
UEMan: A Tool to Manage User Evaluation in Development Environments 

Shah Rukh Humayoun 
Dipartimento di Informatica e 

Sistemistica “A. Ruberti” 
Sapienza - Università  di Roma 

humayoun@dis.uniroma1.it 

Yael Dubinsky* 
IBM Haifa Research Lab 

Mount Carmel, Haifa 31905 
dubinsky@il.ibm.com 

Tiziana Catarci 
Dipartimento di Informatica e 

Sistemistica “A. Ruberti” 
Sapienza - Università  di Roma

catarci@dis.uniroma1.it

Abstract1

One of the challenges in software development is to 
collect and analyze the end users’ feedback in an 
effective and efficient manner. In this paper we present 
a tool to manage user evaluation alongside the process 
of software development. The tool is based on the idea 
that user evaluation should be managed iteratively 
from within the integrated development environment 
(IDE) in order to provide high quality user interface. 
The main capabilities include creating the experiment 
object as part of the software project; deriving 
development tasks from the analysis of evaluation 
data; and tracing these tasks to and from the code. 
Further, we provide a library to enable development of 
Java aspects for creation of automatic measures to 
increase the body of the evaluation data. Using this 
tool, development teams can manage user-centered 
design (UCD) activities at the IDE level, hence 
developing software products with an adequate level of 
usability. 

1. Introduction 

Software development needs to be continuously 
contributed by the end users for whom the software is 
developed. Even though it is easy to agree on this 
point, no existing tools support it as part of the 
integrated development environment (IDE).  

To bridge this gap, we present a user evaluation 
manager (UEMan) tool, which is an Eclipse plug-in 
that supports the management of user evaluation as 
part of the Eclipse IDE. UEMan enables the definition 
and deployment of experiments to be performed by 
end users and by usability experts. Based on the 
evaluation data that is gathered by these experiments, 

* This work is done as part of a visiting membership at the Human 
Computer Interaction Group at the Dipartimento di Informatica e 
Sistemistica “A. Ruberti”, Sapienza Università di Roma. 

the user-centered design (UCD) [1, 4, 7] evolves, and 
UCD tasks are added to improve the code accordingly. 
Traceability is maintained in order to encourage 
correctness and follow-up between code changes and 
the evaluation results. 

Our research approach involves working with 
software teams to understand how UCD can be 
embedded in the software development process and 
contribute towards producing high quality software 
products. This understanding helps us to shape a set of 
requirements for tooling as well as guidelines and 
techniques to accompany it [2]. The research includes 
developing UEMan, validating the concept of UCD 
integration within the tools of development, and 
evaluating it with software teams [3]. 

In Section 2 we describe the concept of automating 
user evaluation in the IDE. In Section 3 we present 
UEMan and provide evaluation data. We conclude in 
Section 4. 

2. Automating user evaluation within the 
development process 

A lack of usability and inefficient design of the 
end-product are common causes, amongst others, for 
failure of software products [5, 6]. Users are either 
involved at the beginning of projects with defining the 
requirements or at the end of project with testing and 
evaluating the developing product. In the testing phase, 
the project teams focus more on checking the 
functionalities of the product rather than its usability 
and design aspects. Checking usability or solving 
defects at the end of the development process needs 
more time, efforts, and money; hence they are not 
usually performed.  

The UCD approach provides techniques to involve 
users at the early stages of development [7]. 
Automating these techniques within the IDE, as 
described in what follows, provides the on-going 
benefit of including the user experience as part of the 
development process for producing high quality 
products with an adequate level of usability. 

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 551



2.1 The experiment object 

To help end-users continuously evaluate the 
product, the UCD approach [1, 4, 7] provides different 
kinds of tests, following referred to as experiments.
UEMan supports four kinds of experiments2: task-
based experiments to judge the usability level of 
developing product by performing different tasks by 
the end-users; questionnaire-based experiments to 
evaluate the system by the level of agreement with the 
presented statements; logging-aspect experiments to 
record end-users’ behavior; and Nielsen-heuristics
experiments to judge usability by experts. Automating 
the experiments means that in the development area of 
a software project we can add a new kind of an object 
named experiment that can be created and executed to 
provide evaluation data. Further, the experiment’s 
results can be associated with future development tasks 
that emerge to answer the issues these results raise.  

