
CocoViz with Ambient Audio Software Exploration

Sandro Boccuzzo and Harald C. Gall
Department of Informatics, University of Zurich, Switzerland

{boccuzzo, gall}@ifi.uzh.ch

Abstract

For ages we used our ears side by side with our ophthalmic
stimuli to gather additional information, leading and sup-
porting us in our visualization. Nowadays numerous soft-
ware visualization techniques exist that aim to facilitate
program comprehension. In this paper we discuss how
we can support such software comprehension visualization
with environmental audio and lead users to identify relevant
aspects. We use cognitive visualization techniques and au-
dio concepts described in our previous work to create an
ambient audio software exploration (AASE) out of program
entities (packages, classes ...) and their mapped properties.
The concepts where implemented in a extended version of
our tool called CocoViz. Our first results with the proto-
type shows that with this combination of visual and aural
means we can provide additional information to lead users
during program comprehension tasks.

1 Introduction

Program comprehension is a major concern in software
maintenance and evolution. Without effective tool support,
the amount of data, the relationships between the entities,
and out of date documentation make it almost impossible
for engineers to maintain an accurate understanding of an
evolving system. Because of the size and complexity of
nowadays systems, even effective visual representations end
up being overwhelmed with all the gathered information
about a project. There is need to support the observers in
leading them to find relevant aspects right away.

With the CocoViz project1 we aim to enhance exist-
ing maintenance and evolution analysis methods to present
a software system in an intuitively understandable visual-
ization [4]. Beyond the visual presentation we started to
think about ways to support and lead observers to relevant
aspects. In [5] we described ways to support visual rep-
resentations of software entities with aural representations.
With this approach we were able to further investigate vi-
sual representations of a particular software entity and its

1This work was partially supported by the Hasler Stiftung Switzerland.

properties without leaving the focus from the actual visual-
ization.

In this paper, we describe how we extended our previous
audio approach from a rather investigative support of a visu-
alization to a more exploitive approach. We achieve this by
creating an ambient sound out of a set of software entities
with a particular dependency or relationship. In comparison
with to our previous work where we created an aural repre-
sentation for one particular software entity. The main con-
tribution is an extended CocoViz audio-visualization ap-
proach, where we use environmental influenced aural feed-
back during navigation in a visualization. The described
approaches were implemented in a extended version of our
CocoViz Tool [3].

The remainder of this paper is organized as follows. Sec-
tion 2 covers aspects to support software visualization, in re-
gard to program comprehension and navigation tasks, with
audio. In Section 3 we discuss our concept of creating am-
bient sound out of a set of related software entities. In Sec-
tion 4 we present example scenarios based on the azureus2

project. We address related work in Section 5 and summa-
rize with our conclusions and future work in Section 6.

2 Support Software Visualization with Audio

One of the main concerns in a software visualization is to
find relevant aspects in a complex system as fast as possible.
Explorative software visualizations as [4] offer a variety of
filters and customization opportunities to limit the amount
of software entities in a view. Still quite often one finds
himself with hundreds of potential entities. How can we
assist the observer in such situations?

Popups or tooltips are concepts that are commonly used
in situations, where an observer needs additional informa-
tion on entities. The pitfalls of these concepts are that with
every extra popup, the observer gets a more disturbed view
on the general visualization. Particularly in explorative sit-
uations where usually there are more than 10 entities to fur-
ther investigate popups / tooltips become a suboptimal ap-
proach. We prefer other visualization support.

2http://www.azureus.com/ last checked 11.2.2009

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 571

According to Pennington’s [12, 13] bottom-up theory of
program comprehension e.g., a programmer focuses first
on the basic structural entities. A fundamental component
for an appropriate visualization support therefore is an ad-
equate highlighting of basic structure units. After further
investigating on fundamental components for program un-
derstanding and suggestions for facilitating software com-
prehension as [11, 10], we suggested extending interaction
in software visualizations with an audio visual approach [5].
By using audio we solved the previous mentioned short-
comings and we were able to improve the navigation and
program comprehension capabilities of our CocoViz ap-
proach in general.

3 Ambient Audio Concept

Our primer results with audio supported visualizations
[5] focused more on an investigative support of a visualiza-
tion. The results showed how we were able to get additional
information on one particular software entity without losing
focus on the current visualization state and task.
Encouraged from those results we looked for how we could
extend the audio support to a more explorative modality.
Our argument is that we want to help the observer in his
exploration, by conciliating him through adequate audio
sources and leading him in finding relevant aspects.
Compared to our previous approach were an audio repre-
sentation was triggered with the selection of one particular
entity, now we use audio to find a particular entity. Like in
a movie or computer game, were the audio track forewarns
the audience / player of upcoming plots. e.g., in a triller
a strident ambient sounds warns us of what we can expect
next. We create similar ambient like sounds out of set of
software entities with particular dependencies or relation-
ships.
The ambient sounds are constructed with the same concepts
(selection of classes, filtering, metric clusters, ...) used in
our previous work [5]. The metric clusters are mapped to
adequate Zwicker parameters [16] or the frequency / vol-
ume of a particular sounds e.g., a bubble sound. Table 1
shows a set of possible case scenarios where ambient audio
can be used together with possible mapping criterias.

