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Abstract

We present a technique for finding security vulnerabili-
ties in Web applications. SQL Injection (SQLI) and cross-
site scripting (XSS) attacks are widespread forms of attack
in which the attacker crafts the input to the application to
access or modify user data and execute malicious code. In
the most serious attacks (called second-order, or persistent,
XSS), an attacker can corrupt a database so as to cause
subsequent users to execute malicious code.

This paper presents an automatic technique for creating
inputs that expose SQLI and XSS vulnerabilities. The tech-
nique generates sample inputs, symbolically tracks taints
through execution (including through database accesses),
and mutates the inputs to produce concrete exploits. Ours
is the first analysis of which we are aware that precisely
addresses second-order XSS attacks.

Our technique creates real attack vectors, has few false
positives, incurs no runtime overhead for the deployed ap-
plication, works without requiring modification of appli-
cation code, and handles dynamic programming-language
constructs. We implemented the technique for PHP, in a tool
A. We evaluated A on five PHP applications
and found 68 previously unknown vulnerabilities (23 SQLI,
33 first-order XSS, and 12 second-order XSS).

1 Introduction

This paper presents a technique and an automated tool
for finding security vulnerabilities in Web applications.
Multi-user Web applications are responsible for handling
much of the business on today’s Internet. Such applica-
tions often manage sensitive data for many users, and that
makes them attractive targets for attackers: up to 70%
of recently reported vulnerabilities affected Web applica-
tions [5]. Therefore, security and privacy are of great im-
portance for Web applications.

Two classes of attacks are particularly common and dam-
aging [5]. In SQL injection (SQLI), the attacker executes
malicious database statements by exploiting inadequate val-
idation of data flowing from the user to the database. In
cross-site scripting (XSS), the attacker executes malicious
code on the victim’s machine by exploiting inadequate val-
idation of data flowing to statements that output HTML.

Previous approaches to identifying SQLI and XSS vul-
nerabilities and preventing exploits include defensive cod-
ing, static analysis, dynamic monitoring, and test genera-
tion. Each of these approaches has its own merits, but also
offers opportunities for improvement. Defensive coding [6]
is error-prone and requires rewriting existing software to
use safe libraries. Static analysis tools [19, 29] can produce
false warnings and do not create concrete examples of in-
puts that exploit the vulnerabilities. Dynamic monitoring
tools [13,25,27] incur runtime overhead on the running ap-
plication and do not detect vulnerabilities until the code has
been deployed. Black-box test generation does not take ad-
vantage of the application’s internals, while previous white-
box techniques have not been shown to discover unknown
vulnerabilities [30].

We have created a new technique for identifying SQLI
and XSS vulnerabilities. Unlike previous approaches, our
technique works on unmodified existing code, creates con-
crete inputs that expose vulnerabilities, operates before soft-
ware is deployed, has no overhead for the released software,
and analyzes application internals to discover vulnerable
code. As an implementation of our technique, we created
A, an automated tool for creating SQLI and XSS at-
tacks in PHP/MySQL applications. A is a white-box
testing tool, i.e., it requires the source code of the appli-
cation. A is designed for testing PHP applications
before deployment. Security vulnerabilities that A
identifies can be fixed before the software reaches the users
because A creates concrete attacks that exploit the
vulnerability. In our experiments, A discovered 68
previously unknown vulnerabilities in five applications.

A is based on input generation, taint propagation,
and input mutation to find variants of an execution that ex-
ploit a vulnerability. We now discuss these components.

A can use any input generator. Our current im-
plementation uses combined concrete and symbolic execu-
tion [1, 11, 30]. During each execution, this input generator
monitors the program to record path constraints that capture
the outcome of control-flow predicates. The input generator
automatically and iteratively generates new inputs by negat-
ing one of the observed constraints and solving the modi-
fied constraint system. Each newly-created input explores
at least one additional control-flow path.

A’s vulnerability detection is based on dynamic
taint analysis [13,29]. Amarks data coming from the
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user as potentially unsafe (tainted), tracks the flow of tainted
data in the application, and checks whether tainted data can
reach sensitive sinks. An example of a sensitive sink is the
PHP mysql query function, which executes a string argu-
ment as a MySQL statement. If a string derived from tainted
data is passed into this function, then an attacker can poten-
tially perform an SQL injection if the tainted string affects
the structure of the SQL query as opposed to just being used
as data within the query. Similarly, passing tainted data into
functions that output HTML can lead to XSS attacks.

A’s taint propagation is unique in that it tracks
the flow of tainted data through the database. When tainted
data is stored in the database, the taint information is stored
with it. When the data is later retrieved from the database,
it is marked with the stored taint. Thus, only data that
was tainted upon storing is tainted upon retrieval. This
precision makes A able to accurately detect second-
order (persistent) XSS attacks. By contrast, previous tech-
niques either treat all data retrieved from the database as
tainted [28, 29] (which may lead to false warnings) or treat
all such data as untainted [19] (which may lead to missing
real vulnerabilities).

To convincingly demonstrate a vulnerability, a tester or a
tool must create concrete example attack vectors [4, 8, 10].
A creates concrete attack vectors by systematically
mutating inputs that propagate taints to sensitive sinks,
using a library of strings that can induce SQLI and XSS
attacks. This step is necessary because not every flow of
tainted data to a sensitive sink indicates a vulnerability be-
cause the data may flow through routines that check or
sanitize it. A then analyzes the difference between
the parse trees of application outputs (SQL and HTML)
to check whether the attack may subvert the behavior of
a database or a Web browser, respectively. This step en-
ables A to reduce the number of false warnings and
to precisely identify real vulnerabilities.

This paper makes the following contributions:

• A fully-automatic technique for creating SQLI and
XSS attack vectors, including those for second-order
(persistent) XSS attacks. (Section 3)

• A novel technique that determines whether a propa-
gated taint is a vulnerability, using input mutation and
output comparison. (Section 4.3)

• A novel approach to symbolically tracking the flow of
tainted data through a database. (Section 4.4)

• An implementation of the technique for PHP in a tool
A (Section 4), and evaluation of A on real
PHP applications (Section 5).