Derived UCD tasks. Each kind of evaluation 
experiment has its own criteria for judging the 
usability level of the product. Support for the analysis 
of the experiments’ results enables comparison of the 
results against the targeted usability standards. If the 
results show a failure to achieve the target usability 
level then new development tasks can be defined 
accordingly. Each task is associated with the relevant 
data thus provides its rationale with one mouse click. 

Code traceability. The product evolves through 
iterative steps in which the design of the software 
project improves gradually. Automating the process of 
keeping backward and forward traceability between 
different evolving parts at the IDE level gives a better 
understanding of the refinement done in the design to 
improve the product. The traceability is maintained 
through associations between the code parts, 
experiments, and derived development tasks. This 
mechanism helps among others to learn about the 
evaluation impact. 

2.2 Developing evaluation Java aspects   

Another advantage of introducing automated UCD 
techniques into the IDE is enabling the developers to 
add automatic evaluation hooks in the software under 
development. Using a Java library, the developers can 
create and implement Java aspects that are customized 
for the specific software. For example, an aspect can 
be created to control the use of a specific button or key 
that is part of the developing software. Running an 
experiment that includes such a measure provides 
insights about the users’ behavior.    

2 In this paper we present the first three kinds of experiments.

3. The UEMan Tool  

UEMan is an Eclipse [8] plug-in, developed in the 
Eclipse IDE using its Plugin Development 
Environment (PDE) facility to extend and become an 
integral part of the Eclipse IDE. 

3.1 Main features of UEMan 

UEMan provides an Experiment Explorer that 
helps to create, manipulate, and automate evaluation 
experiments for a specific project (Figure 1). It also 
facilitates sharing these evaluation experiments among 
different projects, to get the benefits from the 
evaluation results data of one project into other 
projects.  

Figure 1. The Experiment Explorer 

Using the explorer, one can run the experiment 
either locally i.e., on the server on which the data is 
stored; or remotely, in which the enlisted users receive 
an email with the experiment files attached and 
instructions to run the experiment in such a way that 
the results are stored back on the server.  

Figure 2. Configuring UEMan users 

Configuring an experiment is performed using the 
experiment’s Configuration Wizard. Figure 2 (the left-
hand side of the wizard) shows the option for adding 

552



participating end-users and teammates responsible for 
the evaluation experiment. Figure 3 (the right-hand 
side) shows the list of tasks the participants will 
perform while executing a task-based type of 
evaluation experiment.   

Figure 3. Configuring experiment tasks 

While a user performs the experiment, UEMan 
measures different performance times to evaluate the 
usability level of the related parts of the software 
product. Figure 4 shows the results view of a task-
based experiment. You can see the average time (in 
seconds) and the level of users’ participation in 
performing each task.

Figure 4. The experiment’s results view 

UEMan enables associating a code file or code 
parts with the appropriate experiments or tasks within 
the experiment or to any created development tasks, 
and vice versa, for the purpose of traceability. Figure 5 
shows a code part that is marked on the left-side bar 
and highlighted to show the association with a specific 
experiment.  

Figure 5. Associated code is marked 

3.2 Automatic measures by Java aspects  

UEMan provides a Java library that enables adding 
Java aspects to the software under development to 
support automatic measures that fit the developing 
product. These measures, as part of a logging-aspect 
experiment, record different kinds of user behavior 

while using the evaluated software product. Figure 6 
shows the creation wizard, including the list of 
aspect’s pointcuts that should be implemented. 

Figure 6. Creating an aspect 

Figure 7 shows the created aspect in code and the 
pointcuts to implement. Using the AutoMeasurement
Library, the development team can analyze 
automatically recorded evaluation data to assist with 
the future design of the product.  

Figure 7. Implementing the pointcuts 

The recorded data can be viewed as text or using 
visual graphs. For example, see in Figure 8 the UEMan 
graphical view of the results of a timer that measures 
the time spent in different windows when evaluating 
the Lobo Java web browser3. This kind of logging-
aspect experiment provides a new, deeper level of user 
involvement and shows how UCD activities can be 
incorporated into software development.   

