
Ldiff: an Enhanced Line Differencing Tool

Gerardo Canfora, Luigi Cerulo, Massimiliano Di Penta
RCOST – Dept. of Engineering, University of Sannio

Via Traiano, 82100 Benevento, Italy
canfora@unisannio.it, lcerulo@unisannio.it, dipenta@unisannio,it

Abstract

Differencing tools are highly relevant for a series of soft-
ware engineering tasks, including analyzing developers’
activities, assessing the changeability of software artifacts,
and monitoring the maintenance of critical assets such as
source clones and vulnerable instructions.
This tool demonstration shows the features of ldiff, an

enhanced, language-independent line differencing tool. L-
diff builds upon the Unix diff and overcomes its limitations
in determining whether an artifact line has been changed
or is the result of additions and removals, and in tracking
artifact fragments that have been moved upward or down-
ward within the file. The paper describes the tool and shows
its capability of analyzing changes on different kinds of soft-
ware artifacts, including use cases, code developed with dif-
ferent programming languages, and test cases.

Keywords: differencing algorithm, software evolution,
mining software repositories

1 Introduction

Tasks such as keeping track of developers’ activities, an-
alyzing changes occurring on software artifacts across re-
leases, monitoring changes occurring on critical assets such
as code clones and vulnerable instructions are crucial to
support software development and maintenance activities.
The availability of techniques [3, 8, 10] to integrate data
from different kinds of software repositories, ranging from
bug tracking systems to versioning systems, certainly rep-
resents an important baseline for the development of tools
able to support developerswith the above tracking andmon-
itoring activities.
Most analyses of software repositories strongly rely on

the performance of differencing tools that identify changes
occurred between an artifact revision and the subsequent
one. The most widely adopted differencing tool—on which
also versioning systems rely—is the Unix diff, which com-
pares two textual files and determines the minimum number

of line additions and removal that produces the second file
from the first one. From a developer’s point of view, diff
has two serious limitations that reduce the kinds of analyses
that can be performed: (i) it makes difficult to determine
whether a source code fragment was just changed in some
points, or instead it was completely replaced; (ii) in case a
code fragment is moved upward or downward in a file, it is
not always possible to keep track of it.
Indeed, there exist enhanced differencing tools—for ex-

ample the Change Distiller by Fluri et al. [4]—that are able
to precisely identify the kind of change performed, e.g., the
addition of a method, a parameter removal, etc. Although
being very precise, this kind of tools need to build the Ab-
stract Syntax Tree (AST) of the source code to be differ-
enced, thus rely on the availability of a parser for a specific
language. Reiss [7] empirically found that source code can
be tracked through multiple versions of a file by using rel-
atively simple techniques, such as line matching based on
the Levensthein distance.
This paper describes the demonstration of the ldiff (line

differencing) tool, which overcomes the limitations of diff
in the identification of changed textual fragments, and is
also able to identify code fragment moving. The tool builds
upon the analysis produced by diff, and adds iterations of
similarity computations at fragment level—bymeans of text
similarity measures—and at line level—by means of line
distance measures. According to the taxonomy proposed
by Kim and Notkin [5]—which classified code differencing
algorithms into algorithms working on a structured repre-
sentation of the program (e.g., AST), and algorithms work-
ing on a flat representation (e.g., sequence of lines)—ldiff
falls in the second category, thus it is language indepen-
dent. This means that not only it can work on source code
developed with different programming languages, but it can
also be used to analyze differences in other artifacts such as
use cases, test cases, or even design documents (although
for the last purpose there are more appropriate and specific
tools, e.g., UMLDiff [9]).
The differencing algorithm and its evaluation have been

thoroughly described in separate papers [1, 2]. This paper

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 595

� �
� �

� �
� �

� �
� �
� �

	 �

 �

� � �
� � �
� � �

� � � � � � � � � � �
� � � � � �

�
� � � � � �
� � � � � � � �
� � � � � � � � � � � � � � � � � �

�
� � � � � � � � � � � � �

�
� � � � � � ! � " � # � � $ � � � % � � � � � � � � � � � & � �

� � � # � � � � � � �
�

� �
� �
� �

� �
� �

� �
� �
	 �

 �

� � �
� � �
� � �

power.c (v. 1.1)
� � � � � � � � � � �

� � � � � �
�

� � � � � � � � � �
� � � �
� � � � � � ' % � (� � � $ �) " * � " � # � � (� � � % � � � � � � � � � � � & � �
� � � � � � � � � � � � � � � � � �

�
� � � � � � � � � � � � �

�
� � � � � � ! � " � # �) � � � + � � � , + - , + � , + &

� � � � � � � � � � � � �
� � � # � � � � � � �

�

power.c (v. 1.2)

Figure 1. Two versions of a simple C function.

briefly summarizes the ldiff algorithm, describes the tool
syntax and shows several application examples, comparing
ldiff results with those of the Unix diff.
The remainder of the paper is organized as follows. Sec-

tion 2 highlights the limitations of the Unix diff by means
of a motivating example. Section 3 briefly recalls the dif-
ferencing approach; then, it summarizes the approach per-
formances and describes the tool options. Section 4 shows,
with the example of Section 2, how ldiff overcomes the lim-
itations of the Unix ldiff. Section 5 concludes the paper.

2 Motivating Example

Let us consider the two versions of a C function—shown
in Figure 1—that computes n to the power of exp, with
exp > 0. If we execute the Unix diff on these two file ver-
sions, this is what we obtain:

diff power-v1.c power-v2.c

3,4c3,5
< int x=0;
< int power;

> int power=1;
> int x;
> printf("This program computes n to the power
of exp\n");
9c10
< printf("Computing n to the power of exp\n");

> printf("Computation done: %dˆ%d=%d\n",n,exp,power);

Diff indicates that lines 3–4 on the left side have been
changed into lines 3–5 on the right side, and that line 9 has
been changed to line 10. However, it appears likely that the
programmer swapped lines 3,4, modified them, moved line
9 to line 5, and then added line 10. This shows the limited
ability of the Unix diff in tracking lines moved away from
their original position, and in distinguishing changes from
additions and removals.

3 Approach and Tool

Our differencing algorithm comprises three steps, visu-
ally represented in the example of Figure 21.

• Step 1 aims at determining the set of unchanged lines.
For this step, ldiff relies on the Unix diff, which adopts
a longest common subsequence algorithm.

• Step 2 compares all combinations of f1 and f2

fragments—not classified as unchanged at the previ-
ous step using a textual similarity measure, e.g., the
Vector Space Model cosine similarity.

• Step 3 considers the most similar distinct HT hunk
pairs, and for each pair performs a line-by line com-
parison using a line differencing algorithm (e.g., the
Levenhstein edit distance [6]). The pairs having a sim-
ilarity higher than a given threshold LT are traced to-
gether and classified as changed. The remaining ones
will be considered in the subsequent iterations of Steps
2 and 3. In particular, the user can calibrate the tool
to perform i iterations, such that the recall of changed
fragments is increased.

3.1 Performances

This section briefly summarizes the performances of the
differencing approach. Details on this assessment can be
found in separate papers [1, 2].

1. the ability of ldiff to identify moved line hunks has been
assessed by randomly generating new releases of 100
source code files from PostgreSQL2 and openSSH3,
where source code fragments composed of 1 to 10
source code lines were randomly moved. We found
that ldiff had a precision of about 92% in detecting
code movements, and a recall between 62% and 73%,
increasing with the number of iterations i;

1The figure is taken from our paper [2]; f1 and f2 are the files to be
compared.

2http://www.postgresql.org/
3http://www.openssh.com/

596

Figure 2. Differencing algorithm steps (from
[2]).

2. the precision of ldiff, compared with the Unix diff, in
identifying changed, added, deleted, and unchanged
lines has been assessed on 11 change sets4 from the
ArgoUML5 CVS repository, each one composed of a
number of files ranging from 11 and 72 and a number
of lines between 32 and 401. Results indicated that:

• there is no difference in the identification of un-
changed lines—precision=99% in both cases—
since ldiff relies on the Unix diff for this purpose
(see Step 1 of the approach);

4The sequence of file revisions that share the same author, branch, and
commit notes, and such that the difference between the timestamps of two
subsequent commits is less or equal than 200 seconds [10].

