.next()) {
bw.write(res.getString(1));

"ps");

0:

1: )
2: res.close();

3:} catch(IOException ex) { logger.error("lIOException occurred");
4:} finally {

5: if(stmt!= null) stmt.close();

6: if(conn != null) conn.close();

7: if (bw != null) bw.close();

8:}

Figure 1. Two example scenarios from real applications.

The insufficiency of simple association rules calls for
more general association rules, hereby referred to as se-
quence association rules, of the form “(FCL..FC™) A
FC, = (FCL..FC™)”. This sequence association rule
describes that function call F'C,, should be followed by
function-call sequence F'C}...FC™ in exception paths only
when preceded by function-call sequence FC}...FC™". Us-
ing this sequence association rule, the preceding example
can be expressed as “(FC! FC?) A FC, = (FCL)”, where

FC’& : OracleDataSource.getConnection
FC’C2 : Connection.createStatement
FC,: Statement.executeUpdate

FC!: connection.rollback

This sequence association rule applies to Scenario 1
and does not apply to Scenario 2 due to the presence of
FC,: statement.executeUpdate. The key aspects to
be noted in this rule are: (1) Statement .executeUpdate
is the primary reason to have Connection.rollback
in an exception path and (2) the receiver object of
Statement .executeUpdate is dependent on the receiver
object of Connection.rollback through the function-
call sequence defined by FC! FC?2.

Our sequence association rules are a super set of sim-
ple association rules. For example, sequence association
rules are the same as simple association rules when the se-
quence FCL..FC" is empty. To the best of our knowl-
edge, existing association rule mining techniques [2] can-
not be directly applied to mine these sequence association
rules. Therefore, to bridge the gap, we develop a new min-
ing algorithm by adapting the frequent closed subsequence
mining technique [19].

We further develop a novel approach, called CAR-Miner,
that incorporates our new mining algorithm for the prob-
lem of detecting exception-handling rules in the form of se-
quence association rules by analyzing source code. Apart
from mining sequence association rules, CAR-Miner ad-
dresses another challenge that is often faced by existing ap-
proaches [3, 11, 22], which mine rules from a limited data
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scope, i.e., from only a few example applications. There-
fore, these approaches may not be able to mine rules that do
not have enough supporting samples in those example ap-
plications, and hence the related defects remain undetected
by these approaches. To address this challenge, CAR-Miner
expands the data scope by leveraging a code search engine
(CSE) for gathering relevant code samples from existing
open source projects available on the web. From these rel-
evant code samples, CAR-Miner mines exception-handling
rules. We show the usefulness of mined exception-handling
rules by applying these rules on five applications to detect
violations. CAR-Miner tries to address problems related to
the quality of code samples gathered from a CSE by captur-
ing the most frequent patterns through mining.

This paper makes the following main contributions:

e A general mining algorithm to mine sequence asso-
ciation rules of the form “(FCL..FC™) N FC, =
(FCL..FC™)”. Our new mining algorithm takes a
step forward in the direction of developing new min-
ing algorithms to address unique requirements in min-
ing software engineering data, beyond being limited by

existing off-the-shelf mining algorithms.
An approach that incorporates the general mining al-

gorithm to mine exception-handling rules that describe
expected behavior when exceptions occur during pro-

gram execution.
A technique for constructing a precise Exception-Flow

Graph (EFG), which is an extended form of a Control-
Flow Graph (CFG), that includes only those exception
paths that can potentially occur during program execu-

tion.
An implementation for expanding the data scope to

open source projects that help detect new related
exception-handling rules that do not have enough
supporting samples in an application under analysis.
These rules can help detect new defects in the applica-

tion under analysis.
Two evaluations to show the effectiveness of our ap-

proach. (1) CAR-Miner detects 294 real exception-



SDB1 SDB: SDB1:2
3,6,9,10 2,3,7,8 3'6'9",10',2%,3% 7% 8°
3,10,13 2,6,8 3'10',13",2% 6°,8°
9,10,1,19 9,16,13 9'10',1",19",9%,16%,13°

(a) Two sequence
databases

(b) Combined sequence
database using annotations

SDB1:2 Association Rule
3',10",2%8° 3,10=>238
(c) Mined (d) Association rules

sequences using annotations

Figure 2. lllustrative examples of general al-
gorithm.

handling rules in five different applications including
285 KLOC. (2) The top 50 exception-handling rules
(top 10 real rules of each application) are used to de-
tect a total of 160 real defects in these five applications,
where 87 defects are new, not being detected by a pre-
vious related approach [22].

The rest of the paper is organized as follows. Section 2
presents a formal definition of sequence association rules
and describes our new mining algorithm. Section 3 de-
scribes key aspects of the CAR-Miner approach. Section 4
presents evaluation results. Section 5 discusses threats to
validity. Section 6 presents related work. Finally, Section 7
concludes.