2 SQL Injection and Cross-Site Scripting

This section describes SQLI and XSS Web-application
vulnerabilities and illustrates attacks that exploit them.

SQL Injection. A SQLI vulnerability results from the ap-
plication’s use of user input in constructing database state-
ments. The attacker invokes the application, passing as an
input a (partial) SQL statement, which the application exe-
cutes. This permits the attacker to get unauthorized access
to, or to damage, the data stored in a database. To prevent
this attack, applications need to sanitize input values that
are used in constructing SQL statements, or else reject po-
tentially dangerous inputs.

First-order XSS. A first-order XSS (also known as Type 1,
or reflected, XSS) vulnerability results from the application
inserting part of the user’s input in the next HTML page
that it renders. The attacker uses social engineering to con-
vince a victim to click on a (disguised) URL that contains
malicious HTML/JavaScript code. The user’s browser then
displays HTML and executes JavaScript that was part of the
attacker-crafted malicious URL. This can result in stealing
of browser cookies and other sensitive user data. To prevent
first-order XSS attacks, users need to check link anchors
before clicking on them, and applications need to reject or
modify input values that may contain script code.

Second-order XSS. A second-order XSS (also known as
persistent, stored, or Type 2 XSS) vulnerability results from
the application storing (part of) the attacker’s input in a
database, and then later inserting it in an HTML page that is
displayed to multiple victim users (e.g., in an online bulletin
board application). It is harder to prevent second-order XSS
than first-order XSS, because applications need to reject or
sanitize input values that may contain script code and are
displayed in HTML output, and need to use different tech-
niques to reject or sanitize input values that may contain
SQL code and are used in database commands.

Second-order XSS is much more damaging than first-
order XSS, for two reasons: (a) social engineering is not
required (the attacker can directly supply the malicious in-
put without tricking users into clicking on a URL), and (b)
a single malicious script planted once into a database exe-
cutes on the browsers of many victim users.

2.1 Example PHP/MySQL Application

PHP is a server-side scripting language widely used in
creating Web applications. The program in Figure 1 imple-
ments a simple message board that allows users to read and
post messages, which are stored in a MySQL database. To
use the message board, users of the program fill an HTML
form (not shown here) that communicates the inputs to the
server via a specially formatted URL, e.g.,

http://www.mysite.com/?mode=display&topicid=1

Input parameters passed inside the URL are available in
the $ GET associative array. In this example URL, the input
has two key-value pairs: mode=display and topicid=1.

This program can operate in two modes: posting a mes-
sage or displaying all messages for a given topic. When
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1 // exit if parameter ’mode’ is not provided
2 if(!isset($_GET[’mode’])){
3 exit;
4 }
5

6 if($_GET[’mode’] == "add")
7 addMessageForTopic();
8 else if($_GET[’mode’] == "display")
9 displayAllMessagesForTopic();

10 else
11 exit;
12

13 function addMessageForTopic(){
14 if(!isset($_GET[’msg’]) ||
15 !isset($_GET[’topicid’]) ||
16 !isset($_GET[’poster’])){
17 exit;
18 }
19

20 $my_msg = $_GET[’msg’];
21 $my_topicid = $_GET[’topicid’];
22 $my_poster = $_GET[’poster’];
23

24 //construct SQL statement
25 $sqlstmt = "INSERT INTO messages VALUES(’$my_msg’,’$my_topicid’)";
26

27 //store message in database
28 $result = mysql_query($sqlstmt);
29 echo "Thank you $my_poster for using the message board";
30 }
31

32 function displayAllMessagesForTopic(){
33 if(!isset($_GET[’topicid’])){
34 exit;
35 }
36

37 $my_topicid = $_GET[’topicid’];
38

39 $sqlstmt = "SELECT msg FROM messages WHERE topicid=’$my_topicid’";
40 $result = mysql_query($sqlstmt);
41

42 //display all messages
43 while($row = mysql_fetch_assoc($result)){
44 echo "Message " . $row[’msg’];
45 }
46 }

Figure 1: Example PHP program that implements a simple
message board using a MySQL database. This program is
vulnerable to SQL injection and cross-site scripting attacks.
Section 2.1 discusses the vulnerabilities. (For simplicity,
the figure omits code that establishes a connection with the
database.)

posting a message, the program constructs and submits the
SQL statement to store the message in the database (lines 25
and 28) and then displays a confirmation message (line 29).
In the displaying mode, the program retrieves and displays
messages for the given topic (lines 39, 40, and 44).

This program is vulnerable to the following attacks, all
of which our technique can automatically generate:

SQL injection attack. Both database queries, in lines 28
and 40, are vulnerable but we discuss only the latter, which
exploits the lack of input validation for topicid.

Consider the following string passed as the value for in-
put parameter topicid:

1’ OR ’1’=’1

This string leads to an attack because the query that the pro-
gram submits to the database in line 40,

SELECT msg FROM messages WHERE topicid=’1’ OR ’1’=’1’

contains a tautology in the WHERE clause and will retrieve
all messages, possibly leaking private information.

To exploit the vulnerability, the attacker must create an
attack vector, i.e., the full set of inputs that make the pro-
gram follow the exact path to the vulnerable mysql query
call and execute the attack query. In our example, the attack
vector must contain at least parameters mode and topicid
set to appropriate values. For example:

mode → display
topicid → 1’ OR ’1’=’1

First-order XSS attack. This attack exploits the lack of
validation of the input parameter poster. After storing a
message, the program displays a confirmation note (line 29)
using the local variable my poster, whose value is derived
directly from the input parameter poster. Here is an attack
vector that, when executed, opens a popup window on the
user’s computer:

mode → add
topicid → 1
msg → Hello
poster → Villain<script>alert("XSS")</script>

This particular popup is innocuous; however, it demon-
strates the attacker’s ability to execute script code in the vic-
tim’s browser (with access to the victim’s session data and
permissions). A real attack might, for example, send the
victim’s browser credentials to the attacker.

