Feedback-Driven Requirements Engineering:
The Heuristic Requirements Assistant

Eric Knauss, Daniel Liibke, Sebastian Meyer
FG Software Engineering, Leibniz Universitdt Hannover
Welfengarten 1, 30167 Hannover, Germany
{eric.knauss, daniel.luebke, sebastian.meyer} @inf.uni-hannover.de

Abstract

The complexity of today’s software systems is constantly
increasing. As a result, requirements for these systems be-
come more comprehensive and complicated. In this set-
ting, requirements engineers struggle to capture consistent
and complete requirements of high quality. We propose a
feedback-centric requirements editor to help analysts con-
trolling the information overload. Our HeRA tool provides
analysts with important data from various feedback facili-
ties. The feedback is directly given based on the input to the
editor. On the one hand, it is based on heuristic rules, on the
other hand, on automatically derived models. Thus, when
new requirements are added, the analyst gets important in-
formation on how consistent these requirements are with the
existing ones.

1 Introduction

Requirements Engineering (RE) deals with elicitation and
documentation of the desired results of software projects.
Typically, the starting point for these activities is someone’s
idea to design and build something [4]. A requirements
engineer starts with such an idea (i.e. a vision statement)
and searches for relevant stakeholders. Typical processes
and tools [13] suggest a top-down approach with high-level
requirements that are refined step by step until an appropriate
description of the system to build is created.

This approach is a good way to cope with the complexity
of today’s software systems by decomposition into smaller
parts. However, one of the inherent problems reported by
Gause and Weinberg [4], the different interpretation of the
original idea by participants, is not addressed by this ap-
proach. Different interpretations are hard to detect when
discussing an idea on a high abstraction level. This delays
the identification of conflicts until the decomposition has
reached a more tangible level that potential users can vali-

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE

587

date.

Our approach starts following the definition of the vi-
sion and the identification of an initial set of stakeholders.
The first step is to identify future users and their user goals
within the business goals specified by the vision statement.
In this paper, we present the Heuristic Requirements As-
sistant (HeRA), which allows a more bottom-up approach.
Its heuristic feedback allows capturing high-quality require-
ments on user goal level, identifying contradictions to other
user’s requirements, and aligning user goals with the in-
tended business process quickly. The feedback allows to
easily identify topics that need further investigation.

This paper presents HeRA’s concepts (Sect. 2), the idea
behind each of the included assistants (Sect. 3), and a short
overview of evaluation efforts (discussed in more detail in
other publications). Section 4 concludes this paper with a
discussion of interactions between these parts.

2 Solution

HeRA is based on Fischer’s architecture for domain ori-
ented design environments (DODE) [3]. The central part of
this architecture is a construction component. In the case
of HeRA, requirements are “constructed” using a general-
purpose requirements editor, a use case editor, and a glossary
editor. These editors allow constructing the domain spe-
cific artifacts (i.e. requirements, use cases, and a glossary).
HeRA offers two other DODE components, namely the Ar-
gumentation Component and the Simulation Component.

Fischer [3] emphasizes the importance of arguing about
hints from a domain-oriented design environment. An ar-
gumentation component allows users to adhere to warnings
(and their respective rules), or to argue against them. Both
types of feedback may lead to improved heuristics in the
long term.

In contrast, the simulation component gives the require-
ments author feedback on the effects the current way of mod-
eling Use Cases could have. As we want to use HeRA for

the initial documentation of stakeholder wishes we do not
have a formal requirements model that could be simulated.
However, we can derive certain models that give additional
information about the requirements being documented. In
this paper, we present three examples for such feedback types
based on generated models (UML Use Case Diagrams, EPC
Business Processes, and Use Case Points Estimations). Fig-
ure 1 gives an overview of the structure of HeRA’s compo-
nents.

HeRA

Simulation
Component

— Construction

Component f(UC)=...[$]

| “ﬂAmbiguity detected

Suggestions for Glossary:
Project (5) —ignore | insert
Signal (4) - ignore | insert

Argumentation
Component

Glossary

Figure 1. Structure of the HeRA Tool.