3 Lobo web browser at http://lobobrowser.org/.

553



Figure 8. Evaluating Lobo using UEMan

3.3 Evaluating UEMan 

As part of UEMan development, the team was 
asked to evaluate its own product using itself (“eating 
its own cookies”). The team defined two experiments: 
a task-based experiment and a questionnaire-based 
one. Nine participants performed the experiments 
while an observer sat alongside, writing notes. 

The questionnaire-based experiment included 
statements that were related to the UEMan user 
interface, e.g., “The Questionnaire results page clearly 
displays the usability problems discovered”. The 
results view as shown in Figure 9 shows the results 
after six participants have answered. The view presents 
the level of agreement for the different statements. The 
sixth line is the statement we gave as an example, for 
which we can see there is general disagreement (2 
disagree; 3 strongly disagree; 1 strongly agrees). 

Figure 9. Results view of questionnaire-based 
experiment 

Using triangulation of evaluation experiments, 
another kind of data was observed from the task-based 
experiment that highlighted the same problem. One of 
the tasks asked to assess the general level of usability 
indicated by the results. The idea was to see if the user 
can easily conclude upon viewing the results. It 
happened that it took 146 seconds in average to 
complete this task and the team saw this as long time.  

As a result of this data and analysis, the following 
development task was derived: “Enable determining 
thresholds for success and failure in an experiment and 
present them clearly in the ‘results page’”. The actions 

that followed were: the task was assigned to one of the 
team members; the relevant code was developed and 
associated to the experiment result.  

4. Conclusion 
In this paper we presented the UEMan tool, an 

Eclipse plug-in, for automating the process of 
managing UCD activities at the IDE level. The 
automation process helps the project team be more 
efficient and effective in receiving users’ evaluation 
feedback and improve the design of the developing 
product; thus improving the overall product quality 
and decreasing the cost, time investment, and total 
effort. Using UEMan, the software project teams can 
create evaluation experiments, add users, analyze 
results, and trace it back to the code for their 
developed or in-progress product.  

In the future, we intend to continue work on 
UEMan to automate more UCD activities and add 
components to provide statistical analysis to the 
appropriate kinds of experiments. Further, we intend to 
continuously evaluate UEMan by using it to evaluate 
various software development projects. 

5. Acknowledgments 
Our thanks go to the developers from Technion 

Israel Institute of Technology: David Ben-David, 
Tomer Einav, Yoav Haimovitch, Barak Nirenberg, 
Laliv Pele, and Alon Vinkov. 

6. References 
[1] Dix, A., Finlay, J.E., Abowd, G.D., and Beale, R. 2003. 

Human Computer Interaction, 3rd Edition, Prentice Hall. 
[2] Dubinsky, Y., Catarci, T., Humayoun, S. R., Kimani, S. 

2007.  Integrating user evaluation into software 
development environments, DELOS Conference on 
Digital Libraries, Pisa, Italy. 

[3] Dubinsky, Y., Humayoun, S. R., and Catarci, T., 
Eclipse Plug-in to Manage User Centered Design, 
Workshop on the Interplay between Usability 
Evaluation and Software Development (I-USED), 2008. 

[4] Gulliksen, J., Goransson, B., Boivie, I., Blomkvist, S., 
Persson, J. and Cajander, A. 2003. Key principles for 
user-centered systems design. Behaviou & Information 
Technology, Vol. 22, No. 6, 397–409. 

[5] Landauer, T. K. 1995. The trouble with computers: 
usefulness, usability, and productivity, MIT Press.  

[6] Norman, D. 2006. Why Doing User Observations First 
Is Wrong, ACM Interactions, July-August 2006. 

[7] Sharp, H., Rogers, Y., Preece, J. 2007. Interaction 
Design: Beyond Human-Computer Interaction.Willey. 

[8] The Eclipse Platform: http://www.eclipse.org , The 
Eclipse Foundation, 2008. 

554


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	No Other Manuscripts by the Authors
	------------------------------