Second-order XSS attack. This attack exploits the lack
of SQL validation of parameter msg when storing messages
in the database (line 25) and the lack of HTML validation
when displaying messages (line 44). The attacker can use
the following attack vector to store the malicious script in
the application’s database.

mode → add
topicid → 1
msg → Hello<script>alert("XSS")</script>
poster → Villain

Now every user whose browser displays messages in topic 1
gets an unwanted popup. For example, executing the fol-
lowing innocuous input results in an attack:

mode → display
topicid → 1

3 Technique

Our attack-creation technique generates a set of concrete
inputs, executes the program under test with each input,
and dynamically observes whether data flows from an input
to a sensitive sink (e.g., a function such as mysql query
or echo), including any data-flows that pass through a
database. If an input reaches a sensitive sink, our technique
modifies the input by using a library of attack patterns, in
an attempt to pass malicious data through the program.

This section first shows the four components of our tech-
nique (Section 3.1) and then describes the algorithms for au-
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Figure 2: The architecture of A. The inputs to
A are the PHP program and its associated MySQL
database. The output is a set of attack vectors for the pro-
gram, each of which is a complete input that exposes a se-
curity vulnerability.

tomatically generating first-order (Section 3.2) and second-
order (Section 3.3) attacks.

3.1 Technique Components

Figure 2 shows the architecture of our technique and of
the A tool that we created as an implementation of the
technique for PHP. Here, we briefly describe its four com-
ponents as an aid in understanding the algorithms. Section 4
describes A and the four components in detail.

• The Input Generator creates a set of inputs for the
program under test, aiming to cover many control-flow
paths.

• The Executor/Taint Propagator runs the program on
each input produced by the input generator and tracks
which parts (parameters) of the input flow into sensi-
tive sinks. For each sensitive sink, the executor outputs
a set of input parameters whose values flow into the
sink (called a taint set).

• The Attack Generator/Checker takes a list of taint
sets (one for each sensitive sink), creates candidate at-
tacks by modifying the inputs in the taint sets using a
library of SQLI and XSS attack patterns, and runs the
program on the candidate attacks to determine (check)
which are real attacks.

• The Concrete+Symbolic Database is a relational
database engine that can execute SQL statements both
concretely and symbolically. Our technique uses this
component to track the flow of tainted data through
the database, which is critical for accurate detection of
second-order XSS attacks.

parameters: program P, database state db
result : SQLI or first-order XSS attack vectors
attacks B ∅;1
while not timeExpired() do2

input B generateNewInput(P);3
〈taints, db′〉 B exec&PropagateTaints(P, input, db);4
attacks B attacks ∪ gen&CheckAttacks(taints,P, input);5

return attacks;6

Figure 3: Algorithm for creating SQLI and first-order XSS
attacks. Section 3.2 describes the algorithm.

3.2 First-order Attacks

Figure 3 shows the algorithm for generating SQLI and
first-order XSS attacks (both called first-order because they
do not involve storing malicious inputs in the database). The
algorithms for creating SQLI and first-order XSS attacks are
identical except for the sensitive sinks (mysql query for
SQLI, echo and print for XSS) and certain details in the
attack generator/checker.

The algorithm takes the program P under test and its as-
sociated database db populated with the proper tables and
initial data (usually done via an installation script or taken
from an existing installation). Until a time limit expires, the
algorithm generates new concrete inputs (line 3), runs the
program on each input and collects taint sets (line 4), and
then creates attack vectors (line 5).

Example. Here is how our technique generates the first-
order XSS attack presented in Section 2.1:

First, new inputs are successively generated and the pro-
gram executes on each input (and propagates taints) until
some input allows the program to reach line 29 in the code
in Figure 1, which contains the sensitive sink echo. An ex-
ample of such an input I is:

mode → add
topicid → 1
msg → 1
poster → 1

(Even though only the value of mode determines whether
execution reaches line 29, all parameters are required to be
set; otherwise the program rejects the input in line 17. Our
input generator picks 1 as the default “don’t care” value.)

Second, the executor/taint propagator runs the program
on I and creates taint sets for sensitive sinks. In the example,
the executor marks all input parameters as tainted and de-
termines that the value of the parameter poster flows into
the local variable my poster, which flows into the sensitive
sink echo in line 29:

$my poster = $ GET[’poster’];
...
echo "Thank you $my poster for using the message board";

Thus, the taint set of this echo call contains (only) the input
parameter poster.

Third, the attack generator mutates the input I by replac-
ing the value of all parameters in the taint set (here only
poster) with XSS attack patterns. An example pattern is
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parameters: program P, database state db
result : second-order XSS attack vectors
inputs B ∅;1
attacks B ∅;2
dbsym B makeSymbolicCopy(db);3
while not timeExpired() do4

inputs B inputs ∪ generateNewInput(P);5
input1 B pickInput(inputs);6
input2 B pickInput(inputs);7
〈taints1, db′sym〉 B exec&PropagateTaints(P, input1, dbsym);8
〈taints2, db′′sym〉 B exec&PropagateTaints(P, input2, db′sym);9
attacks B attacks ∪ gen&CheckAttacks(taints2,P, 〈input1, input2〉);10

return attacks;11

Figure 4: Algorithm for creating second-order XSS attacks.
Section 3.3 describes the algorithm.

<script>alert("XSS")</script>. Picking this pattern
alters input I into I′:

mode → add
topicid → 1
msg → 1
poster → <script>alert("XSS")</script>

Fourth, the attack checker runs the program on I′ and
determines that I′ is a real attack.

Finally, the algorithm outputs I′ as an attack vector for
the first-order XSS vulnerability in line 29 of Figure 1.

