
REMAN: a Pro-active Reputation Management Infrastructure
for Composite Web Services

Domenico Bianculli Walter Binder
University of Lugano
Faculty of Informatics
Lugano, Switzerland

domenico.bianculli@lu.unisi.ch
walter.binder@unisi.ch

Mauro Luigi Drago Carlo Ghezzi
Politecnico di Milano

DEEP-SE group - DEI
Milano, Italy

drago@elet.polimi.it
carlo.ghezzi@polimi.it

Abstract

REMAN is a reputation management infrastructure for
composite Web services. It supports the aggregation of
client feedback on the perceived QoS of external services,
using reputation mechanisms to build service rankings.
Changes in rankings are pro-actively notified to compos-
ite service clients to enable self-tuning properties in their
execution.

1. Introduction

Web services are the de-facto standard for the devel-
opment of distributed applications executing in open envi-
ronments. Web services are usually composed by means
of languages like BPEL [12] to provide added-value ser-
vices. Composite services, typically built from third-party
services, have to adapt to the open, dynamically changing
environment where remote services may fail or new ser-
vices may be offered at any moment. Thus, one key feature
of composite services is the ability to adapt their service
bindings so as to leverage the best performing services cur-
rently available in the evolving service market.

This step can be accomplished by using a reliable and
efficient mechanism to get service rankings from the execu-
tion environment. To this end, reputation mechanisms have
been proposed [15]. They collect client ratings on expe-
rienced service behavior to compute the actual Quality-of-
Service (QoS) delivered to clients and to rank functionally
equivalent services accordingly. However, none of the cur-
rent environments for the execution of composite services,
such as BPEL engines, transparently integrates a reputation
mechanism. They often require to manually modify a com-
posite service for interacting with a reputation mechanism
so as to report feedback on service interactions and to dy-

namically choose the most efficient services. This require-
ment is cumbersome and error-prone. Furthermore, an ap-
propriate monitoring infrastructure is needed to assess ex-
perienced service functionality and QoS.

In prior work [5], some of the authors proposed an archi-
tecture for automated, dynamic, pro-active, and transparent
maintenance and improvement of composite services, pro-
moting an incentive-compatible reputation manager to share
reliable service quality information among clients. How-
ever, the requirements posed by the theoretical model made
the implementation impractical. In [4], we proposed a new
architecture for reputation management, enabling the trans-
parent integration of reputation mechanisms in standard ex-
ecution environments for composite services. The new ar-
chitecture is characterized by the following features:

1. It provides a mechanism for assessing service behav-
ior and ranking functionally equivalent services (i.e.,
with compatible WSDL interfaces) based on past in-
teractions with these services by other clients.

2. It supports user notifications when particular
reputation-related events occur, allowing for an
early discovery of possible failure situations.

3. It ensures reputation-aware execution of composite
services in a way that is completely transparent to the
programmer, who can concentrate exclusively on the
functional aspects of the composite service.

4. It allows for an open and extensible platform support-
ing a high degree of customization of the way service
reputation is computed.

This paper presents REMAN, our implementation of
the architecture described in [4], built from state-of-
the-art middleware technologies. REMAN is available
at http://www.inf.unisi.ch/phd/bianculli/
research/reman/.

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 623

2. REMAN architecture

In this section, we describe the software architecture of
REMAN, both at the server- and at the client-side, which is
also depicted in Figure 1.

2.1. Server-side REMAN

The server-side architecture of REMAN comprises three
main components: the enhanced registry, the reputation
manager, and the subscription manager.

Enhanced Registry. It is a UDDI-compliant registry
with standard interface for service publishing and service
discovery, enriched with support for queries on QoS esti-
mations of registered services. The registry can be queried
either by providing a specific service TModel or by provid-
ing the concrete service location and the WSDL interface it
complies to.

Reputation Manager. It provides functionalities to
manage the services registered for reputation assessment
and to estimate their QoS. It receives feedback reports from
service clients and UDDI-related events (e.g., registration
of a new service) from the Enhanced Registry, and conse-
quently updates the underlying data storage.
The computation of service reputation is performed by this
component, according to the installed reputation policy —
which represents our abstraction for an algorithm that es-
timates service reputation — at specific time instants, as
planned by a scheduler that tries to avoid minor fluctuations
in the reputation estimates, which could trigger unnecessary
notifications.