2 Problem Definition

We next present a formal definition of general associ-
ation rules and then describe sequence association rules
required for characterizing exception-handling rules. Al-
though we present our algorithm from the point-of-view of
mining exception-handling rules, the algorithm is general
and can be applied to other practical problems that fall into
our problem domain.

Problem Domain

Let F = {FCy, FCs, ..., FCy} be the set of all possi-
ble distinct items. Let I = {F'C;1, FCia, ..., FCiy,} and
J={FCj, FCjs, ..., FCj,} be two sets of items, where
I C F and J C F. Consider a sequence database as a set
of tuples (sid, S;, S;), where sid is a sequence id, S; is a
sequence of items belonging to /, and S; is a sequence of
items belonging to J. In essence, S; and S; belong to two
sequence databases, say SDB; and S D Bs, denoted as S;
€ SDB, and S; € SD By, respectively, and there is a one-
to-one mapping between the two sequence databases. We
define an association rule between sets of sequences as X
=Y, where both X and Y are subsequences of S; € SDB;
and S; € SDBj, respectively. A sequence o = (a1as...ap)
(where each a; is an item) is defined as a subsequence of
another sequence 3 = (b1 b...b,), denoted as o C (3, if there
exist integers 1 < j1 < j2 < ... < jp < gsuchthata; = b1,

as = bjg,..., ap = qu.
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General Algorithm

To the best of our knowledge, there are no existing min-
ing techniques that can mine from sets of sequences such as
SDB; and SD B, with resulting association rules as X =
Y,where X C S; € SDByandY C §; € SDB;. We com-
bine both sequence databases in a novel way using annota-
tions to build a single sequence database. These annotations
help in deriving association rules in later stages. For exam-
ple, consider two sequence databases shown in Figure 2a.
Figure 2b shows a single sequence database using annota-
tions combined from the two sequence databases. We next
mine frequent subsequences from the combined database,
denoted as SD B 2, using the frequent closed subsequence
mining technique [19].

The frequent subsequence mining technique accepts a
database of sequences such as S D B; 5 and a minimum sup-
port threshold min_sup, and returns subsequences that ap-
pear at least min_sup times in the sequence database. Given
a sequence s, it is considered as frequent if its support sup(s)
> min_sup. In our context, we are interested in frequent
closed subsequences. A sequence s is a frequent closed se-
quence, if s is frequent and no proper super sequence of s
is frequent. Figure 2c shows an example closed frequent
subsequence from the combined sequence database. As se-
quence mining preserves temporal order among items, we
scan each closed frequent subsequence and transform the
subsequence into an association rule of the form “X = ¥
based on annotations (as shown in Figure 2d). We com-
pute confidence values for each association rule using the
formula as shown below:



Confidence (X = Y) = Support (X Y) / Support (X)

Although we explain our algorithm using two sequence
databases SD By and S D Bs, our algorithm can be applied
to multiple sequence databases as well. These multiple se-
quence databases can also be combined into a single se-
quence database using the similar mechanism illustrated in
Figure 2.

Sequence Association Rules

In our current approach, our target is to mine exception-
handling rules in the form of association rules. Therefore,
we collect two sequence databases for each function call
FC,: a normal function-call-sequence (NFCS) database
and an exception function-call-sequence (EFCS) database.
We apply our mining algorithm to generate sequence associ-
ation rules of the form FC!...FC" = FC!..FC™, where
FCl..FC"C S; e NFCSand FC!..FC™ C S; € EFCS.
Such an association rule describes that F'C,, should be fol-
lowed by the function-call-sequence FC!...FC™ in excep-
tion paths, when preceded by the function-call-sequence
FCL...FCm. As this association rule is specific to the func-
tion call FC,,, we append F'C, to the rule as (FC!...FC™)
ANFC, = (FCL.FC™).

3 Approach

Our CAR-Miner approach accepts an application under
analysis and mines exception-handling rules for all function
calls in the application. CAR-Miner detects violations of
the mined exception-handling rules. We next present the
details of each phase in our approach.

3.1 Input Application Analysis

CAR-Miner accepts an application under analysis and
parses the application to collect each function call, say
FCy, in the application from the call sites in the applica-
tion. For example, CAR-Miner collects the function call
Statement .executeUpdate as an F'C, from Line 1.9
in Scenario 1. We denote the set of all function calls as
FCS. CAR-Miner mines exception-handling rules for all
these function calls.

3.2 Code-Sample Collection

To mine exception-handling rules for the function call
FC,, we need code samples that already reuse the func-
tion. To collect such relevant code samples, we interact
with a code search engine (CSE) such as Google code
search [9] and download code samples returned by the
CSE. For example, we construct the query “lang:java
java.sqgl.Statement executeUpdate” to collect code
samples of the F'C, Statement .executeUpdate. Often
code samples gathered from a CSE are partial as the CSE
returns individual source files instead of complete projects.
We use partial-program analysis developed in our previous
approach [17] to resolve object types such as receiver or

499

argument types of function calls in code samples. More
details of our partial-program analysis are available in our
previous paper [17]. As we collect relevant code samples
from other open source projects that already reuse a func-
tion, our approach has an advantage of being able to detect
additional rules that do not have enough supporting samples
in the application under analysis.