3.3 Second-order Attacks

Figure 4 shows the algorithm for generating second-
order XSS attacks, which differs from the first-order algo-
rithm by using a concrete+symbolic database and by run-
ning the program on two inputs during each iteration. The
first input represents one provided by an attacker, which
contains malicious values. The second input represents one
provided by a victim, which does not contain malicious val-
ues. The algorithm tracks the flow of data from the at-
tacker’s input, through the database, and to a sensitive sink
in the execution on the victim’s innocuous input.

The algorithm takes the program P under test and a
database db. In the first step (line 3), the algorithm makes
a symbolic copy of the concrete database, creating a con-
crete+symbolic database. Then, until a time limit expires,
the algorithm generates new concrete inputs and attempts
to create attack vectors by modifying the inputs. The algo-
rithm maintains a set of inputs generated so far (in the inputs
variable), from which, in each iteration, the algorithm picks
two inputs (lines 6 and 7). Then, the algorithm executes
the two inputs in sequence (lines 8 and 9) using the con-
crete+symbolic database. The first execution (simulating
the attacker) sets the state of the database (db′sym) that the
second execution (simulating the victim) uses. Finally, the
attack generator/checker (line 10) creates second-order XSS
attack scenarios (i.e., input pairs).

To favor execution paths that lead to second-order XSS
attacks, on line 6 our implementation picks an input that
executes a database write, and on line 7 picks an input that

executes a database read on the same table.

Example. Here is how our technique generates the second-
order XSS attack introduced in Section 2.1:

First, the input generator creates inputs and picks the fol-
lowing pair I1:

mode → add
topicid → 1
msg → 1
poster → 1

and I2:
mode → display
topicid → 1

Second, the executor/taint propagator runs the program
on I1, using the concrete+symbolic database. During this
execution, the program stores the value 1 of the input pa-
rameter msg (together with the taint set that contains the
parameter msg itself) in the database (line 25 of Figure 1).

Third, the executor/taint propagator runs the program
on I2, using the concrete+symbolic database. During
this execution, the program retrieves the value 1 from the
database (together with the value’s stored taint set that con-
tains msg) and outputs the value via the echo in line 44.
echo is a sensitive sink, and its taint set contains the pa-
rameter msg from I1. Thus, the algorithm has dynamically
tracked the taint from msg to the local variable my msg
(line 20), into the database (line 28), back out of the
database (line 40), into the $row array (line 43), and finally
as a parameter to echo (line 44), across two executions.

Fourth, the attack generator uses the library of attack pat-
terns to alter msg in I1 to create an attack candidate input I′1:

mode → add
topicid → 1
msg → <script>alert("XSS")</script>
poster → 1

Fifth, the attack checker runs the program, in sequence,
on I′1 and I2 (note that I2 remains unchanged), and deter-
mines that this sequence of inputs is an attack scenario.

Finally, the algorithm outputs the pair 〈I′1, I2〉 as a
second-order XSS attack scenario that exploits the vulnera-
bility in line 44 of Figure 1.

4 The A Tool

As an implementation of our technique, we created
A, an automated tool that generates concrete attack
vectors for Web applications written in PHP. The user of
A needs to specify the type of attack (SQLI, first-
order XSS, or second-order XSS), the PHP program to an-
alyze, and the initial database state. The outputs of A
are attack vectors. This section describes A’s imple-
mentation of each component of the technique described in
Section 3.

4.1 Dynamic Input Generator

The dynamic input generator creates inputs for the PHP
program under test. Inputs for PHP Web applications are
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Web server requests: their parameters are mappings from
keys (strings) to values (strings and integers) in associative
arrays such as $ GET[] and $ POST[].

A uses the input-generation component from
Apollo [1], but A could potentially use any gener-
ator for PHP applications such as the one described by
Wassermann et al. [30]. The Apollo input generator is based
on systematic dynamic test-input generation that combines
concrete and symbolic execution [11]. Here, we briefly de-
scribe this technique, which A uses as a black box.

For each program input (starting with an arbitrary
well-formed concrete input, and then using subsequently-
generated ones), the input generator executes the program
concretely and also collects symbolic constraints for each
runtime value. These constraints describe an input that fol-
lows a given control-flow path through the program. Negat-
ing the symbolic constraint at a branch-point (e.g., an if
statement) and discarding subsequent constraints gives a set
of constraints for a different path through the program. The
input generator then attempts to solve those constraints to
create a concrete input that executes the new path. The
input generator repeats this process for each branch-point
in an execution, possibly generating many new inputs from
each executed one.

4.2 Executor and Taint Propagator

The Executor and Taint Propagator runs the program un-
der test on each input and tracks the dynamic data-flow
of input parameters throughout the execution. For each
sensitive sink, the executor outputs the set of input pa-
rameters, the taint set, whose values flow into the sink.
A’s taint propagation is unique in that it can track
the flow of tainted data through the database, by using a
concrete+symbolic database (Section 4.4). Dynamic taint
propagation in A can be characterized by the follow-
ing five components.

1. Taint sources give rise to tainted data during execution
of the PHP program under test. Taint sources are inputs
(e.g., $ GET and $ POST). A assigns a unique taint to
each value read from an input parameter, identified by the
value’s origin. For example, A assigns taint msg to a
value retrieved from $ GET[’msg’].

2. Taint sets describe how each runtime value is influ-
enced by taint sources, and can contain any number of el-
ements. For example, taint set {msg, poster} may corre-
spond to a runtime value derived from input parameters msg
and poster (e.g., via string concatenation).

3. Taint propagation specifies how runtime values ac-
quire and lose taint. A propagates taint sets un-
changed across assignments and procedure calls in appli-
cation code. At a call to a built-in PHP function (e.g., chop,
which removes trailing whitespace from a string) that is
not a taint filter (see next component), A constructs
a taint set for the return value that is a union of taint sets
for function argument values. A also constructs taint

sets for string values created from concatenation by taking
a union of taint sets for component strings. At a call to a
database function (e.g., mysql query), A stores or
retrieves taint for the data values. (Section 4.4 describes the
interaction of taint propagation with the database.)

