
Alitheia Core: An extensible software quality monitoring platform

Georgios Gousios, Diomidis Spinellis
Department of Management Science and Technology

Athens University of Economics and Business
{gousiosg, dds}@aueb.gr

Abstract

Research in the fields of software quality and maintain-
ability requires the analysis of large quantities of data,
which often originate from open source software projects.
Pre-processing data, calculating metrics, and synthesizing
composite results from a large corpus of project artefacts
is a tedious and error prone task lacking direct scientific
value. The Alitheia Core tool is an extensible platform for
software quality analysis that is designed specifically to fa-
cilitate software engineering research on large and diverse
data sources, by integrating data collection and preprocess-
ing phases with an array of analysis services, and present-
ing the researcher with an easy to use extension mechanism.
The system has been used to process several projects suc-
cessfully, forming the basis of an emerging ecosystem of
quality analysis tools.

1. Introduction

A well-known conjecture in software engineering is that
product quality characteristics are correlated, or result from,
good software development practices, and thus source code
metrics provide useful data for the assessment of its quality.
Uniquely, open source software (OSS) allows us to examine
a system’s actual code and perform white box testing and
analysis [9]. In addition, in most open source projects, we
can access their version control system, mailing lists, and
bug management databases and thereby obtain information
about the process behind the product. However, deep anal-
ysis of those software artefacts is neither simple nor cheap
in terms of computing resources. Many successful OSS
projects have a lifespan in excess of a decade and there-
fore have amassed several GBs worth of valuable product
and process data. In this demonstration paper, we present
Alitheia Core, an extensible platform designed specifically
for performing large-scale software quality evaluation stud-
ies.

2. Related Work

The continuous metric monitoring approach towards
achieving software quality is not new. The first systems that
automate metric collection emerged almost immediately af-
ter revision control systems and bug management databases
were integrated in the development processes. Early efforts
concentrated on small scale, centralized teams and prod-
uct metrics (e.g. [2, 7]), usually to support quality models
or management targets set using the Goal-Question-Metric
approach [1]. Alitheia Core is able to process more data
sources and while it does feature a quality model imple-
mentation, it is not tied to it, enabling the user to combine
arbitrary software metrics towards a custom definition of
quality.

The Hackystat [6] project was one of the first efforts to
consider both process and product metrics in its evaluation
process. Hackystat is based upon a push model for retriev-
ing data as it requires tools (sensors) to be installed at the
developer’s site. The sensors monitor the developer’s use of
tools and updates a centralized server. Alitheia Core is sim-
ilar to Hackystat in that it can process product and process
data; it improves over Hackystat as it does not require any
changes to the developer’s toolchest or the project’s config-
uration while it can also process soft data such as mailing
lists.

Finally, a number of projects have considered the analy-
sis of OSS development data for research purposes. Floss-
mole [5] was first to provide a database of preprocessed data
from the Sourceforge OSS development site.

3. Platform Requirements and Architecture

The original aim of the SQO-OSS project was to develop
a web site of publicly accessible measurements for OSS soft-
ware projects.

The key requirement for a system like the Alitheia Core
is efficiency; the system must be able to process large data
volumes with algorithms that are often CPU-intensive. For
the projects we examined before designing the system, the

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 579

average size of their repositories was in the order of 5000
revisions; a few large projects, like FreeBSD, had more
than one hundred thousand revisions. Each revision of the
project can have thousands of live files (the Linux kernel
has about eight thousand), the majority of which are source
code files. A rough calculation for an average 20KB file
size shows that the system would read a gigabyte of data
just to load the processed file contents into memory. Even
this simple operation is prohibitively expensive to do over
the Internet as it would introduce large latencies and would
hurt the performance of the project hosting servers. More-
over, if a metric requires an average 10s of processing time
per revision, processing the average project would take 14
hours on a single CPU computer. After some experimenta-
tion with such back of the envelope calculations and a sys-
tem prototype, it becomes apparent that a naive approach of
getting the data from the project’s repository on request and
processing them would not scale; a more sophisticated so-
lution that would combine project local data mirroring and
multi-core processing and possibly clustering is required.

