
SmartTutor: Creating IDE-based Interactive Tutorials via Editable Replay

Ying Zhang, Gang Huang*, Nuyun Zhang, Hong Mei
Key Laboratory of High Confidence Software Technologies, Ministry of Education

School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
{zhangying06, huanggang, zhangny04}@sei.pku.edu.cn meih@pku.edu.cn

* Corresponding author

Abstract

Interactive tutorials, like Eclipse’s cheat sheets, are good for
novice programmers to learn how to perform tasks (e.g.,
checking out a CVS project) in an Integrated Development
Environment (IDE). Creating these tutorials often requires
programming effort that is time-consuming and difficult. In this
paper, we propose an approach using editable replay of user
actions to help authors create interactive tutorials with little
programming effort. User actions of performing a task can be
recorded, edited, and presented as a tutorial. The tutorial can be
replayed interactively for mentoring. We present our SmartTutor
implementation in the Eclipse IDE and conduct a preliminary
evaluation on it, which demonstrates efficiency gains for the
tutorial authors.

1. Introduction

Novice programmers often face a steep learning curve when
performing tasks in an Integrated Development Environment
(IDE). These tasks commonly require them to navigate through
many views and dialogs, and input various parameters in the
process, which often confuse these newcomers.

Fortunately, novices can get help from tutorials that provide
step-by-step instructions on IDE-based tasks. These tutorials can
be generally categorized into two types: non-interactive and
interactive.
1. Non-interactive tutorials usually give instructions in the form

of textual documents (some may include illustrations and
video/audio clips) that describe the task process. Learning
them requires novice programmers to perform actions on
various UI objects of the IDE manually.

2. Interactive tutorials such as cheat sheets [1] in Eclipse can do
more to help programmers: locating onscreen UI objects
mentioned in the text; highlighting instructions to help
novices avoid missing steps during learning; automatically
performing some steps while leaving some to be performed
manually, etc.

Interactive tutorials are good for novice programmers, but the

creation of these tutorials is laborious [6]. It often requires
programming effort that is time-consuming and difficult. For
instance, in order to associate the descriptive elements within the
documentation with the actual application UI, cheat sheet
authors have to write some predefined commands or program
some special functions. Let alone the effort spent on dividing the
instructional steps to form a task outline and validating these
programmed functions in the actual context.

To address this problem, we propose an approach using

editable replay of user actions to create interactive tutorials with
little programming effort involved. A user action is an operation
step users performed via input-devices such as the mouse and
keyboard to operate the IDE. This approach is based on the
observation that IDE-based tutorial learning requires a learner to
perform step-by-step operations on various UI objects of the
IDE, such as wizards or editors. If we can record and replay all
user actions of performing a task, we open up the possibility of
demonstrating them as a tutorial to novice programmers.

To investigate this approach, we build SmartTutor that helps
authors create interactive tutorials with little programming effort.
It is a plug-in based on our previous work SmartReplayer [2] in
the Eclipse IDE. SmartTutor can 1) record user actions of
performing a task; 2) convert the parameter-input actions into
template variables for replacing with new parameters during
replay; 3) display the recorded actions in a tree structure to help
authors create a task outline and add textual instructions; and 4)
present and replay these edited actions as an interactive tutorial
for mentoring new users just like Eclipse’s cheat sheets do.

The major contributions of this paper are:
 A new solution to reduce the burden of creating IDE-based

interactive tutorials;
 An implementation called SmartTutor to support the creation

of interactive tutorials for the Eclipse IDE;
 The results of a preliminary evaluation of SmartTutor.

2. An Illustrative Example

In this section, we take creating an interactive tutorial for the
task of checking out a CVS project by Eclipse v3.3 as an
Example. This task often confuses novice programmers, because
there are several wizard pages to go through and various
parameters to input in the process.