4. Taint filters are built-in PHP functions that are
known to sanitize inputs (i.e., modify the inputs to make
them harmless for XSS or SQLI attacks). For example,
htmlentities converts characters to HTML entities (e.g.,
< to &lt;) and makes the output safe from XSS attacks.
At a call to a taint filter function, A creates an empty
taint set for the return value. A user of A can option-
ally specify a list of taint filters.

5. Sensitive taint sinks are built-in PHP functions that are
exploitable in XSS and SQLI attacks: for example, echo
and print for XSS and mysql query for SQLI. When
reaching a call to a sensitive sink, A records the taint
sets of the argument, indicating a data-flow from the inputs
to the sink, and thus a possibility of an attack.

A’s Executor and Taint Propagator is implemented
by modifying the Zend PHP interpreter1 to perform regular
program execution and to simultaneously propagate taints
from inputs to other runtime values.

4.3 Attack Generator and Checker

The attack generator creates candidate attack vectors that
are variants of the given input. The attack checker deter-
mines whether a candidate is an attack, by comparing the
candidate’s execution to that of the original input.

The attack generator and checker ensure that A
creates concrete exploits, which are are much easier for pro-
grammers to fix than reports of abstract traces [4, 8].

A generates candidate attack vectors and checks
their validity. Not every flow of tainted data to a sen-
sitive sink indicates a vulnerability. The data may flow
through routines that check or sanitize it. A gener-
ates candidate attack vectors by mutating innocuous inputs
that demonstrate the data flow to sensitive sinks. A
checks the validity of the candidate attacks by comparing
innocuous and candidate-attack executions.

4.3.1 Attack Generator

The attack generator starts with an input for which there
is dataflow from a parameter to a sensitive sink. For each
parameter whose value flows into the sink (member of the
taint set), the generator creates new inputs that differ only
for that parameter. The generator systematically replaces
the value of that parameter by values taken from an attack
pattern library—a set of values that may result in an attack
if supplied to a vulnerable input parameter.

A uses attack patterns developed by security pro-
fessionals. A’s SQLI attack pattern library contains 6

1http://www.zend.com
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patterns distilled from several lists2,3 A’s XSS attack
pattern library4 contains 113 XSS attack patterns, includ-
ing many filter-evading patterns (that use various character
encodings, or that avoid specific strings in patterns).

A’s goal is creating concrete exploits, not veri-
fying the absence of vulnerabilities. Moreover, A
checks every candidate attack input. Therefore, A
is useful even given the pattern library’s inevitable incom-
pleteness (missing attack patterns), and potential unsound-
ness (patterns that do not lead to attacks).

The attack library needs to be integrated in A to
be effective; the library alone is not enough to construct at-
tacks. A constructs each attack input so that the ex-
ecution reaches the vulnerable call site (using random val-
ues is ineffective [1]). In particular, the constructed attack
inputs contain many key-value pairs and strings from the
attack library constitute only 1 value in each attack input.

A string constraint solver is a potential replacement for
the attack library. Given the string at the vulnerable call
site, the solver could find a string that transforms the in-
nocuous input into a malicious input. The solver needs to
define ‘malicious’ formally, e.g., SQL query with a tautol-
ogy in the WHERE clause. Fu et al. used a custom-made
solver in a static analysis [9]. We have built a prototype
string-constraint solver, H [16], and preliminary results
indicate that creating concrete attacks can be successfully
reduced to generating and solving string constraints.

4.3.2 Attack Checker

In SQLI and XSS attacks, the PHP program interacts with
another component (a database or a Web browser) in a way
the programmer did not intend. The essence of an SQLI
attack is a change in the structure of the SQL statement
that preserves its syntactic validity (otherwise, the database
rejects the statement and the attack attempt is unsuccess-
ful) [27]. The essence of an XSS attack is the introduction
of additional script-inducing constructs (e.g., <script>
tags) into a dynamically-generated HTML page [29].

A detects attacks by looking for differences in the
way the program behaves when run on two inputs: one in-
nocuous and the other potentially malicious. We assume
that the input generator creates innocuous (non-attack) in-
puts, since the input parameters’ values are simple constants
such as 1 or literals from the program text. Therefore, the
innocuous input represents how the program is intended to
interact with a component (database or browser). The attack
generator creates the potentially malicious input.

2http://www.justinshattuck.com/2007/01/18/
mysql-injection-cheat-sheet,
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku,
http://pentestmonkey.net/blog/mysql-sql-injection-cheat-sheet

3A’s list omits attacks that transform one query into multiple
queries, because the PHP mysql query function only allows one query
to be executed per call.

4http://ha.ckers.org/xss.html

msg topicid msg s topicid s
Test message 1 ∅ ∅
Hello 2 {msg} {topicid}

Figure 5: Example state of the concrete+symbolic database
table messages used by the PHP program of Figure 1. Each
concrete column (left-most two columns) has a symbolic
counterpart (right-most two columns) that contains taint
sets. The ∅ values represent empty taint sets.

The checker runs the program on the two inputs and
compares the executions. Running the program on the at-
tack candidate input avoids two potential sources of false
warnings: (i) input sanitizing—the program may sanitize
(i.e., modify to make harmless) the input before passing it
into a sensitive sink. A does not require the user to
specify a list of sanitizing routines. (ii) input filtering—the
program may reject inputs that satisfy a malicious-input pat-
tern (blacklisting), or else fail to satisfy an innocuous-input
pattern (whitelisting). However, the taint sets are unaffected
by control-flow (taint sets only reflect data-flow) and cannot
capture input filtering.