3.3 Exception-Flow-Graph Construction

We next analyze the collected code samples and the ap-
plication to generate traces in the form of sequence of func-
tion calls. Initially, we construct Exception-Flow Graphs
(EFG), which are an extended form of Control-Flow Graphs
(CFG). An EFG provides a graphical representation of all
paths that might be traversed during the execution of a pro-
gram, including exception paths. Construction of an EFG
is non-trivial due to the existence of additional paths that
transfer control to exception-handling blocks defined in the
form of catch or finally in Java. We develop an algo-
rithm inspired by Sinha and Harrold [16] for constructing
EFGs with additional paths that describe exception condi-
tions. Figure 3a shows the constructed EFG for Scenario
2, where each node is denoted with the corresponding line
number of Scenario 2 in Figure 1.

Initially, we build a CFG that represents flow of con-
trol during normal execution and augment the constructed
CFG with additional edges that represent flow of control af-
ter exceptions occur. We refer to these additional edges as
exception edges and all other edges as normal edges. In
the figure, normal and exception edges are shown in solid
and dotted lines, respectively. For example, an exception
edge is added from Node 5 to Node 13 as the program can
follow this path when I0Exception occurs while creat-
ing a BufferedWriter object. As code inside a catch or
a finally block gets executed after exceptions occur, we
consider edges between the statements within catch and
finally blocks also as exception edges. We show nodes
related to function calls in normal paths such as those in
a try block in white and function calls in exception paths
such as those in a catch block in grey. Although function
calls in a finally block belong to both normal and excep-
tion paths, we consider these paths as exception paths and
show the associated nodes in grey. For simplicity, we ignore
the control flow inside exception blocks.

In the constructed EFG, there is an exception edge from
Node 5 to Node 13, but there is no exception edge from
Node 6 to Node 13. The reason is that Node 13 han-
dles a checked exception IOException, which is never
raised by function call DriverManager.getConnection
of Node 6. Therefore, we prevent such infeasible con-
trol flow through a sound static analysis tool, called
Jex [14]. Jex analyzes source code statically and
provides possible exceptions raised by each function



call. For example, Jex provides that TIOException can
be raised by BufferedWriter.Constructor but not
DriverManager.getConnection. While adding excep-
tion edges, we add only those edges from a function call to
a catch block where the exception handled by the catch
block belongs to the set of possible exceptions thrown by
the function call. This additional check helps reduce poten-
tial false positives by preventing infeasible exception paths.
If the catch block handles Exception (the super class
of all exception types), we add exception edges from each
function call to the catch block. We consider a finally
block as similar to a catch block that handles Exception,
and add exception edges from each function call to the
finally block.

As gathered code samples are partial, we use intra-
procedural analysis for constructing EFGs. Furthermore,
before constructing an EFG for a code sample, we also
check whether the code sample includes any F'C, € FCS.
If the code sample does not include any F'C,, we skip the
EFG construction for that code sample.

3.4 Static Trace Generation

We next capture static traces that include actions that
should be taken when exceptions occur while executing
function calls such as F'C, € F'C'S. For example, consider
the FC, “Connection.createStatement” and its cor-
responding Node 7 in the EFG. A trace generated for this
node is shown in Figure 3b. The trace includes three sec-
tions: normal function-call sequence (FC}..FC™), FC,,
exception function-call sequence (FCL...FC™).

The FCL...FC" sequence starts from the beginning of
the body of the enclosing function (i.e., caller) of the F'C,
function call to the call site of FC,. The FC!..FC™ se-
quence includes the longest exception path that starts from
the call site of F'C,, and terminates either at the end of the
enclosing function body or at a node in EFG whose out-
going edges are all normal edges. We generate such traces
from code samples and input application for each F'C, €
FCS.

3.5 Trace Post-Processing

We next identify function calls in FC!.FC? or
FCL..FC™ that are not related to FIC, through data-
dependency, and remove such function calls from each
trace. Failing to remove such unrelated function calls can
result in many false positives due to frequent occurrences of
unrelated function calls as shown in the evaluation of PR-
Miner [11]. For example, in the trace shown in Figure 3b,
function calls in the normal function-call sequence related
to Nodes 4 and 5 are unrelated to the F'C,, of Node 7. Sim-
ilarly, Node 17 in the exception function-call sequence is
also unrelated to F'C,,.

Figure 3c shows an example of our data-dependency
analysis. Initially, we generate two kinds of relationships:
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var dependency of a variable and function association of a
function call. The var dependency of a variable represents
the set of variables on which a given variable is dependent
upon. Similarly, a function association of a function call
represents the set of variables on which a function call is
associated with.