Cheat sheet is a kind of interactive tutorials provided by the
Eclipse IDE. A cheat sheet consists of several steps (may have
sub-steps) with textual instructions for guidance. Some steps can
be performed automatically, and the others are described so that
users can manually perform them. In order to create a cheat
sheet for good mentoring, an author has to not only write
detailed instructions for each step, but also program to make the
learning process interactive. For instance, to help users bring up
the “Add CVS Repository” dialog of Eclipse, a cheat sheet
author has to write a special Java class that implements the
“ICheatSheetAction” interface. If the author wants to make the
textfield UIs such as “Host” and “Repository path” to be focused
or highlighted, he also has to write some other classes for that
purpose.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 559

By using SmartTutor shown in Figure 1 (a), authors will
have little programming work to do. To create a CVS tutorial, an
author 1) first turns on the action-recording function of
SmartTutor before performing the task of checking out a CVS
project manually in Eclipse. After finishing the task and turning
off recording, all the performed actions will be displayed in the
User Action Tree of SmartTutor. 2) Then by using the “Mark as
Template” function, he can convert parameter-input actions (e.g.,
“inputting CVS host”) into template variables for replacing with
new parameters during replay. 3) The author continues to use
the Interactive Tutorial Editor of SmartTutor to edit these
recorded user actions. He adds steps/sub-steps to outline the
CVS checking-out task by grouping these actions. (A step/sub-
step can contain one or more user actions.) Then writes a title
and a description for each step, and then goes on to assign the
“stop line” of each step to denote where to stop when replaying
these step-actions as an interactive tutorial. (The “stop line”
numbers must be sourced from the sequence numbers displayed
in front of each action in the User Action Tree.) 4) Finally, the
author can click the “Preview” button to check the newly created
interactive tutorial as shown in Figure 1 (b). After that, an
interactive tutorial looking like cheat sheet will be generated.

When using this tutorial, a user can collapse the steps to view
the task outline and expand them to get detailed instructions for
each step. He can select the “Click to perform” hyperlinks
presented in some steps (sub-steps) to forward the mentoring
process by driving SmartTutor to replay the recorded actions.
When replaying a parameter-input action that has already been
converted into a template variable, SmartTutor will bring up a
dialog to receive a new input parameter. Meanwhile, it will
highlight the original input-UI in Eclipse by drawing a red circle
over it as shown in Figure 1 (c). In this way, SmartTutor can
replace these parameters dynamically and make the user focus
on these steps in the task-learning process. In addition, if all the

actions in a step have been replayed, a checkmark icon will
appear left to this step. That can help the user avoid missing
steps during learning.

Creating these IDE-based interactive tutorials requires little
programming effort. Additionally, maintaining and updating
them are relatively easy, which can further benefit the author.

3. An Editable Replay Approach

We discuss our editable replay approach in this section. We
first present how SmartTutor records and replays user actions;
then describe how to edit these actions and convert them into
interactive tutorials.

3.1. Recording and Replaying User Actions

IDE-based tutorial learning requires a learner to perform
operations on various UI objects of the IDE. If we can record
and replay all user actions of performing a task, we open up the
possibility of demonstrating them as a tutorial.

3.1.1. Recording User Actions. Most IDEs are Graphical
User Interface (GUI) applications that use events to interact with
users. We can record actions by catching events. However, the
information in events is relatively low-level. For instance, when
clicking a button that locates in the center of the screen, we can
get the following event: “type = mouse click, position = (512,
384)”. Such information is not easy to edit and cannot help to
locate the button if layout is changed. To address these problems,
we extract relatively high-level information from events to
represent user actions. SmartTutor records four parts of high-
level information as a user action:
1. UI object features. For instance, the features of a button

object include class type, caption, size, etc.

(a)

(b)

(c)
Figure 1. The SmartTutor System. (a) Tutorial Editor: editing the actions of checking out a CVS project to be an interactive
tutorial. (b) Tutorial Viewer: presenting the newly created tutorial for the CVS task. (c) A dialog of SmartTutor for inputting a
new parameter to replace the old one. The original input-UI is highlighted by drawing a red circle over it.