The SQLI attack checker compares database state-
ments (e.g., SELECT, INSERT) issued by the PHP program
executed separately on the two inputs. The checker com-
pares the first pair of corresponding statements, then the
second, etc. The checker signals an attack if the statements
in any pair are both valid SQL but have different syntactic
structure (i.e., parse tree).

The XSS attack checker signals an attack if the HTML
page produced from the execution of a candidate attack in-
put (or sequence of inputs, for second-order attacks) con-
tains additional script-inducing constructs.

4.4 Concrete+Symbolic Database

The concrete+symbolic database stores both concrete
and symbolic values for each data record. In a PHP Web
application, the database is shared state that enables the
exchange of data between users. The concrete+symbolic
database tracks the flow of user-provided data between dif-
ferent runs of the PHP program and is critical in creating
second-order XSS attacks.

The concrete+symbolic database is implemented as a
duplicate of the concrete database, with each table having
additional columns that store symbolic data. A uses
these columns to store taint sets, but it is also possible to
store symbolic expressions there.

Figure 5 shows an example database state during the exe-
cution of the program in Figure 1. Assume the database was
pre-populated with a test message in topic 1, so the taint sets
for fields in the first row are empty. When the user posts a
message Hello in topic 2 (line 28), the taint sets from the
respective input parameters are stored along with their con-
crete values in the second row. Later, when the user fetches
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data from that row (line 43), the taint sets are also fetched
and propagated to the assigned variables.

A dynamically rewrites each SQL statement in the
PHP program to account for the new columns—either up-
dating or reading taint sets, as appropriate. Our current
implementation handles a subset of SQL, rewriting their
strings before passing them into mysql query: CREATE
TABLE, INSERT, UPDATE, and (non-nested) SELECT. (Note
that the DELETE statement and WHERE condition do not need
to be rewritten—MySQL can locate the relevant rows using
the concrete values.)
• CREATE TABLE creates a new table. A rewrites the
statement to add a duplicate for each column (e.g., the two
right-most columns in Figure 5) to use for storing taint sets.
• INSERT adds new rows to tables. A rewrites the
statement to store taint sets in the duplicate columns. For
example, consider the following PHP string representing an
SQL statement (PHP automatically performs the string con-
catenation):

INSERT INTO messages VALUES(’$ GET[’msg’]’,’$ GET[’topicid’]’)

Consider an execution in which parameters msg and
topicid have concrete values Hello and 2 and have one-
element taint sets that contain only the parameters them-
selves. A dynamically rewrites the statement as fol-
lows:

INSERT INTO messages VALUES(’Hello’,’2’, ’{msg}’,’{topicid}’)

• UPDATE modifies values in tables. For example, for:

UPDATE messages SET msg=’$ GET[’msg’]’
WHERE topicid=’$ GET[’topicid’]’

A’s dynamic rewriting for UPDATE is similar to that
for INSERT (the WHERE condition is unchanged):

UPDATE messages SET msg=’Hi’, msg s=’{msg}’ WHERE topicid=’3’

• SELECT finds and returns table cells. A rewrites
the statement to include the duplicate (symbolic) column
names in the selection. Thereafter, A uses the value
retrieved from the duplicate column as the taint set for the
concrete value retrieved from the original column. For ex-
ample, consider the concrete statement executed in line 39
of the program in Figure 1 (given the example state of the
concrete+symbolic database in Figure 5).

SELECT msg FROM messages WHERE topicid = ’2’

A rewrites the statement to:

SELECT msg, msg s FROM messages WHERE topicid = ’2’

The result of executing this rewritten statement on the ta-
ble in Figure 5 is a 1-row table with concrete string Hello
and associated taint set {msg}, in columns msg and msg s.
A augments functions such as mysql fetch assoc
to assign concrete values to the proper variables (e.g., row
in line 43) and to simultaneously propagate their taint sets.

5 Evaluation

We evaluated A on five open-source programs
downloaded from http://sourceforge.net: school-
mate 1.5.4 (tool for school administration, 8181 lines
of code, or LOC), webchess 0.9.0 (online chess
game, 4722 LOC), faqforge 1.3.2 (tool for creating
and managing documents, 1712 LOC), EVE 1.0 (player ac-
tivity tracker for an online game, 915 LOC), and geccbblite
0.1 (a simple bulletin board, 326 LOC). We used the latest
available versions as of 5 September 2008.

We performed the following procedure for each subject
program. First, we ran the program’s installation script
to create the necessary database tables. Second, we pre-
populated the database with representative data (e.g., de-
faults where available). Third, we ran A with a 30-
minute time limit in each of three modes: SQLI, first-order
XSS, and second-order XSS. The time limit includes all
experimental tasks, i.e., input generation, program execu-
tion and taint propagation, and attack generation and attack
checking. When necessary, we provided the input generator
with (non-administrator) username and password combina-
tions. Doing so poses no methodological problems because
an attacker can use a legitimate account to launch an attack.
Fourth, we manually examined attack vectors reported by
A to determine if they reveal true security vulnera-
bilities. We did not know any SQLI or XSS vulnerabilities
in the subject programs before performing the experiments.
(Thanks to previous studies [28, 29], we were aware of the
presence of first-order XSS and SQLI vulnerabilities in gec-
cbblite and EVE.)

We ran A in two modes for checking validity of
XSS attacks: lenient and strict. (The SQLI checker has only
one mode.) In the lenient mode, the XSS checker reports a
vulnerability when the outputs differ in script-inducing ele-
ments or HTML elements like href. In the strict mode, the
XSS checker only reports a vulnerability when the outputs
differ in script-inducing elements.