First, we compute the var-dependency relationship infor-
mation from assignment statements. For example, in Sce-
nario 2, we identify that the variable res is dependent on
the variable stmt from Line 2.8 and is transitively depen-
dent on conn as stmt is dependent on conn from Line 2.7.
We compute the function-association relationship based on
the var-dependency relationship. In particular, we identify
that a function call is associated with all its variables in-
cluding the receiver, arguments, and the return variable, and
their transitively dependent variables. For example, apply-
ing the preceding analysis to the function call of Node 7, we
identify that the associated variables are conn and stmt.

We use variables associated with each function call
to identify function calls in the normal function-call se-
quence FC!...FC™ or the exception function-call sequence
FCL..FC™ that are not related to F'C,. Starting from
FC,, we perform a backward traversal of the trace to fil-
ter out function calls in FC!...FC™ and a forward traversal
to filter out function calls in FC!...FC™. Assume that vari-
ables associated with FC,, are {V}, V.2,..., V5}. Assume
that variables associated with a function call, say FC% , in
the normal or exception function-call sequence are {V.1,
V2. VLY.

In each traversal, we compute an intersection of associ-
ated variable sets of F'C,, and FC¥ . If the intersection { V1,
V2., VEYN{VL V2, ., VL) # ¢, we keep the FC¥,
function call (either in the normal or exception function-
call sequence) in the trace; otherwise, we filter out the FC¥,
function call from the trace. The rationale behind our anal-
ysis is that if the intersection is a non-empty set, it indi-
cates that the F'C, is directly or indirectly related to the
FCk function call. For example, the intersection of associ-
ated variables for Nodes 6 and 7 is non-empty. In contrast,
the intersection of associated variables for Nodes 5 and 7
is empty. Therefore, we keep Node 6 in the trace and fil-
ter out Node 5 during backward traversal. Similarly, during
forward traversal, we ignore Node 17 since the intersection
is an empty set. The resulting trace of “4,5,6,7,15,16,17” is
“6,7,15,16”, where

6 : DriverManager.getConnection
7 Connection.createStatement
15 Statement.close

16 Connection.close

3.6 Static Trace Mining

We apply our new mining algorithm described in Sec-
tion 2 on the set of static traces collected for each F'C,,.



We apply mining on the traces of each F'C, individually.
The reason is that if we apply mining on all traces together,
rules related to a F'C, with only a small number of traces
can be missed due to rules related to other F'C,, with a large
number of traces.

In the phase of static trace mining, we first transform
traces suitable for our mining algorithm. More specifi-
cally, as each trace includes a normal function-call sequence
and an exception function-call sequence, we build two se-
quence databases with normal and exception function-call
sequences, respectively, from all the traces of a F'C', func-
tion call.

We next apply our mining algorithm that initially anno-
tates corresponding normal and exception function-call se-
quences and combines the annotated sequences into a sin-
gle call sequence. The mining algorithm produces sequence
association rules of the form FC!..FC" = FC!..FC™.
As this sequence association rule is specific to F'C,, we add
FC, totherule as (FCL..FC") A FC, = (FCL..FC™).
The preceding sequence association rule describes that the
function call F'C, should be followed by FCL...FC™ in
exception paths only when preceded by FCL...FC™ in nor-
mal paths. In our approach, we use the frequent closed sub-
sequence mining tool, called BIDE, developed by Wang and
Han [19]. We used the min_sup value as 0.4, which is set
based on our initial empirical experience. We repeat the
preceding process for each F'C, and rank all final sequence
association rules based on their support values assigned by
the frequent subsequence miner.

3.7 Anomaly Detection

To show the usefulness of our mined exception-handling
rules, we apply these rules on the application under anal-
ysis to detect violations. Initially, from each call site of
FC, in the application, we extract the normal function-
call sequence, say C1C?...C%, from the beginning of the
body of enclosing function of F'C,, to the call site of F'C|,.
If FC!...FC? C CLC2...C%, then we extract the excep-
tion function-call sequence, say C}C2...C?, from the call
site of F'C', to the end of the enclosing function body or
to a node (in the EFG) whose outgoing edges are all nor-
mal edges. We do not report a violation if FC...FC™ C
CLC2...0?%; otherwise, we report a violation in the appli-
cation under analysis. We rank all detected violations based
on a similar criterion used for ranking exception-handling
rules.

4 Evaluations

We next describe the evaluation results of CAR-Miner
with five real-world open source applications as subjects.
We use the same subjects (and same versions) used for eval-
uating a related approach called WN-miner [22] for the ease
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Figure 4. Distribution of classification cate-
gories with ranks for the Axion application.

of comparison with the data provided by the WN-miner de-
veloper. We used five out of eight subjects used in WN-
miner since related versions of the remaining three sub-
jects are not currently available. In our evaluations, we try
to address the following questions. (1) Do the exception-
handling rules mined by CAR-Miner represent real rules?
(2) Do the detected rule violations represent real defects in
subject applications? (3) Does CAR-Miner perform better
than the existing related WN-miner tool in terms of min-
ing real rules and detecting real defects in an application
under analysis? (4) Do the sequence association rules help
detect any new defects that cannot be detected with sim-
ple association rules of the form “FC, = FC.”? The
detailed results of our evaluation are available at http:
//ase.csc.ncsu.edu/projects/carminer/.