560

2. UI object context. Given a UI object, SmartTutor will record
the name and the class type of its parent UI.

3. User operation. SmartTutor categorizes the events, which are
triggered by mouse and keyboard strokes, into relatively
high-level operations such as “Select”, “Click”, and “Modify”.
In this way, it can reduce the amount of information to be
recorded. Additionally, these operations have more semantics
than events (e.g., “KeyDown” and “KeyUp”). Therefore, they
are more comprehensible and easier to edit.

4. Time. It includes the time to complete a user action and the
interval between two successive actions.

All the four parts are indispensable. The features and the

context can be used to locate the corresponding UI objects when
replaying a task; the user operation can be used to drive the
located UI object to work; the time can be used to adjust the
replaying speed.

SmartTutor collects the low-level events by listener [10]
mechanism. It registers listeners to the “Display” class that is
designated for event dispatching and forwarding in Eclipse. It
then analyzes the received events to extract the four parts of
information by reflection [10].

3.1.2. Replaying User Actions. In order to replay the

recorded actions, SmartTutor first transforms them back to
events, then dispatches these events to their source UI objects.
These objects will then perform the corresponding operations.
This process is repeated until all the actions have been handled
in sequence.

As there are no Universal Unique IDs (UUID) can be used to
tag and help find the source UI object of an event, SmartTutor
uses the recorded features and context information to locate the
source UIs. For instance, in a context containing only button A
(“Next”) and button B (“Back”), to find the button with “Next”
as its caption, SmartTutor can quickly locate button A by
comparing the caption feature. After that, SmartTutor will create
a new event with all its properties set, and then dispatch it. This
way, the user actions are replayed automatically.

3.2. Editing Actions and Creating Tutorials

User actions of a task should be edited to 1) represent a

tutorial for the task; 2) and make this tutorial interactive.
SmartTutor supplies a function to enable users to replace the
recorded input parameters of a task dynamically in the learning
process; and supplies an editor to create tutorials for the task.

3.2.1. The “Mark as Template” Function. To be a good
interactive tutorial, it should allow users to change some input
parameters in the task-learning process for better understanding.
For instance, tutorials for the CVS checking-out task should
suggest and allow users to try other host locations other than
“sample.cvs.host”. Additionally, to guarantee the consistency of
dynamic substitution, all the information related to the old
parameter should also be changed.

SmartTutor supplies the “Mark as Template” function to do
such work: 1) It replaces the recorded input parameters of
“Modify” actions with placeholders that take the form of
“%{VARn}%” (n≥0). In the tutorial demonstration process, a
user can input new parameters to replace these placeholders as
shown in Figure 1 (c). 2) All the related actions of the old
“Modify” action are also changed. SmartTutor uses an algorithm

to find these related actions. The following describes this
correlation algorithm.
Algorithm Input: two actions Ai (1 ≤ i ≤ n) and Aj (i ≤ j ≤ n) in
an action sequence: {A1, A2, A3 ... An}. Ai is a “Modify” action
for inputting a parameter.
Algorithm Output: return Aj for later examination if it is
correlated with Ai; else return null.
Algorithm:
1. Assign a correlation threshold t (t > 0) to Ai. Its value is based

on Ai’s recorded features and context.
2. Let α + β + λ = 1. They are all regulators with values in (0, 1).
3. The correlation between Ai and its following action Aj is

determined by the three parts below:
3.1. Sequence correlation: s. s will get bigger as long as Aj

gets closer to Ai in this action sequence.

α××
+−
+−

= t
in
jns

)1(
)1(

3.2. Context correlation: c. If Aj and Ai have the same

context, then c = t × β; else c = t × β / 2.
3.3. Operation-Context correlation: o. If the operation of Aj

is appeared in the context of Ai, then o = t × λ; else o= 0.
4. If s + c + o > t / 2, then Aj is thought to be correlated with Ai.