5.1 Measurements

Number of sensitive sinks (all) is the statically computed
number of echo/print (for XSS) or mysql query state-
ments (for SQLI), whose parameter is not a constant string.
Number of reached sinks (reach) on all generated inputs is
an indication of coverage achieved by the input generator.
This measure is suitable for A, because A looks
for attacks on sensitive sinks.
Number of tainted sinks (taint) is the number of sensitive
sinks reached with non-empty taint sets during execution.
Each such occurrence potentially exposes a vulnerability,
which A uses the attack generator and checker to test.
Number of verified vulnerabilities (Vuln): We count at
most one vulnerability per sensitive sink, since a single-line
code-fix would eliminate all attacks on the sink. If a single
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sensitive sinks lenient strict
program mode all reach taint Vuln F Vuln F

schoolmate
SQLI 218 28 23 6 0 6 0
XSS1 122 26 20 14 6 10 0
XSS2 122 4 4 4 0 2 0

webchess
SQLI 93 42 40 12 0 12 0
XSS1 76 39 39 13 18 13 0
XSS2 76 40 0 0 0 0 0

faqforge
SQLI 33 7 1 1 0 1 0
XSS1 35 10 4 4 0 4 0
XSS2 35 0 0 0 0 0 0

EVE
SQLI 12 6 6 2 0 2 0
XSS1 24 5 4 2 0 2 0
XSS2 24 5 3 3 0 2 0

geccbblite
SQLI 10 8 6 2 0 2 0
XSS1 17 17 11 0 0 0 0
XSS2 17 17 5 5 0 4 0

Total
SQLI 366 91 76 23 0 23 0
XSS1 274 97 78 33 24 29 0
XSS2 274 66 12 12 0 8 0

Figure 6: Results of running A to create SQLI, XSS1
(first-order XSS), and XSS2 (second-order XSS) attacks.
The lenient and strict columns refer to Amodes (Sec-
tion 5). Section 5.1 describes the remaining columns (Vuln
columns in bold list the discovered real vulnerabilities).

attack vector attacks multiple sensitive sinks, then we ex-
amine and count each vulnerability separately. This number
does not include false positives.
Number of false positives (F): We manually inspected each
A report and determined whether it really constituted
an attack (i.e., corruption or unintended disclosure of data
for SQL, and unintended HTML structure for XSS). For
second-order XSS, we checked that the attacker’s malicious
input can result in an unintended Web page for the victim.

5.2 Results

A found 23 SQLI, 33 first-order XSS, and 12
second-order XSS vulnerabilities in the subject programs
(see Figure 6). The attacks that A found, as well as
the attack patterns we used, are available at http://pag.
csail.mit.edu/ardilla.

We examined two of the three instances in which
A found no vulnerabilities. In geccbblite, we man-
ually determined that there are no first-order XSS vulner-
abilities. In faqforge, we manually determined that each
database write requires administrator access, so there are
no second-order XSS vulnerabilities. (We did not manually
inspect webchess for second-order XSS attacks, due to the
program’s size and our unfamiliarity with the code.)

We examined all 23 SQLI reports issued by A and
found no false positives. All attacks involved disrupting the
SQL WHERE clause. In 4 cases, attacks result in data cor-
ruption; in 19 cases, attacks result in information leaking,
sometimes as serious as bypassing login authentication.

We examined all 69 (33+24+12) unique XSS reports is-
sued by A. We found 24 false positives in the lenient

mode for first-order XSS (42% false-positive rate), and 0%
percent false-positive rate for all other cases: strict first-
order XSS, lenient and strict second-order XSS.

The attack generator and checker show which poten-
tial vulnerabilities are exploitable. We examined cases of
tainted sinks for which A did not create attacks. The
most common reason is that the same think may not be
reachable with a malicious input because of control-flow fil-
tering that dynamic tainting does not capture. Such reach-
ability is very hard to determine manually from program
text. A’s concrete attacks directly demonstrate the
vulnerability and how to exploit it. Our prototype string
solver [16] did not discover more attacks, which indicates
that the attack pattern library was sufficiently complete for
our subjects.

Example created SQLI attack. In webchess, A
found a vulnerability in mainmenu.php that allows an at-
tacker to retrieve information about all players without en-
tering a password. The application constructs the vulnera-
ble statement directly from user input:

"SELECT * FROM players WHERE nick = ’" . $ POST[’txtNick’]
. "’ AND password = ’" . $ POST[’pwdPassword’] . "’"

The attack vector contains the following two crucial pa-
rameters (others omitted for brevity)

ToDo → NewUser
txtNick → foo’ or 1=1 --

which causes execution to construct the following malicious
SQL statement which bypasses authentication (-- starts an
SQL comment):

SELECT * FROM players WHERE nick = ’foo’ or 1=1 --
’ AND password = ’’

Comparison to previous studies. Two of our subject pro-
grams were previously analyzed for vulnerabilities. In gec-
cbblite, a previous study [29] found 1 first-order XSS vul-
nerabilities, and 7 second-order XSS vulnerabilities (pos-
sibly including false positives). However, A and our
manual examination of geccbblite found no first-order XSS
vulnerabilities. In EVE, another study [28] found 4 SQLI
vulnerabilities. The result data from neither study are avail-
able so we cannot directly compare the findings.

Comparison to black-box fuzzing. We compared
A’s ability to find first-order XSS attacks to that of
a black-box fuzzer for finding XSS attacks: Burp Intruder5

(listed in the 10 most popular Web-vulnerability scanners6).
We configured the fuzzer according to its documentation.
The fuzzer requires manual setting up of HTTP request pat-
terns to send to the Web application (and requires manual
indication of variables to mutate). We ran the fuzzer using
the same attack pattern library that A uses, and on
the same subject programs. (We have not been able to suc-
cessfully configure webchess to run with the fuzzer.) We

5http://portswigger.net/intruder
6http://sectools.org/web-scanners.html
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ran the fuzzer until completion (up to 8 hours). The fuzzer
found 1 first-order XSS vulnerability in schoolmate, 3 in
faqforge, 0 in EVE, and 0 in geccbblite. All 4 vulnerabili-
ties reported by the fuzzer were also discovered by A.