5http://argouml.tigris.org/

Table 1. Ldiff command line options
-i n number of iterations
-HT CUT:N hunk similarity threshold specified with a cut level (0 ≤ CUT

≤ 1) and the number of s to consider (N≥ 1)
-LT THR line similarity threshold (0 ≤ THR≤ 1)
-lm metric line distance (e.g., Levenshtein)
-hm metric hunk similarity metric (e.g., cosine, Jaccard, and overlap)
-lt type line tokenizer (e.g., char, word, ngram, cpp)
-ht type hunk tokenizer (e.g., char, word, ngram, cpp)

• ldiff outperforms the Unix diff in the identifica-
tion of changed lines (precision=87% vs. 19%);

• instead, diff performs better in the identification
of added (precision=99% vs 77%) and deleted
lines (precision=99% vs. 68%);

3. time needed to perform the analyses: ldiff has
a quadratic complexity, and on a 2 GHz Intel
CentrinoTM laptop with 1 GB of RAM, it takes (for
i=1) 2 seconds to classify 34 line pairs and 54 seconds
to classify 171 line pairs;

4. cases in which ldiff fails: ldiff detects changes between
distinct line pairs. It fails when a line is split into more
lines or, conversely, groups of lines are merged into
one line. In such cases, the change is detected for only
one pair of lines, while it is missed for the remain-
ing ones, where the normalized Levenshtein Distance
is lower than the LT threshold.

3.2 Tool Features

A Perl implementation of ldiff is available for download-
ing at the URL: http://rcost.unisannio.it/cerulo/tools.html.
Ldiff supports a variety of hunk similarity metrics (Cosine,
Jaccard, Dice, and Overlap), and different text item extrac-
tion techniques (chars, words, n–grams, of C/C++ language
tokens). The tool parameters can be configured as described
in Table 3.2.

4 Motivating Example Revisited

Let us analyze again the example of Figure 1, this time
using ldiff instead of the Unix diff. This is what we obtain:

./ldiff.pl -i=3 power-v1.c power-v2.c

3,3c4,4
< int x=0;

> int x;
4,4c3,3
< int power;

> int power=1;
8a10,10
> printf("Computation done: %dˆ%d=%d\n",n,exp,power);
9,9c5,5
< printf("Computing n to the power of exp\n");

597

Figure 3. Visualizing ldiff results with TKDiff.

> printf("This program computes n to the power
of exp\n");

Ldiff indicates that line 3 was changed and moved to line
4, and vice versa line 4 was changed and moved to line 3.
Also, it detects the movement of line 9 to line 5, and the
addition of line 10.
Besides the usage from command line, ldiff can be used

with any diff front end that allows to modify the diff com-
mand line and its parameters. For example, as shown in
Figure 3, we can use the TKDiff front end6. Changed lines
appear highlighted in grey in the first version (left side),
and in cyan in the second version (right side), while added
lines appear highlighted in green. The top-left combo-box
shows that the selected line (highlighted in yellow) has been
moved from line 9 to line 5.

5 Conclusions

This paper described ldiff, a line differencing tool that
overcomes the limitations of the Unix diff in distinguishing
likely changed lines from added and removed lines, and is
capable of tracking line moving. The demonstration will
show—comparing results obtained with the Unix diff and
with ldiff—how ldiff is able to analyze any kind of source
file or software artifact, and how it can be used to monitor
vulnerable instructions.

References

[1] G. Canfora, L. Cerulo, and M. Di Penta. Identifying changed
source code lines from version repositories. In MSR ’07:
Proceedings of the Fourth International Workshop on Min-
ing Software Repositories, page 14. IEEE CS, 2007.

6http://tkdiff.sourceforge.net/

[2] G. Canfora, L. Cerulo, and M. Di Penta. Tracking your
changes: a language-independent approach. IEEE Software,
27(1):50–57, 2009.

[3] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proceedings of the International Conference on
Software Maintenance, pages 23–32, Amsterdam Nether-
lands, September 2003.

[4] B. Fluri, M. Würsch, M. Pinzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. IEEE Trans. Software Eng., 33(11):725–
743, 2007.

[5] M. Kim and D. Notkin. Program element matching for
multi-version program analyses. In Proceedings of the 2006
International Workshop on Mining Software Repositories,
MSR 2006, Shanghai, China, May 22-23, 2006, pages 58–
64, 2006.

[6] V. I. Levenshtein. Binary codes capable of correcting dele-
tions,insertions, and reversals. Cybernetics and Control The-
ory, (10):707–710, 1966.

[7] S. P. Reiss. Tracking source locations. In 30th International
Conference on Software Engineering (ICSE 2008), Leipzig,
Germany, May 10-18, 2008, pages 11–20, 2008.

[8] J. Sliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In Proceedings of the 2005 Inter-
national Workshop on Mining Software Repositories MSR
2005 Saint Louis Missouri USA, May 17 2005.

[9] Z. Xing and E. Stroulia. Differencing logical UML models.
Autom. Softw. Eng., 14(2):215–259, 2007.

[10] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In ICSE
’04: Proceedings of the 26th International Conference on
Software Engineering, pages 563–572. IEEE CS, 2004.

598

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