Return Aj for later examination.

3.2.2. Creating and Presenting Tutorials. SmartTutor
supplies an editor shown in Figure 1 (a) to create and present
these recorded user actions as interactive tutorials.

By using the “Add Step/Sub-step” function, an author can
group the actions of performing a task into steps to form the
task-outline of a tutorial. Then he can add a title and a
description to each step to act as instructions. Additionally, the
author should assign an integer to the “stop line” of a step, if this
step is created to automatically perform some operations such as
bringing up a wizard dialog, inputting some parameters, and
navigating through some views. The assigned “stop line” must
be sourced from the sequence numbers displayed in front of
each action in the User Action Tree, so that the actions between
two successive stop lines can be replayed when this tutorial is
demonstrated for mentoring. Finally, the author can preview this
newly created tutorial by clicking the “Preview” button.

These tutorials, with the outward appearance looks like
Eclipse’s cheat sheets, can be displayed in a separate window
for users as shown in Figure 1 (b). SmartTutor stores them in
XML-format files, so they are relatively easy to distribute, edit,
and update.

4. Evaluation and Discussion

We conducted an initial evaluation of SmartTutor as a
substitute for traditional tutorial authoring. The evaluation had
two basic goals:
 Determining how well the author operates with SmartTutor

compared to Eclipse’s cheat-sheet editor.
 Determining whether the user would like to use tutorials

created by SmartTutor.
We asked two researchers in our group to help evaluate

SmartTutor. Both had experience using the Eclipse IDE for code
development for four years. One is familiar with Eclipse’s cheat
sheets and the other is not. We asked the former to create a cheat
sheet that can bring up the CVS wizard of Eclipse and highlight
the “CVS host” textfield, and can help users to navigate through

561

the CVS wizard pages. We then asked the latter to use
SmartTutor for creating a tutorial to do the same thing. The
result is shown in Table 1.

Table 1 Time spent on creating the CVS tutorials
Time (minute) Programming Recording

actions
Creating outline and
Writing descriptions

Validating
tutorial Total

Cheat Sheet 42 0 18 5 65
SmartTutor 0 6 21 7 34

The workload of creating outlines, writing descriptions, and
validating tutorials is almost the same no matter using the cheat-
sheet editor or SmartTutor. Therefore, when creating a similar
interactive tutorial, the time difference between these two tools
is determined by the programming time required by cheat sheet
and the recording time required by SmartTutor.

We can see from Table 1 that the person using SmartTutor
spent less time finishing this work. He remarked that SmartTutor
was easy to use and good at tutorial authoring. We then sent the
two newly created tutorials to twelve novice programmers who
had never used the CVS functions of Eclipse before and were
anxious to learn. After using each tutorial, they said that both
were helpful and there was almost no difference between the
two tutorials, except one said that SmartTutor could not redo the
have-done steps in the mentoring process. That is because the
recorded user actions are in sequence, so they should also be
represented in sequence when replaying. However, we plan to
address this deficiency in future SmartTutor by storing some in-
process states of a given task and restoring them when having to
do a certain step again.

We then went on to test the storage efficiency of SmartTutor.
As our tutorial contains only action-related information and
textual instructional information (titles and descriptions), this
efficiency value can be calculated by computing the size ratio of
the two and is the smaller the better. We created 50 interactive
tutorials such as building a Swing/SWT project, creating an
Eclipse plug-in, and using the JUnit testing framework. The
sizes of these tutorials ranged from 12.1KB to 128.4KB. On
average, there were 89 actions for each tutorial and the size of
100 actions was 14.6KB. The storage-efficiency values ranged
from 18.4% to 58.2%. This suggested that our interactive
tutorials were effectively stored.