Limitations. A can only generate attacks for a sensi-
tive sink if the input generator creates an input that reaches
the sink. However, effective input generation for PHP is
challenging [1,21,30], complicated by its dynamic language
features and execution model (running a PHP program of-
ten generates an HTML page with forms and links that re-
quire user interaction to execute code in additional files). In
particular, the generator that A uses can create inputs
only for one PHP script at a time and cannot simulate ses-
sions (i.e., user–application interactions that involve multi-
ple pages), which is a serious hindrance to achieving high
coverage in Web applications; line coverage averaged less
than 50%. In fact, only on one application (webchess) did
the input generator run until the full 30-minute time-limit—
in all other cases, the generator finished within 2 minutes
because it could not manage to cover more code. We also
attempted to run the generator on a larger application, the
phpBB Web-forum creator (35 KLOC), but it achieved even
lower coverage (14%). A uses the input generator as a
black box and any improvement in input generation is likely
to improve A’s effectiveness.

6 Related Work

We describe previous approaches to securing Web appli-
cations from input-based attacks.

Defensive coding relies on special libraries to create safe
SQL queries [6, 22]. Defensive coding can, in principle,
prevent all SQLI attacks. The technique is suitable for new
code. However, it requires rewriting existing code, while
our technique requires no change to the programming lan-
guage, the libraries, or the application.

Static approaches can, in principle, prove the absence
of vulnerabilities [12, 19, 28, 29, 31]. In practice, however,
analysis imprecision causes false warnings. Additionally,
static techniques do not create concrete attack vectors. In
contrast, our technique does not introduce such imprecision,
and it creates attack vectors.

Dynamic monitoring aims to prevent SQLI attacks by
tracking user-provided values [13, 24, 25, 27] during oper-
ation of a deployed application. However, dynamic mon-
itoring does not help to remove errors before software de-
ployment, and requires either modifying the application, or
running a modified server. For example, CANDID [3] mod-
ifies the application source and requires changing the run-
time system, with performance overhead of up to 40% on
the production application.

Information-flow control restricts the flow of informa-
tion between pieces of software, either statically [26] or dy-
namically [17, 32]. Information-flow control enforces con-
fidentiality and integrity policies on the data and prevents

attacks that use inappropriate information flows. However,
some SQLI and XSS attacks abuse legitimate information
flows; the SQL queries or the JavaScript can be dynamically
generated and can depend on legal user input. Information-
flow control requires modifying the application and either
the operating system and the libraries, or the programming
language. System-level techniques may have runtime per-
formance overhead up to 40% [17].

Static and dynamic approaches can be combined [14,15].
Lam et al. [18] combine static analysis, model checking,
and dynamic monitoring. QED [20] combines static anal-
ysis and model checking to automatically create SQLI and
first-order XSS attacks on Java applications. In contrast to
A, QED (i) does not target second-order XSS, and
(ii) requires programmers to use a custom specification lan-
guage to describe attacks.

Saner [2] combines static and dynamic analyses to find
potential XSS and SQLI vulnerabilities. Saner focuses on
the sanitization process and abstracts away other details
of the application, i.e., Saner creates attack vectors only
for extracted, possibly infeasible, paths from the static de-
pendency graph (Saner does dynamically validate the ex-
ploitability of string-manipulating code from those paths,
but ignores control flow). Saner also reports a vulnerabil-
ity whenever a path from source to sink contains no cus-
tom sanitation. The path, however, may be infeasible or
not exploitable. Saner tests each source-to-sink path in-
dependently and may miss attacks in which output is con-
structed from multiple sinks. To detect attacks, Saner sim-
ply searches for specific strings in the output, whereas
A compares the structure of HTML or SQL between
innocuous and attack runs.

Apollo [1] generates test inputs for PHP, checks the
execution for crashes, and validates the output’s confor-
mance to HTML standards. The goal of A is dif-
ferent: to find security vulnerabilities. A uses the
test-input generator subcomponent of Apollo as a black
box. A’s taint propagation implementation is par-
tially based on that of Apollo, but we enhanced it signif-
icantly by adding propagation across function calls, taint
filters, taint sinks, and tracing taint across database calls.

Emmi et al. [7] model a database using symbolic
constraints and provide a custom string solver to create
database states that help exercise various execution paths
in the Web application. Our work differs in objective (find-
ing security vulnerabilities vs. improving test coverage) and
in the targeted language (PHP vs. Java).

Wassermann et al.’s tool [30] executes a PHP application
on a concrete input and collects symbolic constraints. Upon
reaching an SQL statement, the tool attempts to create an in-
put that exposes an SQL injection vulnerability, by using a
string analysis [23]. The tool has re-discovered 3 previously
known vulnerabilities. The most important differences be-
tween Wassermann’s work and ours are: (i) Their tool has
not discovered any previously unknown vulnerabilities, and

208



requires a precise indication of an attack point. Our tool
has discovered 68 previously unknown vulnerabilities and
requires no indication of vulnerable points. (ii) Their tech-
nique focuses on SQLI, while ours targets both SQLI and
XSS. (iii) Their tool performs source-code instrumentation
and backward-slice computation by re-executing and instru-
menting additional code. Our tool works on unchanged ap-
plication code. (iv) Their tool requires manual loading of
pages and supplying of inputs to the page, while ours is
fully automatic.

7 Conclusion

We have presented a technique for creating SQL injec-
tion and cross-site scripting (XSS) attacks in Web appli-
cations and an automated tool, A, that implements
the technique for PHP. Our technique is based on input
generation, dynamic taint propagation, and input mutation
to find a variant of the input that exposes a vulnerability.
Using a novel concrete+symbolic database to store taint,
A can effectively and accurately find the most dam-
aging type of input-based Web application attack: stored
(second-order) XSS. A novel attack checker that compares
the output from running on an innocuous input and on a
candidate attack vector allows A to detect vulnerabil-
ities with high accuracy. In our experiments, A found
68 attack vectors in five programs, each exposing a different
vulnerability, with few false positives.
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