
CONCERNLINES: A Timeline View of co-occurring Concerns

Christoph Treude, Margaret-Anne Storey
Dept. of Computer Science, University of Victoria

ctreude@uvic.ca, mstorey@uvic.ca

Abstract

Understanding the evolution of a software system re-
quires understanding how information about the release
history, non-functional requirements and project milestones
relates to functional requirements on the software compo-
nents. This short paper describes a new tool, called CON-
CERNLINES, that supports this cognitive process by visual-
izing co-occurring concerns over time.

1. Introduction and Motivation

Software development processes are among the most
complicated tasks performed by humans. Understanding
their evolution is a prerequisite for efficient management,
process improvements, and the integration of members into
development teams. Gaining high level evolutionary infor-
mation about large software systems is a key challenge in
dealing with increasing complexity and decreasing software
quality [5]. While several tools for evolutionary informa-
tion at the source code level have been proposed, research
on the visualization of process related information over time
is limited. However, process understanding has been iden-
tified as an important aspect of software maintenance [19].

One way to understand and explore software evolution is
through concerns. According to IEEE, concerns “are those
interests which pertain to the system’s development, its op-
eration or any other aspects that are critical or otherwise
important to one or more stakeholders” [7]. There are dif-
ferent dimensions of potentially overlapping concerns [11],
ranging from process-related issues such as milestone re-
leases to requirements such as usability. Determining rele-
vant concerns as the system evolves is not always easy.

In our previous work [17], we discovered that developers
document relevant concerns using tags on change requests1.
Tags are user-defined keywords that in this case document
and relate process-related, cross-cutting, and component-
specific concerns to the change requests. Our goal during

1Depending on the development environment, change requests are also
known as bug reports, modification requests, or work items.

this study was to explore how developers tag change re-
quests. To facilitate our exploration of how developers tag
using concerns, we created the CONCERNLINES tool. We
used the tool to create timelines of how concerns emerged
and co-occurred over time. These timelines were shown
during interviews with developers to elicit more in depth
insights on how tags were used for describing concerns dur-
ing system development.

The feedback we received from the developers indicated
that a tool for viewing information on co-occurring con-
cerns can be very useful. For example, developers wanted
to answer questions such as: Which components played a
key role during the last beta release? Which non-functional
requirements co-occurred with work on the user interface?
Which components were affected by the improvements on
user experience? Their reaction to the tool and their sugges-
tions for enhancements prompted us to further extend it so
that developers could also use it during development to un-
derstand the emergence of co-occurring concerns over time.

CONCERNLINES visualizes the evolution and relevance
of concerns over the lifetime of a software project and en-
ables the identification of co-occurring concerns. It displays
the evolution in a snapshot, using horizontal timelines for
individual concerns and mapping the relevance of concerns
(e.g. determined through frequency of tag occurrences) onto
colour intensities. Co-occurrences can be identified by piv-
oting on one concern in a selected time range.

Although it may seem challenging to determine which
concerns are relevant at given points in a system’s evolu-
tion, there are various data sources that can be mined to de-
termine concerns, e.g. source code, source code comments,
JavaDoc, CVS commits, change requests or email commu-
nication. Even though CONCERNLINES uses a generic in-
terface to allow the visualization of concerns extracted from
any of these various sources, in this paper we focus on the
visualization of concerns derived from change request tags.

The remainder of this paper is structured as follows. Re-
lated work is summarized in Section 2 and the tool is de-
scribed in detail in Section 3. We then present example sce-
narios in Section 4 and conclude in Section 5.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 575

2. Background and Related Work

Work related to our research can be divided into litera-
ture on concerns in software development and literature on
visualizations of software evolution. Our work can be seen
as the intersection of these areas as it provides a visualiza-
tion of the evolution of concerns.

The term concern is often used synonymously with the
term aspect in the context of aspect-oriented programming
(AOP) [8]. In contrast to that, the definition used here is
broader in the sense that it goes beyond source code. Aside
from AOP, important tools for concerns in software devel-
opment include Concern Graphs [12] and ConcernMapper
[13]. They enable developers to associate parts of source
code with high level concerns. Opposite to this top-down
approach, the tool TagSEA [15] takes a bottom-up approach
of relating source code to concerns by allowing developers
to tag their source code. Mapping of concerns is also sup-
ported by Hyper/J [11], a tool that focuses on the separation
of concerns in multiple dimensions and thus acknowledges
the existence of different kinds of concerns.