Subscription Manager. It provides functionalities to
notify service consumers when reputation-related events oc-
cur and to manage the subscriptions to these events.
REMAN supports two event types: reputation decrease and
availability of a service with better reputation.
The former event is fired when the Reputation Manager
communicates that the reputation of a service has dropped
below a certain threshold. Service users are thus notified
of a possible failure condition by means of these messages,
so that countermeasures can be taken. Upon subscription,
each service client specifies the services for which it should
receive notifications on reputation decrease and, for each of
them, the reputation threshold.
The latter event is used to notify service clients when the
set of the “best” services (i.e., the ones with the currently
best reputation) compliant with a particular specification
changes. By means of these notifications, we let service
clients always know which are the best services available
on the service market such that when a possible failure oc-
curs they may rebind to another service, which exhibits bet-
ter behavior. Service clients subscribe to these events by
specifying the WSDL interface they are interested in.

2.2. Client-side REMAN

At the client-side, the architecture comprises three com-
ponents:

Monitor. It monitors the behavior of external services
used by the BPEL service client, by checking the functional
and non-functional properties attached to the BPEL process.
The properties can be expressed in WS-CoL [2] and in AL-
BERT [1]. The following sample WS-CoL property speci-
fies that a service invocation should return a positive value
(saved in variable Loan/amount), with a response time less
than 5s: $RespTime < 5s and $Loan/amount > 0.

Reputation Feeder. It provides methods to collect feed-
back reports and to send them to the Reputation Manager on
the server.

Event Manager. It provides functionalities to subscribe
to reputation-related events and to react to such notifica-
tions.

3. REMAN at work

This section describes a typical operation scenario of
REMAN; the referenced exchanged messages are depicted
in Figure 1.

1. Service providers publish their services (e.g., services
A and B) using the UDDI-compliant interface offered by the
Enhanced Registry (message P1). Internally, the Enhanced
Registry notifies the Reputation Manager that a new service
has been registered, and thus that a default reputation should
be assigned to it (message P2). The Enhanced Registry also
notifies the Subscription Manager so that it can notify in-
terested service clients of the availability of a new service
(message P3).

2. When service clients deploy their business processes
into the BPEL engine, the client module of the reputation
infrastructure logs into the server module (message D1),
in order to get access credentials for subsequent commu-
nications. Service clients communicate the selected service
bindings to the server using the Event Manager (message
D2); in this way, clients subscribe to events related to (the
type of) services they use. For example, the BPEL service
depicted in Figure 1 will communicate to the Reputation
Manager its bindings to services A and B, used within the
business process by the activities A1 and A3.

3. During execution, each time a client uses an external
service, the built-in monitor checks for the property asso-
ciated with the interaction. The result of the evaluation is
sent to the Reputation Feeder (message F1), which gener-
ates a boolean feedback corresponding to the evaluation of
the logical formulae that constitute the monitoring property.
This message is then sent (message F2) to the Reputation
Manager, on the server module of REMAN.

624

A1 A2

A3

A4

BPEL
service

Reputation Feeder

Event Manager

Monitor

Client

ServiceA

ServiceB
Reputation Manager

Subscription Manager

Enhanced Registry

 Server

Service
Provider

BPEL
engine

P1

P2

P3
D1

D2

F2

F1

R1

R2R2

other
service
clients

provides

Figure 1. REMAN architecture and interactions between its components

4. After collecting reputation feedback reports, the Rep-
utation Manager updates the reputation estimation of the
services registered in the system. The reputation is gener-
ated by computing the ratio of the number of positive feed-
backs and the total number of feedbacks received until the
computation of the estimation is triggered by the system.
Whenever the Reputation Manager computes a new value
of the reputation of a service, it notifies the Subscription
Manager (message R1). The latter can then either commu-
nicate (message R2) to all subscribed clients that the rep-
utation of a service dropped below a certain threshold, or
it can notify them that a new service implementing a cer-
tain WSDL interface and with a better reputation became
available.

4. Implementation

REMAN has been entirely implemented as a JavaEE
compliant application. The Reputation Manager and the
Subscription Manager have been implemented by means of
both stateless session beans and message-driven ones. Most
of the functionalities of the Enhanced Registry have been
implemented by means of stateless session beans; standard
UDDI services are instead provided by means of Web ser-
vice beans and by the Grimoires UDDI registry 1, which has
also been extended to support notifications about changes in
the database of UDDI entities.