5. Related Work

There are several work using editable record-replay approach
to help programmers. We focus our comparison to these related
efforts.

One of them is SCARPE [3]. It captures the runtime
interactions between an application and its subsystem. It can
replay them to help users to generate test cases, perform offline
analysis, etc. SCARPE focuses on capturing program executions,
while SmartTutor focuses on recording UI interactions. These
two approaches are complementary and can be combined in GUI
applications.

The Docwizards system [7] is similar to SmartTutor that uses
record and replay approach to generate tutorials. However,
Docwizards needs to retain a “world model” of all the UI objects
in the runtime, whereas SmartTutor records only the information
related to each user action. Thus, the latter’s runtime cost is
relatively lower. Additionally, the documents of Docwizards
contain no task-outlines and few step instructions, so users may

have difficult to understand a task when presented with only the
recorded action sequence.

Mismar [8] is a toolset in Eclipse, which is used for creating
interactive documentation in the form of guides. It can record
relevant implementation examples and contribute to the
documentation when a programmer using such a guide. Mismar
focuses on software artifacts and their relationships, while
SmartTutor focuses on task process.

Other tool like JTutor [9] is designed to create and replay
code-based tutorials in Eclipse. SmartTutor can also teach
novice programmers how to use this IDE.

Safer and Murphy [4] created a focused learning
environment for Eclipse. It integrates Mylar [5] and cheat sheets
for giving users step-by-step instructions and presenting just the
information related to each task-step. It needs to record and
analyze the user actions of performing a task to determine the
related information. SmartTutor focuses more on tutorial
authoring and presentation.

6. Conclusion and Future Work

In this paper, we have proposed an editable replay approach
to help authors create IDE-based interactive tutorials with little
programming effort. We have also presented SmartTutor, an
implementation of our approach that can record and replay user
actions and convert them into tutorials after editing.

Future work on SmartTutor includes improving it and
extending it to be available in more IDEs. We also plan to use it
for collaborative learning: programmers in different workplaces
can easily create interactive tutorials and use them to help each
other.

Acknowledgements

This work is supported by the National Basic Research Program of
China (973) under Grant No. 2009CB320703；the High-Tech Research
and Development Program of China under Grant No. 2007AA010301,
the Science Fund for Creative Research Groups of China under Grant No.
60821003.

References

[1] http://www.ibm.com/developerworks/library/os-ecl-cheatsheets/
[2] Zhang, et al. Editable Replay of IDE-based Repetitive Tasks. In

Proc. of COMPSAC, pages 473-480, 2008.
[3] A. Orso and B. Kennedy. Selective Capture and Replay of

Program Executions. ACM SIGSOFT Software Engineering Notes.
Session: Workshop on Dynamic Analysis, pages 1-7, 2005.

[4] I. Safer, G. Murphy, J. Waterhouse, J. Li. A focused learning
environment for Eclipse. In Proc. of OOPSLA workshop on eclipse
technology eXchange, pages 75-79, 2006

[5] M. Kersten and G. Murphy. Using Task Context to Improve
Programmer Productivity. In Proc. of FSE. Session: Empirical
methods and program understanding, pages 1-11, 2006.

[6] B. Dagenais and H. Ossher. Guidance through Active Concerns. In
Proc. of OOPSLA workshop on eclipse technology eXchange,
pages 60-64, 2006

[7] Berman, et al. DocWizards: A System for Authoring Follow-me
Documentation Wizards. In Proc. of UIST, pages 191-200, 2005.

[8] B. Dagenais and H. Ossher. Mismar: a new approach to developer
documentation. In Proc. of ICSE, pages 47-48, 2007

[9] Kojouharov, et al. JTutor: an Eclipse plug-in suite for creation and
replay of code-based tutorials. In Proc. of OOPSLA workshop on
eclipse technology eXchange, pages 27-31, 2004

[10] http://java.sun.com/docs/books/tutorial/

562

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Hong Mei