Literature on visualizations of software evolution can be
categorized by the data that is visualized. The main cate-
gories are source code, commit events, metrics, and data de-
rived from change requests. On a fine-grained level, Voinea
et al. look at the evolution of source code on a line-by-line
basis with their tools CVSscan [19] and CVSgrab [18].

A tool for the visualization of commit events was pro-
posed by Telea and Voinea [16]. Their Project evolution
view maps different files to the y-axis and time to the x-axis.
The matrix is then filled using different colours for commit
events. Using a visualization like this, clusters of files that
are changed together can be identified. Another timeline
view of source code files focusing on cluster recognition
was proposed by van Rysselberghe and Demeyer [14].

A first step to aggregate information at a higher level of
detail and displaying its evolution was done using metrics.
The Evolution Matrix by Lanza and Ducasse combines met-
rics with evolution visualization [9] and the Evolution Spec-
trographs by Wu et al. provide a metric-based representa-
tion of the development history of a software system [20].

Research on the visualization of data derived from
change requests is still limited. The Discrete Time Figure
by D’Ambros and Lanza [3] is a visualization technique in
which historical and structural data are embedded into one
figure. Software entities are shown as horizontal timelines,
with the number of commits regarding these entities and the
number of bugs reported mapped onto the timelines. Also
leveraging the information available from change requests
are Deep Intellisense [6] and a tool proposed by Fischer
and Gall [4]. They focus on integrating historical informa-
tion from various sources and the evolution of dependencies
between features respectively.

In addition to the static tools discussed above, anima-
tions that use video or interactive tooling to display evolu-
tion have been proposed. Prominent examples include Evo-
lution Storyboards [1] for the visualization of a series of
software graphs and Gevol [2] based on CVS data.

3. CONCERNLINES

Our tool, CONCERNLINES, aims at visualizing concerns
in software evolution over time and at allowing the identi-
fication of temporal co-occurrences of concerns. Like most
of the tools discussed in Section 2, it utilizes a timeline
view to represent time. Before explaining the details of
our implementation, we define the visualization using the
five dimensions proposed by Maletic et al. [10]: task, au-
dience, target, presentation, and medium. The main task
supported by CONCERNLINES is the exploration of charac-
teristics and interrelations of release history, non-functional
requirements, and software components based on concerns.
The intended audience reaches from management for high
level insights to new team members for familiarization with
a given project. The data source represented, i.e. the tar-
get, is a mapping of concerns extracted from software arti-
facts to time and the representation is a timeline-oriented
view of concerns over time using a regular display as the
medium.

Figure 1. CONCERNLINES user interface

Interface. Figure 1 shows the user interface of CON-
CERNLINES. The main components are the timelines (2)
for the concerns listed on the left hand side (1). In the cur-
rent implementation, this part is enhanced by a tooltip with
relevant change requests. The interactive part of the tool
consists of support for customizing the colour scheme (3)
and a time range selector (4). Unselected time ranges are
greyed out in the timeline part (2). CONCERNLINES was

576

developed using Adobe’s Flex2 and is accessible through a
web browser. The tool uses a CSV file with a matrix of
concerns and their intensity over time as input data. Such a
matrix can be computed by mining repositories of software
artifacts such as change requests.

Timelines. A timeline represents each concern (for the
examples in this paper, tags on change requests are used as
concerns). The timelines are rendered from left to right ac-
cording to time. As observed by D’Ambros and Lanza [3],
timeline visualizations do not necessarily scale well. To en-
sure the scalability of the visualization up to long periods of
time, the width of each time unit is calculated dynamically,
i.e. a longer time range results in a narrower display of time
units. In addition, the scalability is improved by a default
setting of using 30 day averages instead of the actual values
in the display. Thus, two time units next to each other are
less likely to have values that differ significantly.

Colour intensity is used to represent the relevance of a
concern at a particular point in time. This relevance is given
by the number of occurrences of a concern on a particular
day. Colours are user configurable. With the default set-
tings, white is used to represent that the concern is not rele-
vant at a given point in time and stronger colours represent
higher incidence. The suggestion to distinguish more rele-
vant concerns was made by one of the developers viewing
the first iteration of our tool.