On the other hand, the OSS development tools landscape
is very diverse; currently, in use are at least five major revi-
sion control systems (including CVS, Subversion, GIT, Mer-
curial and Bazaar), five bug tracking systems (e.g. Bugzilla,
Mantis, Jira, GNATS) and literally hundreds of configura-
tions of mailing list services and Wiki documentation sys-
tems. Also, depending on the nature of the evaluated as-
set, metrics can work with source code file contents, source
code repository metadata, bug reports, or arbitrary combi-
nations thereof. Collecting and processing hundreds of gi-
gabytes of data from such a diverse set of data sources re-
quires careful consideration of the storage formats and the
mirroring process. Moreover, the choice of the particular
data storage format should not hinder the system’s ability
to work with other raw data formats as well. In our system,
we decided to use the least common denominator of features
for our storage formats, and standardised on the Subversion
repository format for source code data, the Maildir format
for mailing list data and the Bugzilla XML format for bug
data.

3.1. Architectural Components

To address the challenges presented above, the Alitheia
Core system is based on an extensible, service-oriented ar-
chitecture presented in Figure 1. To separate the concerns
of mirroring and storing the raw data and processing and
presenting the results the system was based on a three-tier
architecture. The processing core is modeled on a system
bus architecture with services that are attached to the bus
and are accessed via a service interface. The OSGi compo-
nent model was selected to base the system’s core layer.

The data access layer consists of two basic components:

SQO-OSS Connector Library

Web Interface IDE Plug-in

Results & Metadata Database SubVersion Bugzilla XMLMailDir

OSGi

Web services

DB
Service

Logging Job
Scheduler

Metric
Activator

Tier 1:
Data Mirroring,

Storage & Retrieval

Tier 2:
System Core

Tier 3:
Results

Presentation

Thin Data
Storage

Fat Data
Storage

Metric
Plug-inMetric

Plug-inMetric
Plug-in

Messaging Security Cluster
Service

Plug-in
Admin

Metadata
Updater

Parser
Service

Web
Admin

Raw Data Mirror

Figure 1. The Alitheia Core system architec-
ture

the database service and the fat/thin data access stack. The
database service is central to the system as it serves the
triple role of abstracting the underlying data formats by stor-
ing metadata, storing metric results, and providing the types
used throughout the system to model project resources,
such as project versions, project files, mail messages, mail
threads, and bugs. It uses an object-relational mapping to
eliminate the barrier between runtime types and stored data
and has integrated transaction management facilities. Ac-
cess to raw data is regulated by a plug-in based stack of
accessors whose lower layers directly touch and fetch the
mirrored data, while the higher parts provide caching and
combined raw data and processed metadata access.

Upon project registration, a preprocessing phase con-
verts the raw data to internal system representations, which
is what the metric plug-ins work with. During the pre-
processing phase, the system extracts metadata from the
raw data and stores them into the database. Through the
metadata database the system can swiftly respond to metric
queries relating to the properties of the examined resources,
while the original contents of the resources are still avail-
able in the raw data stores. Example metadata queries in-
clude the live files in a revision, or the authors of the emails
participating in a particular thread. The metadata entities
are also used by metrics to store and calculate results; for
example, if the metadata updater encounters a new revision,
it will notify all metrics that calculate their results on whole
project checkouts, and, after the result is calculated, it will
be stored against the same database object.

The Alitheia Core has been designed from the ground up
for performance and scalability. All metric plug-in execu-
tions and a significant number of performance critical func-
tions in the core are modeled as jobs. The job scheduler
component maintains a configurable size pool of worker
threads, and schedules items from its work queue to idle

580

threads. Jobs can have dependencies and priorities to cater
for scenarios where a metric plug-in requires the result of
another metric plug-in. In most cases, the execution path
is lock-free, which enables high scalability and, given the
appropriate hardware, very high throughput rates. The pro-
cessing core is currently being run on 8 and 16 core ma-
chines, exhibiting almost linear scalability and full proces-
sor utilisation.