Computer-based feedback on requirements documents
has often been reported to enhance the quality of require-
ments specifications. Most of these approaches are focused
on the automatic evaluation of software requirements specifi-
cations’ Quality [2, 17, 11]. As opposed to these approaches
we do not analyse the requirements after completion. In-
stead, we aim at constructively enhancing the knowledge
about the system to construct during creation of the specifi-
cation.

The approach to RE we had in mind when we designed
HeRA was to start interviewing future users of the system
under development (SUD). Each user’s interaction with the
SUD is captured in use cases (based on templates suggested
by Cockburn [1]). HeRA was designed to support the re-
quirements engineer with heuristic feedback: It analyzes the
input and warns the user if it detects ambiguities or incom-
plete specifications. Furthermore, HeRA generates UML
Use Case Diagrams that show how the current user goals
relate to the business goal. If needed, a glossary assistant
can be used to ensure consistent use of important terms. An-
other assistant integrated in HeRA is able to generate a visu-
alization of the implied process by concatenating use cases
based on post- and preconditions. This permits determining
whether the current use case is well-aligned to the global
process. On demand, HeRA computes use case points and
displays an effort estimation associated with the use cases.
All of these perspectives are derived while the use case is
being written. In this way, the author gets immediate feed-
back on the input and may improve it. We have successfully
applied HeRA during interviews and workshops. Thereby,

588

we achieve the following:

1. Elicitation of user goals on a level of detail that allows
for the identification of conflicts,

Discussion whether the current user goals fit into the un-
derlying business goal and the other user goals already
documented (based on visualization as UML Use Case
and process models),

Discussion of important terms and identification of con-
flicting interpretations of these terms,

Discussion of prioritization and project constraints
based on the use case points.

The direct feedback of HeRA allows starting with elic-
itation of user goals and detection of inconsistencies and
conflicts very early by applying computer-generated feed-
back.

3 HeRA Components
3.1 Ciritiques

HeRA’s first argumentation component facilitates
computer-based critiques. Requirements experts can use
HeRA mechanisms to codify their experiences from ear-
lier projects. As a rule set in HeRA, those heuristics will
support future requirements engineers with documenting re-
quirements: HeRA applies these rules to the input in the con-
struction component and analyses it. Based on this analy-
sis, HeRA’s argumentation component can now give context
sensitive feedback on the input.

In HeRA, heuristic rules are defined in JavaScript and
have access to the data model of the construction compo-
nent. Wizards allow authors to generate the code for standard
rules. In addition, a description and parameters (e.g. certain
keywords) can be given. Rules can be changed during run-
time and the results become immediately visible. Typical
rules include checking for weakwords (e.g. “someone” and
“never”), consistency (e.g. each actor is listed as a stake-
holder), and structure (e.g. all user-level use cases are refer-
enced in a business-goal-level use case). In this way, heuris-
tic rules reflect the experience that such situations should be
avoided.

The argumentation component as instantiated by HeRA
critiques triggers breakdowns during an activity like typing
requirements [15]. Authors are interrupted and made aware
of a problem they may have overseen. They can decide to
either fix it, finish their work and return to the warning later,
or give feedback to the warning. Feedback results in an im-
proved rule set for the next project. In [6] we compared the
effectiveness of HeRA’s critiques to analytical quality assur-
ance and evaluated their positive influence on the quality of
the specification.

3.2 Glossary

Frequently used terms have a higher potential for in-
troducing misunderstandings in requirements specifications.
Misunderstandings often evolve from tacit knowledge, since
every reader of the document may have a different definition
for a term.

To counter this problem, we support the creation of a glos-
sary containing such terms. The glossary component is im-
plemented as an argumentation component and works in the
background while the requirements are written. It presents a
proposal list of terms probably relevant for a glossary. This
list helps the author to identify problematic words and add
them to a glossary. HeRA allows its users to continue their
work and to define such terms later.

In [8], we evaluated how the proposals of glossary terms
could be enhanced based on experiences. Terms that were
added to glossaries in previous projects get a higher priority
in the proposal list.

In addition to proposing possible terms for the glossary,
HeRA enhances awareness of terms already defined in the
glossary. Whenever such a term is used, it is highlighted.
A tool-tip provides the definition from the glossary. Thus,
authors can easily ensure that terms are used in the way they
were defined.