Time Range Selection. Using a horizontal slider with
two end controls, the time range can be narrowed down to
a range of interest. Unselected parts are greyed out in the
visualization. The time range selection is used for detecting
co-occurrences of concerns in the specified time frame.

Detection of Co-occurrences. The detection of co-
occurrences is done by pivoting on one concern in the se-
lected time range. The feature of displaying co-occurring
concerns was also suggested by one of the developers view-
ing the earliest version of our tool: “Api or ui or ux, [...]
you might see these line up with these, with the breaks.”
Clicking on either the concern name or its timeline, this
concern is moved to the top of the list. All other con-
cerns are arranged below it, ordered by the similarity of
their timeline to the timeline of the pivot concern in the se-
lected time range. The similarity is calculated by iterating
over the days in the selected time frame and summing up
the squared differences between the corresponding values,
i.e. a difference d between two timelines a and b is defined
as d =

∑n
i=m(|ai − bi|)2 for a time frame from m to n.

2http://www.adobe.com/products/flex/.

4. Example Scenarios

This section gives two exemplary scenarios for situations
in which we expect CONCERNLINES to be useful. The ex-
ample data stems from our previous study with a large de-
velopment team from IBM [17].

Non-functional Requirements during Milestone 6. To
get a high level overview of what milestone 6 was about,
a project manager can use CONCERNLINES and select
m6candidate as the pivot concern. All other concerns will
be ordered by their timeline-similarity to the pivot concern,
as shown in Figure 2. M5candidate and m6candidate have a
big overlap, and globalization was the main concern during
those milestone releases. This view reveals the major theme
without requiring the project manager to look at individual
change requests.

Figure 2. Concerns during Milestone

Concerns regarding UI. To understand the importance
of different cross-cutting concerns such as usability or per-
formance regarding the user interface, a software developer
can choose the corresponding concern as the pivot element.
Figure 3 shows the result. In addition, the time range has
been narrowed down to a time frame in which the concern ui
has high intensity. Several conclusions can be drawn from
the visualization: the concern with the highest similarity to
ui is svt, i.e. testing. Ui also has a high correlation with
usability and mainly co-occurs with milestone 6. The de-
veloper can conclude that the concern of usability is highly
related to work on the user interface and may put a stronger
focus on usability during design decisions.

Figure 3. Concerns regarding UI

5. Conclusions and Future Work

With CONCERNLINES, we propose a tool that visualizes
the emergence and co-occurrence of concerns over time.

577

Horizontal timelines are used to represent concerns and the
intensities of concerns over time are mapped onto colour.
Pivoting on one concern in a specified time frame allows
the user to arrange concerns by their timeline-similarity to
a pivot concern. This reduces the complexity of identifying
co-occurring concerns. The preliminary feedback indicates
that CONCERNLINES is a promising approach for under-
standing the relationship between multiple concerns.

Concerns can be derived from multiple data sources and
it will depend on the situation at hand which attributes or
characteristics should be interpreted as concerns. Poten-
tial sources for concerns include keywords from change re-
quests, JavaDoc and other annotations from source code,
and themes extracted from e-mail communication. The
feedback we received suggests that the example used in this
paper, tags for change requests, is a valuable choice and al-
lows useful insights into the evolution of a software project.
Exploring further data sources is part of our future work.

Apart from that, we are looking at evaluating CONCERN-
LINES by deploying it in an industry setting and logging
user interactions. Also, we are exploring how the tool can
be used as a way for navigating artifacts based on concerns.

6. Acknowledgements

We wish to thank the team that granted us access to their
repositories, conducted interviews with us and gave us tool
ideas. This research is supported by a fellowship from IBM.

References

[1] D. Beyer and A. E. Hassan. Animated visualization of soft-
ware history using evolution storyboards. In WCRE ’06:
Proc. of the 13th Working Conf. on Reverse Engineering,
pages 199–210, Washington, DC, 2006. IEEE Computer So-
ciety.

[2] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler.
A system for graph-based visualization of the evolution of
software. In SoftVis ’03: Proc. of the 2003 ACM symposium
on Software visualization, pages 77–ff, New York, 2003.