4.1 Subjects

Table 1 shows subjects and their versions used in our
evaluations. Column “Internal Info” shows the number of
declared classes and functions of each application. Column
“External Info” shows the number of external classes and
their functions invoked by the application. Column “Code
Examples” shows the number of code examples gathered by
CAR-Miner to mine exception-handling rules. For exam-
ple, CAR-Miner gathered 47783 code examples (~ 7 mil-
lion LOC) from a code search engine for mining exception-
handling rules of the Axion application. Column “Time”
shows the amount of time taken by CAR-Miner in seconds
for each application. The shown time includes the analysis
time of the application and gathered code examples, and the
time taken for detecting violations. The amount of process-
ing time depends on the number of samples gathered for an
application. All experiments were conducted on a machine
with 3.0GHz Xeon processor and 4GB RAM.

4.2 Mined Exception-Handling Rules

We next address the first question on whether the mined
exception-handling rules represent real rules that can help
detect defects in an application under analysis. Table 2
shows the classification of exception-handling rules mined



Table 1. Characteristics of subjects used in evaluating CAR-Miner.

Subject Lines Internal Info External Info # Code Time
of code #Classes[#Functions #Classes[#Functions Examples |(in sec.)
Axion 1.0M2 24k 219 2405 58 217 47783 (TM) | 1381
HsqlDB 1.7.1 30k 98 1179 80 264 |78826 (26M)| 2547
Hibernate 2.0 b4| 39k 452 4321 174 883  [88153 (27M)| 1125
SableCC 2.18.2 | 22k 183 1551 21 76 47594 (15M)| 1220
Ptolemy 3.0.2 170k | 1505 9617 477 2595  |70977 21M)| 1126

Table 2. Classification of exception-handling
rules.

Subject #Total[Real Rules|Usage Patterns|False Positives
#[ % #[ % #[ %
Axion 112 |70, 62.5 |3 2.68 39| 34.82
HsqlDB 127 |89] 70.08 |3 2.36 35| 27.56
Hibernate | 121 |86| 71.07 |1 0.82 34| 28.09
SableCC 40 (12| 30 |2 5 26 65
Ptolemy 94 |37] 39.36 |5 5.32 52| 55.32
AVERAGE 54.6 3.24 42.16

by CAR-Miner. Column “Total” shows the total number
of rules in each application. We classify these rules into
three categories: real rules, usage patterns, and false posi-
tives. Real rules describe the behavior that must be satis-
fied while using function calls such as F'C,,, whereas usage
patterns suggest common ways of using F'C,,. The viola-
tions of real rules and usage patterns can be defects and
hints, respectively. A hint, which was originally proposed
by Wasylkowski et al. [20], helps increase readability and
maintainability of source code of an application. We used
the available on-line documentations, JML speciﬁcationsl,
or the source code of the application for classifying mined
exception-handling rules into these three categories. Our
results show that real rules are 54.61% and false positives
are 42.16%, averagely.

Although false positives are 42.16% on average among
the total number of mined rules, our mining heuristics for
ranking exception-handling rules help give higher priority
to real rules than false positives. Figure 4 shows a detailed
distribution of all extracted rules for the Axion application.
In Figure 4, x-axis shows distribution of mined rules in dif-
ferent ranges (each range is of size 15) with respect to as-
signed ranks and y-axis shows the number of rules that are
classified into the three categories for each range. The pri-
mary reason for selecting the Axion application is that the
application is a medium-scale application that is amenable
to a detailed analysis with reasonable effort. As shown in
the figure, the number of false positives is quite low among
the exception-handling rules ranked between 1 to 60. These
results show the significance of our mining and ranking cri-
teria. Our results in Table 2 also show that more exception-

http://www.eecs.ucf.edu/~leavens/JIML/
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Table 3. Classification of detected violations.

Subject #Total |#Violations of|#Defects{#Hints|#FP
Violations| first 10 rules

Axion 1.0M2 257 19 13 1 5

HsqIDB 1.7.1 394 62 51 0 |10

Hibernate 2.0 b4| 136 22 12 0 |10

Sablecc 2.18.2 168 66 45 7 |14

Ptolemy 3.0.2 665 95 39 1 |55

Table 4. Status of detected defects in new ver-
sions of subject applications.
l ‘# Defects‘NeW Version‘#Fixed‘#Deleted‘#Open‘

Axion 1.0M2 13 1.0M3 4 8 1

HsqlDB 1.7.1 51 1.8.0.9 2 9 40
Hibernate 2.0 b4 12 3.2.6 0 8 4
Sablecc 2.18.2 45 4-alpha.3 0 43 2
Ptolemy 3.0.2 39 3.0.2 0 0 39

handling rules exist in applications such as Axion, HsqlDB,
and Hibernate that deal with resources (such as databases or
files) compared to other applications.