3.3 Generate UML Use Case Model

A reasonable way to give an overview of a set of use cases
and their relationships is a UML Use Case Diagram. HeRA
provides such a visualization as a simulation component in
order to give direct feedback to the authors.

The component generates an UML Use Case and an UML
Actor based on the currently edited use case’s Main Actor
and Title. We also generate UML Use Cases for each use
case referenced by the current one. We create an «includes»
relationship when it is referenced in the main scenario. We
create an «extends» relationship when the use case is refer-
enced in an Extension of the main scenario. We could have
inserted the extension’s condition but decided against it in
favour of a more compact presentation. We create an inher-
itance relationshi if the use case is referenced as a Technical
Variation: The use case serves the same User Goal but is
based on a different implementation.

The result is a quick overview of the most relevant infor-
mation (Main Actor and Use Case Title) and the immediate
context of the current Use Case. The diagram can be gener-
ated easily — even while a new title is typed in. Use Cases
referenced by the current one may easily be reached by a
double click on their UML representation. This makes the
UML Use Case Diagram a valuable graphical directory.

589

3.4 Generate EPC

Very often — especially when developing software sup-
porting business processes like, SOA systems — business
processes become part of the software specification. There-
fore, the documented use cases have to result in a business
process and must cover it completely.

From a large set of textual use cases, it is impossible for
a human to quickly derive their order and dependencies be-
tween them. Consequently, HERA offers a business process
visualization as a simulation component. The use cases are
joined based on their triggers, preconditions, and success
guarantees. If a use case requires a precondition to be ful-
filled, it depends on a use case that has this condition as
a success guarantee. The complete algorithm for deriving
graphical Event-driven Process Chain (EPC) models [12]
from tabular use cases is described in [9, 10]. The visual-
ization of use cases as business processes gives feedback on
the global context. Requirements engineers can see whether
the global control-flow through the use cases is as expected
or not. If it is not, there are a number of possible errors that
can be spoted this way:

Missing or wrong conditions: The triggers, precondi-
tions, and success guarantees of the use cases may be
wrong. This type of error can lead to a wrong under-
standing of the desired context by the developers and
thus to a not completely fitting software. Especially
the preconditions can be important if activities have
to be performed in a given order or data must be in a
defined state.

Missing use cases: If the generated business process con-
tains gaps or preconditions cannot be satisfied, the
requirements engineer might have found missing use
cases that would bridge the gap or satisfy the condi-
tions. For instance, if a precondition “user is logged
in” is specificed, somewhere there has to be a use case
titled like “User logs into the system”. While in this
case the functionality is self-evident, not documenting
it imposes unnecessary risks and may lead to wrong
effort estimates.

Mismatching between business processes and use cases:
If the overall control-flow is not similar to the specified
business process, either the business process might
contain unactable parts or the use cases are not suitable
at all.

The business process generation can also be used to stim-
ulate the discussion about requirements as described in [7].

3.5 Compute Use Case Points

The Use Case Point method [5] allows estimating project
costs of a project based on use cases. It resembles the CO-

COMO and Function Point methods, but relies on analysing
scenario steps and actors.

The Use Case Point View in HeRA is implemented as a
simulation component (Fig. 1), because it allows a what-if
analysis based on the use case model. Again, HeRA is able
to give an estimation very early, even while Use Cases are
being written. These estimations are very inaccurate, but can
be valuable if requirements authors reflect upon conspicuous
estimations. Requirements Engineers can either adjust the
use case model (e.g. adjusting abstraction levels of Use
Cases between User Goal and Subfunction), or explicitly
change project constraints (e.g. experience of project team,
technical risk, ...).

HeRA’s Use Case Point Component helps authors to
switch to the measurers perspective. Quantification and
evaluation of this part of HeRA is still open and remains
as future work. However, Trudel and Abran [16] investi-
gated the value of such an effort measurement perspective
for the quality of requirements specifications. In their work,
they compare results of requirements specification reviews
done by inspectors and measurers. They claim that the com-
bination of both perspectives leads to an increased defect
identification in reviews. Therefore, the Use Case Point Es-
timation to prove valuable.