[3] M. D’Ambros and M. Lanza. Software bugs and evolu-
tion: A visual approach to uncover their relationship. In
CSMR ’06: Proc. of the Conf. on Software Maintenance
and Reengineering, pages 229–238, Washington, DC, 2006.
IEEE Computer Society.

[4] M. Fischer and H. Gall. Visualizing feature evolution
of large-scale software based on problem and modifica-
tion report data: Research articles. J. Softw. Maint. Evol.,
16(6):385–403, 2004.

[5] H. C. Gall and M. Lanza. Software evolution: analysis and
visualization. In ICSE ’06: Proc. of the 28th Intl. Conf. on
Software engineering, pages 1055–1056, New York, 2006.
ACM.

[6] R. Holmes and A. Begel. Deep intellisense: a tool for re-
hydrating evaporated information. In MSR ’08: Proc. of the

2008 Intl. working Conf. on Mining software repositories,
pages 23–26, New York, 2008. ACM.

[7] IEEE. Recommended practice for architectural description
of software-intensive systems. IEEE Std 1471-2000, pages
i–23, 2000.

[8] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented
Programming, volume 1241, pages 220–242. Springer-
Verlag, Berlin, Heidelberg, and New York, 1997.

[9] M. Lanza and S. Ducasse. Understanding software evolution
using a combination of software visualization and software
metrics. In Proc. of LMO 2002, pages 135–149, 2002.

[10] J. I. Maletic, A. Marcus, and M. L. Collard. A task oriented
view of software visualization. In VISSOFT ’02: Proc. of the
1st Intl. Workshop on Visualizing Software for Understand-
ing and Analysis, page 32, Washington, DC, 2002. IEEE
Computer Society.

[11] H. Ossher and P. Tarr. Hyper/j: multi-dimensional separa-
tion of concerns for java. In ICSE ’00: Proc. of the 22nd Intl.
Conf. on Software engineering, pages 734–737, New York,
2000. ACM.

[12] M. P. Robillard and G. C. Murphy. Concern graphs: finding
and describing concerns using structural program dependen-
cies. In ICSE ’02: Proc. of the 24th Intl. Conf. on Software
Engineering, pages 406–416, New York, 2002. ACM.

[13] M. P. Robillard and F. Weigand-Warr. Concernmapper: sim-
ple view-based separation of scattered concerns. In eclipse
’05: Proc. of the 2005 OOPSLA workshop on Eclipse tech-
nology eXchange, pages 65–69, New York, 2005. ACM.

[14] F. V. Rysselberghe and S. Demeyer. Studying software evo-
lution information by visualizing the change history. In
ICSM ’04: Proc. of the 20th IEEE Intl. Conf. on Software
Maintenance, pages 328–337, Washington, DC, 2004.

[15] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby. Shared
waypoints and social tagging to support collaboration in
software development. In CSCW ’06: Proc. of the 2006
20th anniversary Conf. on Computer supported cooperative
work, pages 195–198, New York, 2006. ACM.

[16] A. Telea and L. Voinea. Interactive visual mechanisms for
exploring source code evolution. In VISSOFT ’05: Proc. of
the 3rd IEEE Intl. Workshop on Visualizing Software for Un-
derstanding and Analysis, page 17, Washington, DC, 2005.

[17] C. Treude and M.-A. Storey. How tagging helps bridge the
gap between social and technical aspects in software devel-
opment. In ICSE ’09: Proc. of the 31st Intl. Conf. on Soft-
ware engineering, 2009. To appear.

[18] L. Voinea and A. Telea. Mining software repositories with
cvsgrab. In MSR ’06: Proc. of the 2006 Intl. workshop on
Mining software repositories, pages 167–168, New York,
2006. ACM.

[19] L. Voinea, A. Telea, and J. J. van Wijk. Cvsscan: visualiza-
tion of code evolution. In SoftVis ’05: Proc. of the 2005
ACM symposium on Software visualization, pages 47–56,
New York, 2005.

[20] J. Wu, C. W. Spitzer, A. E. Hassan, and R. C. Holt. Evolution
spectrographs: Visualizing punctuated change in software
evolution. In IWPSE ’04: Proc. of the 7th Intl. Workshop on
Principles of Software Evolution, pages 57–66, Washington,
DC, 2004. IEEE Computer Society.

578

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Christoph Treude
	Also by Margaret-Anne Storey