To trigger an ambient audio source we use common con-
cepts like a head-up display know form video-games, a
key combination or the shift key in accompaniment with
a mouse. This bring up an exploration marker, that per-
sonifies an observers navigation in the visualization space
and pictures the position of the observers ears. While the
marker is moved around the visualization (Table 2), we take
its current position and use surround sound techniques to
clarify which audio representations is currently played. The
observer perceives the audio sources and can adequately ad-
just his navigation in the visualization.

Table 1. Case scenarios and possible mappings
for ambient audio

Based on the ambient sound we are able to lead an observer
on a trail, we call audio exploration path (AEP). We pre-
serve an audit trail with keyframes of this followed AEP,
for an eventual backtracking to interesting exploration po-
sitions.

An ambient sound currently depicts either a package or a
set of entities. The first is useful to call attention on present
code smells or deficiencies in one package compared to
other packages. We explain this case during an example
in section 4. The second deals about case scenarios where
attention is brought to entity sets with some sort of cohe-
sion (e.g., change couplings [8], number of bug reports, ...)
between each others. Suppose we are looking for certain
instabilities in our system or critically affected system com-
ponents. We can build our visualization with a layout in-
volving similarities as used by Fischer et al. in [7]. Using
ambient audio on top of that layout, mapped to metrics like
number of bug reports or number of recent changes offers us
a walkthrough on our software visualization were we sim-
ply hear about our critical hot spots. In particular thanks
to ambient audio wound up a set of entities with a partic-
ular dependencies, we get attentive as well on cases where
small individual entities, because of their relation, represent
a critical situation to a component.

The AASE approach enables us to extend the audio sup-
port for software visualizations, with assisted navigation, a
space annotated with sounds (AEP) and perception of enti-
ties with dependencies to a more explorative modality.

572

Table 2. Head-up display with exploration marker

4 Example Scenarios

To demonstrate our AASE concepts we implemented
them in our CocoViz tool. For the evaluation we use an
ambient sound similar to a bubble sound, everyone is famil-
iar with from their daily live. We alter the volume and fre-
quency based on the mapped metrics of each set of software
entities. The different acoustic feedbacks would sound like
the different stages from still to boiling water. The higher
the volume and frequency the more the perceived acoustic
feedback resembles the one of boiling water.

We are currently evaluating our approach with different
versions of the azureus dataset and versions of a commer-
cial web framework. In the following we demonstrate on a
simple understandable task how ambient audio exploration
can help leading the user to the relevant entities. The used
evolutionary data set consists of the azureus 2 project. We
choose 3 major releases from v3.0.5 to v3.1.1. The metrics
were calculated per release.

Figure 1 shows a Hotspot-View as explained in [4] of
all the packages in azureus version 3.0.5. In our example
scenario we are looking for packages which include classes
that where recently changed. Solving the task in a visual ap-
proach we can change the color mapping to represent where
changes were maid. By triggering the ambient audio though
we can simply leave the entities in the current color map-
ping and just moving around the exploration marker, while
listen to the audio feedback. In Figure 1 moving the explo-
ration marker towards (a) we would here a ambient sound
similar to a soft sea, approaching (b) we would perceive
a more stormy ambient sound, and close to (c) the ambient
sound resembles the one of boiling water. In other words we
can easily argue that in (a) there where only little changes

since the last release, some where made in (b) and quite
some changes were made to the classes in package (c).

5 Related Work

The goal of Software visualization is to represent the
complex context of today’s software projects. Most visu-
alization methods use a graphical representation of data. In
the past few years a variety of approaches dedicated to soft-
ware visualization and software reengineering emerged.

Metrics visualization describe a software state or situa-
tion. Metrics describe a specific software entity and are not
part of a hierarchy. The goal of these approaches is to show
aspects of a software by visualizing the representing met-
rics. An exponent of this approach is Lanza and Ducasse’s
Polymetric Views [9]. In their concept they display the soft-
ware entities based on their metric values as the position, the
height, the width and the color of a rectangular shape.
AASE uses similar concepts to create the ambient audio
environment and extends those works with an interactive
approach where a viewer analyses the software in walking
through the views to identify relevant aspects.