4 Conclusion

Figure 2 shows the different levels of feedback given by
HeRA. Critiques give immediate feedback on the input, com-
parable to spell checkers. After editing a Use Case, the pro-
posals for potential glossary terms form another feedback
loop. A generated UML Use Case Diagram enhances the
overview of modeled use cases. If needed, requirements
analysts can request even more feedback: EPCs can be gen-
erated to show the global process implied by a given set of
use cases, and Use Case Point Estimation can show the effort
implied by the current way of modeling the use cases. The
speed and frequency of feedback drops from the inside to
the outside in Fig. 2. We have evaluated the positive effects
of these feedback loops in several projects [6, 8, 7, 14].

o Improve

- ; Legend
-~ ding
——— g
> - . improve Req. Artifact
Critiques

-~ consistency Sim. Component
. improve .

Arg. Component
overview

/ o improve overview
detect contradictory req.

_ Improve uniformity

detect constraints

Glossary
UML UC Diagram
EPC-Generation

Use Case Points

Aouanbayy yoeqpas)

Figure 2. Computer-induced feedback cycles
in HeRA

590

References

(1]
(2]

(3]
(4]

[5

—

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. Cockburn. Writing Effective Use Cases. Addison-Wesley
Professional, January 2000.

F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The Linguis-
tic Approach to the Natural Language Requirements Qual-
ity: Benefit of the use of an Automatic Tool. In SEW "01:
Proceedings of the 26th Annual NASA Goddard Software En-
gineering Workshop, page 97, Washington, DC, USA, 2001.
IEEE Computer Society.

G. Fischer. Domain-Oriented Design Environments. Auto-
mated Software Engineering, 1:177-203, 1994.

D. C. Gause and G. M. Weinberg. Exploring Requirements:
Quality Before Design. Dorset House Publishing Company,
Incorporated, 1989.

G. Karner. Resource Estimation for Objectory Projects. Ob-
Jectory Systems, 1993.

E. Knauss and T. Flohr. Managing Requirement Engineer-
ing Processes by Adapted Quality Gateways and critique-
based RE-Tools. In Proceedings of Workshop on Measur-
ing Requirements for Project and Product Success, Palma de
Mallorca, Spain, November 2007. in conjunction with the
IWSM-Mensura Conference.

E. Knauss and D. Liibke. Using the Friction between Busi-
ness Processes and Use Cases in SOA Requirements. In
Proceedings of REFS’08, 2008.

E. Knauss, S. Meyer, and K. Schneider. Recommending
Terms for Glossaries: A Computer-Based Approach. In Pro-
ceedings of Workshop on Managing Requirements Knowl-
edge at 16th IEEE RE Conference, Barcelona, Spain, 2008.
D. Liibke. Transformation of Use Cases to EPC Models. In
Proceedings of the EPK 2006 Workshop, Vienna, Austria,
2006.

D. Liibke. An Integrated Approach for Generation in Service-
Oriented Architecture Projects. PhD thesis, Gottfried Wil-
helm Leibniz Universitit Hannover, 2007.

R. Melchisedech. Verwaltung und Priifung natiirlichsprach-
licher Spezifikationen. PhD thesis, Fakultit Informatik, Uni-
versitdt Stuttgart, Stuttgart, 2000.

J. Mendling and M. Niittgens. EPC Markup Language
(EPML) - An XML-Based Interchange Format for Event-
Driven Process Chains (EPC). Information Systems and e-
Business Management (ISeB), 4(3):245-263, July 2005.

S. Robertson and J. Robertson. Mastering the Requirements
Process,. Addison-Wesley, 1999.

K. Schneider. Improving Feedback on Requirements through
Heuristics. In Proceedings of 4th World Congress for Soft-
ware Quality (4WCSQ), 2008.

D. A. Schon. The Reflective Practitioner: How Professionals
Think in Action. Basic Books, New York, 1983.

S. Trudel and A. Abran. Improving the Qualitiy of Functional
Requirements by Measuring Their Functional Size. Proceed-
ing of the International Conferences IWSM, MetriKon, and
Mensura, pages 287-301, 2008.

W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt. Automated
quality analysis of Natural Language requirement specifica-
tions. In Proceedings of PNSQC Conference, 1996.

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