4.3 Detected Violations

We next address the question on whether the detected vi-
olations represent real defects. Table 3 shows the violations
detected in each application. Column “Total Violations”
shows the total number of violations detected in each ap-
plication. The HsqlDB and Hibernate applications include
test code as part of their source code. As test code is often
not written according to specifications, we excluded the vi-
olations detected in the test code of those applications from
the results. Given a high number of violations in each ap-
plication, we inspected the violations detected by the top
10 exception-handling rules and classified them into three
categories: Defects, Hints, and False Positives.

Column “Violations of first 10 rules” shows the num-
ber of violations detected by the top ten exception-handling
rules mined for each application. Column “Defects” shows
the total number of violations that are identified as defects
in each application. As we used the same versions (an ear-
lier version than the latest version) used by the WN-miner
approach for the ease of comparison, we verified whether
the defects found by our approach are fixed, deleted, or
still open in the latest version of each application. Column



“New Version” of Table 4 shows the latest version used for
our verification. The defect’s sub-categories “Fixed” and
“Open” indicate that the defects found by our approach in
the earlier version are fixed or still open in the new version,
respectively. We reported those open defects to respective
developers for their confirmation. Sometimes, we find that
the defective code such as function body with detected de-
fects does not exist in the latest version. One reason could
be the refactoring of such code, which can be considered
as an indirect fix. We classified such defects as “Deleted”
(shown in Table 4).

The results show that our CAR-Miner approach can de-
tect real defects in the applications. The number of de-
fects shown in Columns “Fixed” and “Deleted” provide fur-
ther evidence that these defects detected by CAR-Miner
are real since these defects are fixed directly or indirectly
in newer versions of the applications. The initial response
from the developers of HsqlDB is quite encouraging. The
developers responded on the first ten defects that we re-
ported, where seven defects are accepfed and only three
defects are rejected. The bug reports for these ten defects
are available in the HsqlDB Bug Tracker system? with IDs
#1896449, #1896448, and #1896443%. Although the three
rejected defects are violations of real rules, developers de-
scribed that the violation-triggering conditions of these de-
fects cannot be satisfied in the context of the HsqIDB ap-
plication. For example, a rejected defect is a violation
of real rule “DatabaseMetaData.getPrimaryKeys =
ResultSet.close”. The preceding rule describes that
the close function call should be invoked on ResultSet,
when getPrimaryKeys throws any exceptions. The re-
sponse from the developers (Bug report ID: #1896448) for
this defect is “Although it can throw exceptions in general,
it should not throw with HSQLDB. So it is fine.”, which de-
scribes that the violation-triggering condition cannot be sat-
isfied in the context of HsqlDB.

4.4 Comparison with WN-miner

We next address the third question on whether our CAR-
Miner approach performs better than the related WN-miner
tool. As the WN-miner tool is not currently available, the
WN-miner developer provided the mined specifications and
static traces of their tool. We developed Perl scripts to de-
tect violations of mined specifications in static traces as
described by the WN-Miner developer [22]. We used the
same criteria described in Sections 4.2 and 4.3 for classify-
ing rules and violations detected by their approach, respec-
tively. We compared both mined exception-handling rules
and detected violations.

2nttp://sourceforge.net/tracker/?group_id=
23316&atid=378131

3We reported multiple defects in the same source file as a single bug
report.
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Table 5. Defects detected or missed by CAR-
Miner.

Subject # Defects
# Total[#Commonl[# Only[# Missed

Axion 13 0 13 1
HsqlDB 51 35 16 13
Hibernate| 12 0 12 7
Sablecc 45 0 45 0
Ptolemy | 39 38 1 11
TOTAL | 160 73 87 32

4.4.1 Comparison of exception-handling rules

We next present the comparison results of exception-
handling rules mined by both approaches. Figure 5 shows
the results for the classification category “real rules” be-
tween WN-miner and CAR-Miner. For each subject and
approach, the figure shows the total number of rules mined
by each approach along with the number of common rules
between the two approaches. For example, CAR-Miner de-
tected a total of 70 rules for the Axion application. Among
these 70 rules, 43 rules are newly detected by CAR-Miner
and 27 rules are common between CAR-Miner and WN-
miner. CAR-Miner failed to detect 2 real rules that were
detected by WN-miner.

The primary reason for these two real rules not detected
by CAR-Miner and detected by WN-miner is due to the
ranking criterion used by WN-miner. WN-miner extracts
rules “FC, = FC.” when FC, appears at least once in
exception-handling blocks such as catch and ranks those
rules with respect to the number of times F'C, appears after
FC, among normal paths. As shown in their results, such
a criterion can result in a high number of false positives
such as “Trace.trace = Trace.printSystemOut” in
the HsqlDB application, where F'C. often appears after
FC, in normal paths and is used once in some catch block.
CAR-Miner ignores such patterns due to their relatively low
support among exception paths of F'C,,.