Alitheia Core also includes clustering capabilities
through the cluster service. The development of the clus-
ter service was based on the observation that the workloads
the system processes are usually embarrassingly parallel,
since each project’s data is handled independently from the
others. For long-lived projects however, the initial meta-
data synchronization is extremely resource intensive. This
means that that after the project import phase, the plug-ins
could run on another, perhaps less powerful, host if they
could have access to the same database. The clustering ser-
vice guarantees that all metadata updates are performed on
a single node. After the metadata update transaction is com-
mitted, the metric jobs on any host will see the latest version
of the project metadata. In our experimental setup, all meta-
data updates run on the data mirroring host to allow fast,
disk-based access to the original project data. The system
does not yet support automatic load balancing or failover.

Finally, the Alitheia Core system includes support for
presenting the calculated results and project metadata
through the web services component. The web services ser-
vice acts as a gateway between the core and the various user
interfaces, using a SOAP-based communication protocol. At
the moment, two user interfaces are provided; a web inter-
face that enables browsing of the processing results on the
web,1 and an Eclipse plug-in that allows developers to see
the results of their work through their work environment.

3.2. Metric Plug-ins

The Alitheia core engine can be extended by plug-ins
that calculate metrics. Metric plug-ins are OSGi services
that implement a common interface and are discoverable
using the plug-in administrator service. In practice, all met-
ric plug-ins inherit from an abstract implementation of the
plug-in interface and only have to provide implementations
of three methods. Moreover, to hide the intricacies of set-
ting up the OSGi class sharing mechanism, our system pro-
vides a skeleton plug-in that is already preconfigured to the
requirements of the platform. The net result is that with ex-
actly 30 lines of code, a researcher can write a simple source
code line counting metric that fetches a file from the repos-
itory, counts its lines, stores the result, and returns it upon
request.

1An example installation can be found online at http://demo.
sqo-oss.org

Each plug-in is associated with a set of activation types.
An activation type indicates that a plug-in must be acti-
vated in response to a change to a corresponding project
asset; it is a database object that maps a resource that has
changed in the project’s data mirror to an entry in the meta-
data database. A metric plug-in can define several metrics,
which are identified by a unique name (mnemonic). Each
metric is associated with a scope that specifies the resource
this metric is calculated against: files, namespaces, directo-
ries, or mailing lists. Metrics can also declare dependencies
on other metrics and the system will use this information
to adjust the plug-in execution order accordingly through
the metric activator service. The system administrator can
also specify a set of policies regulating the recalculation fre-
quency for each metric plug-in. Metric results are stored in
the system database either in predefined tables or in plug-
in specific tables. The retrieval of results is bound to the
resource state the metric was calculated upon.

A plug-in can use a wealth of services from the core to
obtain project related data using simple method calls. For
example, a plug-in:

• can request a checkout for a specific project revision
or opt for a faster in-memory representation of the file
tree and load the content of the required files on de-
mand,

• can ask the system to return a list of files that match a
given pattern, for example all Java files across project
versions or across projects,

• can obtain a language-agnostic Abstract Syntax Tree
(AST)-like representation of the parsed source code
for a specific file or revision (currently only for Java
source code),

• can request a list of all threads a specific email has been
sent to and then navigate from the returned objects to
the parent threads or to the mailing lists,

• can get all actions performed by a single developer
across all project data sources, and

• can request for a measurement calculated by another
plug-in. The system will automatically invoke the
other plug-in if the requested measurement cannot be
found in the database.

We have already developed a number of metric plug-ins;
the most important are listed in Table 3.2. To judge the
magnitude and contribution of the developed infrastructure
note that the sum of the lines of code for all plug-ins is less
than 15% of the lines of code of the Alitheia Core.