Audio supported visualization To our best knowledge
we found only little work related to our audio approach in
supporting software visualization. However there is work
done in the context of software analysis and auditory dis-
play.
A good introduction to the various approaches present in
the field of auditory representation is provided by Vickers
in [15].
Brown and Hershberger in [6] use audio for algorithm ani-
mations. They enhanced the Zeus algorithm animation sys-
tems using a MIDI synthesizer and introduced the use of
colour and sound in algorithm animations.
Baecker et al. in [1] use audio to provide programmers with
debugging and profiling feedback without disturbing the in-
tegrity of the graphical interface. According to them au-
dio may be a more salient representation for certain types
of program information like repetitious patterns in control
flow and nonlinear sequences of variable values.
Berman and Gallagher in [2] present techniques to listen to
program slices that help software developer in undertaking
program comprehension activities.
Work with audio in software analysis has been done by Ste-
fik et al. in [14]. In their work they use aural feedback
to sonify computer code as an aid to non-sighted program-
mers.

Compared to our AASE approach the others distin-
guishes itself mainly as they focus on tracking the value
of state variables and control flow during debugging or vi-
sualizing algorithms. Meanwhile AASE’s focus is more in
supporting the interaction within a visualization.

573

Figure 1. Hotspot view of the packages present in azureus v3.0.5 with ambient audio exploration marker

6 Conclusions & Future Work

In this paper we discussed improvements to the percep-
tion of relevant aspects in evolving software projects. We
proposed an ambient audio software exploration (AASE)
approach that assists in the software visualizations inves-
tigation and perception of situation where individually ir-
relevant entities with dependencies become relevant.

We are currently preparing a user study to get substan-
tial data on the benefits of audio-supported software explo-
ration. The evaluation is performed on a large set of soft-
ware projects and against other visualization approaches to
document situations where audio feedback offers substan-
tial advantages over more traditional approaches.

Future work aims to consider more sophisticated audio
algorithms and tailor the audio feedbacks more towards spe-
cific general program comprehension tasks

References

[1] R. Baecker, C. DiGiano, and M. Aaron. Software visualization for
debugging. Commun. ACM, 40(4):44–54, 1997.

[2] L. I. Berman and K. B. Gallagher. Listening to program slices. In
Proc. Int’l Conf. on Auditory Display, 2006.

[3] S. Boccuzzo and H. C. Gall. Cocoviz: Supported cognitive software
visualization. In Proc. Working Conf. on Reverse Eng., 2007.

[4] S. Boccuzzo and H. C. Gall. Cocoviz: Towards cognitive software
visualization. In Proc. IEEE Int’l Workshop on Visualizing Softw.
for Understanding and Analysis, 2007.

[5] S. Boccuzzo and H. C. Gall. Software visualization with audio sup-
ported cognitive glyphs. In Proc. Int’l Conf. on Softw. Maintenance,
2008.

[6] M. Brown and J. Hershberger. Colour and sound in algorithm ani-
mation. In Proc. IEEE Workshop on Visual Languages, page 5263,
1991.

[7] M. Fischer, M. Pinzger, and H. Gall. Populating a release history
database from version control and bug tracking systems. In Proc.
Int’l Conf. on Softw. Maintenance, pages 23–32, 2003.

[8] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling
based on product release history. In Proc. Int’l Conf. on Softw. Main-
tenance, pages 190–198, Nov 1998.

[9] M. Lanza and S. Ducasse. Polymetric views — a lightweight vi-
sual approach to reverse engineering. IEEE Trans. on Softw. Eng.,
29(9):782–795, 2003.

[10] R. Mosemann and S. Wiedenbeck. Navigation and comprehension
of programs by novice programmers. In Proc. Int’l Workshop on
Program Comprehension, page 79, 2001.

[11] M. J. Pacione. Software visualisation for object-oriented program
comprehension. In Proc. Int’l Conf. on Softw. Eng., pages 63–65,
2004.

[12] N. Pennington. Comprehension strategies in programming. In In
G. M. Olson, S. Sheppard & E. Soloway, Eds. Empirical Studies of
Programmers: Second Workshop, pages 100– 113, 1987.

[13] N. Pennington. Stimulus structures and mental representations in
expert comprehension of computer programs. In Cognitive Psy-
chology, pages 295–341, 1987.

[14] A. Stefik, R. Alexander, R. Patterson, and J. Brown. Wad: A fea-
sibility study using the wicked audio debugger. In Proc. IEEE Int’l
Conf. on Program Comprehension, pages 69–80, 2007.

[15] P. Vickers. External auditory representations of programs: Past,
present, and futurean aesthetic perspective. In Proc. Int’l Conf. on
Auditory Display, 2004.

[16] E. Zwicker, H. Fastl, and W. M. Hartmann. ”psychoacoustics: Facts
and models”. Physics Today, 54:64–65, 2001.

574

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Harald C. Gall