The results show that CAR-Miner is able to detect most
of the rules mined by WN-miner and also many new rules
that are not detected by WN-miner. CAR-Miner performed
better than WN-miner due to two factors: sequence associ-
ation rules and increase in the data scope. To further show
the significance of these factors, we classified the real rules
mined by CAR-Miner based on these two factors. Figure 6
shows the percentage of sequence association rules among
all real rules. The results show that sequence association
rules are 20.37% of all real rules on average mined for all
applications.

Figure 7 shows the percentage of real rules that cannot
be mined by analyzing only the application under analysis.
For example, 44.28% of the real rules mined for the Axion
application occur only from gathered code samples. Our
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Figure 5. Comparison of real rules mined by
CAR-Miner and WN-miner.

Table 6. Defects detected by Sequence Asso-

ciation Rules.
| [# Rules[# Violations[# Defects[# Hints[# False Positives

Axion 3 6 4 0 2
HsqlDB 6 14 8 0 6
Hibernate| 4 10 8 0 2
Sablecc 0 0 0 0 0
Ptolemy 1 1 1 0 0

results show that increase in the data scope to open source
repositories helps detect new exception-handling rules that
do not have sufficient supporting samples in the applica-
tion. Furthermore, increase in the data scope also helps give
higher priority to real rules than false positives.

4.4.2 Comparison of detected defects

We next present the number of real defects that were
detected by CAR-Miner but not detected by WN-miner.
To show that CAR-Miner can find new defects that were
not detected by WN-miner, we identified the exception-
handling rules that are mined only by CAR-Miner and not
by WN-miner among top 10 shown in Table 3 and verified
the defects detected by those rules. The results are shown
in Table 5. Column “Total” shows the number of violations
detected by the top 10 exception-handling rules. Column
“Common” and “Only” show the number of defects com-
monly detected by CAR-Miner and WN-miner, and defects
that are detected by CAR-Miner only, respectively. Column
“Missed” shows the number of defects detected by WN-
miner only. The results show that CAR-Miner detected 87
new defects (among all applications) that were not detected
by WN-miner. When inspecting all violations detected by
CAR-Miner, we expect that the preceding number of new
defects detected by CAR-Miner can be much higher. CAR-
Miner missed 32 defects that were detected by WN-miner.
These missed defects are due to the missing patterns as de-
scribed in Section 4.4.1.
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amples.

4.5 Significance of Sequence Association
Rules

We next address the last research question on whether se-
quence association rules mined by CAR-Miner are helpful
in detecting new defects that cannot be detected by simple
association rules. Table 6 shows the number of sequence
association rules that are used to detect real defects in all
applications. The results show that these rules help detect
21 real defects among all applications.

We next describe a defect in the HsqlDB application to
show the significance of sequence association rules, which
cannot be mined by existing approaches such as WN-miner.
The related code snippet from the saveChanges function
of zaurusTableForm. java is shown as below:

public boolean saveChanges ()
...
try {
PreparedStatement ps
cConn.prepareStatement (str) ;
ps.clearParameters () ;
for (int j=0; j<primaryKeys.length; j++){
ps.setObject(i + j + 1,
resultRowPKs [aktRowNr] [§]); }
ps.executeUpdate () ;
} catch (SQLException e) {
return false;
}

}

CAR-Miner detected a defect in the preceding code exam-
ple as the code example violated the exception-handling
rule FC! A FC, = FC}, where



FC?
FC,
FC!

:Connection.prepareStatement
:PreparedStatement.clearParameters
:Connection.rollback

The preceding rule describes that when an exception oc-
curs after executing the clearParameters function, the
rollback function should be invoked on the Connection
object. Failing to invoke rollback can make the database
state inconsistent. This result shows that sequence associa-
tion rules are helpful in detecting new defects.

5 Threats to Validity

The threats to external validity primarily include the de-
gree to which the subject applications and CSE used are
representative of true practice. The current subjects range
from small-scale applications such as Axion to large-scale
applications such as Ptolemy. We used only one CSE, i.e.,
Google code search, which is a well-known CSE. These
threats could be reduced by more experiments on wider
types of subjects and by using other CSEs in future work.
The threats to external validity also include the quality of
code examples collected from a CSE. We tried to reduce
this threat to some extent by capturing most frequent pat-
terns among these code examples. The threats to inter-
nal validity are instrumentation effects that can bias our
results. Faults in our CAR-Miner prototype might cause
such effects. There can be errors in our inspection of source
code for confirming defects. To reduce these threats, we
inspected available related specifications and call sites in
source code.