581

Metric Description Metrics LoC
Size Calculates various project size measurements, such as number of files and lines for var-

ious types of source files.
11 642

Module Aggregates size metrics per source code directory. 3 417
Code structure Parses source code to a language neutral intermediate representation and evaluates struc-

ture metrics, such as the Chidamber and Kemerer metric suite [3], on the intermediate
representation.

15 958

Contribution Analyzes repository, mailing list and bug database developer activity and extracts a mea-
surement of the developer contribution to the development process [4].

1 1451

Multigrep Applies a regular expression to source code files and reports the matches as a measure-
ment. The applied regular expression is configurable at run-time.

Configurable 346

Testability Identifies and counts testing cases for common unit testing frameworks. 1 561
Quality A custom quality model implementation that aggregates the results of various structure,

size and process metrics into an ordinal scale evaluation [8].
1 2408

Table 1. List of currently implemented metrics.

4. Conclusions

Analysing and evaluating software development process
and source code characteristics is an important step towards
achieving software product quality. The Alitheia Core is
a platform modeled around a pluggable, extensible archi-
tecture that enables it to incorporate various types of data
sources and be accessible through various user interfaces.

Future work on the platform will include expansion of
the data accessors plug-ins to include support for other
source code management systems and a web service that
will allow external plug-in submissions to be run against
the pre-processed data currently hosted on our servers.

The full source code for the Alitheia Core and the plug-
ins can be found at http://www.sqo-oss.org.

Acknowledgements

This work was partially funded by the European Com-
munity’s Sixth Framework Programme under the contract
IST-2005-033331 “Software Quality Observatory for Open
Source Software (SQO-OSS)”. Project contributors include
the Aristotle University of Thessaloniki, Prosyst Software
GmbH, Sirius plc, Klarälvdalens Datakonsult AB and mem-
bers from the KDE project community.

References

[1] V. Basili and D. Weiss. A methodology for collecting
valid software engineering data. IEEE Transactions on
Software Engineering, 10(3):728–738, Nov 1984.

[2] V.R. Basili and H.D. Rombach. The tame project:
towards improvement-oriented software environ-
ments. IEEE Transactions on Software Engineering,
14(6):758–773, June 1998.

[3] S. R. Chidamber and C. F. Kemerer. A metrics suite for
object oriented design. IEEE Transactions on Software
Engineering, 20(6):476–493, 1994.

[4] Georgios Gousios, Eirini Kalliamvakou, and Diomidis
Spinellis. Measuring developer contribution from soft-
ware repository data. In MSR ’08: Proceedings of
the 2008 international working conference on Mining
software repositories, pages 129–132, New York, NY,
USA, 2008. ACM.

[5] J. Howison, M. Conklin, and K Crowston. Flossmole:
A collaborative repository for floss research data and
analyses. International Journal of Information Tech-
nology and Web Engineering, 1(3):17–26, 2006.

[6] P. M. Johnson, M. G. Paulding H. Kou, Q. Zhang,
A. Kagawa, and T. Yamashita. Improving software
development management through software project
telemetry. IEEE Software, Aug 2005.

[7] Seija Komi-Sirviö, Päivi Parviainen, and Jussi
Ronkainen. Measurement automation: Methodological
background and practical solutions-a multiple case
study. IEEE International Symposium on Software
Metrics, page 306, 2001.

[8] Ioannis Samoladas, Georgios Gousios, Diomidis
Spinellis, and Ioannis Stamelos. The SQO-OSS qual-
ity model: Measurement based open source software
evaluation. In Ernesto Damiani and Giancarlo Succi,
editors, Open Source Development, Communities and
Quality — OSS 2008: 4th International Conference on
Open Source Systems, pages 237–248, Boston, Septem-
ber 2008. Springer.

[9] Diomidis Spinellis. Code Quality: The Open Source
Perspective. Addison-Wesley, Boston, MA, 2006.

582

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