6 Related Work

WN-miner by Weimer and Necula [22] extracts simple
association rules of the form “F'C, = FC.”, when FC,
is found at least once in exception-handling blocks (i.e.,
catch or finally blocks). Their approach mines and
ranks these rules based on the number of times F'C, ap-
pears after F'C\, in normal paths. Due to their ranking
criteria, their approach cannot mine rules that include a
FC. function call such as Connection.rollback, where
FC, can appear only in exception paths. Acharya and
Xie [1] later proposed a similar approach for detecting
API error-handling defects in C code. Our approach sig-
nificantly differs and improves upon these previous ap-
proaches as we mine sequence association rules of the form
“FCL.FC™ A FC, = (FC}..FC™)” that can charac-
terize more exception-handling rules. Our approach also
addresses the problem of lacking enough supporting sam-
ples for these rules in the application under analysis by ex-
panding the data scope to open source repositories through
a code search engine.

CodeWeb [13] mines association rules from source code
as framework reuse patterns. CodeWeb mines association
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rules such as application classes inheriting from a library
class often create objects of another class. PR-Miner [11]
uses frequent itemset mining to extract implicit program-
ming rules in large C code bases and detects violations.
DynaMine [12] uses association rule mining to extract sim-
ple rules from version histories for Java code and detects
rule violations. Engler et al. [S] proposed a general ap-
proach for finding defects in C code by applying statisti-
cal analysis to rank deviations from programmer beliefs in-
ferred from source code. Wasylkowski et al. [20] mines
rules that include pairs of API calls and detect violations.
Perracotta [23] mines patterns such as (ab)* and includes
techniques for handling imperfect traces. Schéfer et al. [15]
mine association rules that describe usage changes in frame-
work evolution. All these preceding approaches mine sim-
ple association rules that are often not sufficient to char-
acterize complex real rules as shown in our approach. In
contrast, our approach can mine more complex rules in the
form of sequence association rules.

Our approach is also related to other approaches that an-
alyze exception behavior of programs. Fu and Ryder [6]
proposed an exception-flow analysis that computes chains
of semantically related exception-flow links across proce-
dures. Our approach uses intra-procedural analysis for con-
structing exception-flow graphs. The Jex [14] tool stati-
cally analyzes exception flow in Java code and provides a
precise set of exceptions that can be raised by a function
call. We use Jex in our approach to prevent infeasible ex-
ception edges in a constructed EFG. Fu et al. [7] present
a def-use-based approach that helps gather error-recovery
code-coverage information. Our approach is different from
their approach as our approach detects defects that violate
mined rules rather than focusing on coverage of exception-
handling code.

Chang et al. [3] applies frequent subgraph mining on C
code to mine implicit condition rules and detect neglected
conditions. Their approach targets at different types of de-
fects called neglected conditions. Moreover, their approach
does not scale to large code bases as graph mining algo-
rithms suffer from scalability issues. Finally, DeLine and
Féhndrich [4] proposed an approach that allows program-
mers to manually specify resource management protocols
that can be statically enforced by a compiler. However, their
approach requires manual effort from programmers and also
requires the knowledge of the Vault specification language
to specify domain-specific protocols. In contrast, our ap-
proach does not require any manual effort or the knowledge
of any specific specification languages.

Javert [8] uses a pattern-based specification miner to
mine smaller patterns such as (ab)*, called micro patterns,
and then compose these patterns into larger specifications.
Their approach does not require the user to provide any tem-
plates. Similar to their approach, our approach also does



not require the user to provide any templates. However,
their mined patterns cannot characterize exception-handling
rules mined by our approach.

Our previous approaches PARSEWeb [17] and
SpotWeb [18] also exploit code search engines for gath-
ering related code samples. PARSEWeb accepts queries
of the form “Source — Destination” and mines frequent
function-call sequences that accept Source and produce
Destination. SpotWeb accepts an input framework and
detects hotspot classes and functions of the framework. Our
new approach CAR-Miner significantly differs from these
previous approaches. CAR-Miner constructs EFGs and
includes new techniques for collecting and post-processing
static traces related to exception handling. Furthermore,
CAR-Miner incorporates our new mining algorithm for
detecting exception-handling rules as sequence association
rules.

7 Conclusion

We have developed an approach, called CAR-Miner,
that mines exception-handling rules in the form of sequence
association rules. Unlike simple association rules of the
form “FC, = FC.”, these sequence association rules of
the form “(FC!..FC") A FC, = (FC}.FC™)” can
characterize more complex exception-handling rules. As
existing mining algorithms cannot mine these sequence
association rules, we proposed a novel mining algorithm
based on frequent closed subsequence mining. CAR-Miner
also tries to address the problems of limited data scopes
faced by existing approaches by expanding the data scope
to open source projects available on the web. We have
evaluated our approach with five real-world open source
applications and shown that CAR-Miner mined 294
real exception-handling rules. We have also shown that
CAR-Miner finds 160 defects, where 87 are new defects,
not being found by a previous related approach [22]. Our
approach takes a step forward in the direction of developing
new mining algorithms to address unique requirements in
mining software engineering data, beyond being limited by
existing off-the-shelf mining algorithms.
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