Some operations, such as finding the best services com-
patible with a certain interface, require a notion of service
equivalence. We implemented a component that performs
the analysis of WSDL documents — associated with UDDI
TModels — and generates sets of compatible services.

REMAN has been designed in an open and extensible
way, so as to support different methods for computing ser-
vice reputation, in the form of reputation policies provided

1http://www.grimoires.org.

as plugins for the Reputation Manager. The default repu-
tation policy plugin in our reference implementation esti-
mates the reputation of each single service published in the
infrastructure by using a bayesian reputation approach with
binary ratings [6].

At the client-side, service monitoring is performed with
Dynamo [3], built on top of the ActiveBPEL engine2, and
extended to support sending feedback when a monitoring
property is evaluated.

In terms of security, every message exchanged in the sys-
tem is secured against tampering and replay attacks; access
to the system is granted by means of a public key mutual
authentication algorithm. The inclusion of mechanisms that
encourage clients to honestly report feedback [7] is still un-
der development.

5. Related work

The agent-based trust framework for service selection
described in [11] relies on the conceptual model for Web
service reputation proposed in [10]. In contrast to REMAN,
the authors use a different architectural style, where a soft-
ware agent is attached to each Web service; the agents are in
charge of querying and reporting service reputation. Each
service client builds its reputation of services based on the
local information provided by its neighbors.

A QoS-based service selection model is presented in [8].
Like REMAN, the model takes into account the feedback
from users; moreover it also supports user-defined QoS se-
lection criteria. However, with respect to REMAN, it is nei-
ther pro-active (because variations of service reputation are
not disseminated to other service clients, which could ben-
efit from this information), nor transparent (since service
requesters are required to support specific mechanisms for
ad-hoc execution monitoring and feedback reporting).

2http://www.activevos.com/.

625

A service recommendation system is proposed in [9]. In
this system, clients rate services by using a comparative ma-
trix containing the QoS values advertised by the provider,
and the QoS values measured at run time. However, the
system does not use Web service standards for service dis-
covery and selection, but relies on ontology-based descrip-
tions. Moreover, user feedback reporting is not automated.

In [14], the authors describe a method to collect monitor-
ing data from clients and to use this information for service
recommendations. However, the supported QoS metrics are
limited to client side performance, such as throughput and
response time.

A collaborative filtering approach to derive prediction of
QoS of Web services that were not used yet, based on the
experience of consumers of similar services, is proposed
in [13]. However, the whole approach is poorly integrated
in the execution environment and it is neither fully auto-
mated nor transparent. Moreover, it supports only the pre-
diction based on the evaluation of timeliness-related QoS
properties.

The approach described in [16] adopts a point of view
that is complementary to ours. The reputation of a compos-
ite service is derived based on the reputation of the single
services used within the composition. The reputation mech-
anism used to compute the reputation of the single services
is similar to ours.

Finally, [17] proposes a framework for run-time service
discovery in both pull and push modes, based on structural
and behavioral models of services, as well as quality and
contextual constraints. When the framework operates in
push mode, it shares similar functionalities with REMAN;
however services selection is not driven by any reputation
mechanisms.

6. Conclusion

This paper presents REMAN, a reputation management
infrastructure that supports pro-active service selection for
composite Web services, by allowing them to bind to the
best available services available in the evolving service mar-
ket. This feature, integrated in existing state-of-the art run-
time infrastructures and compatible with industry standards,
fosters dynamic adaptability and self-tuning properties in
the execution of composite services.

7. Acknowledgments

The research leading to these results has received
funding from the European Community’s Seventh Frame-
work Programme FP7/2007-2013 under grant agreement
no. 215483-S-CUBE and ERC (IDEAS programme) grant
agreement no. 227977-SMScom.

References

[1] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spo-
letini. Validation of web service compositions. IET Softw.,
1(6):219–232, 2007.

[2] L. Baresi and S. Guinea. Towards dynamic monitoring of
WS-BPEL processes. In Proceedings of ICSOC’05, volume
3826 of LNCS, pages 269–282. Springer, 2005.

[3] L. Baresi, S. Guinea, and L. Pasquale. Self-healing BPEL
processes with Dynamo and the JBoss rule engine. In Pro-
ceedings of ESSPE’07, pages 11–20. ACM, 2007.

[4] D. Bianculli, W. Binder, L. Drago, and C. Ghezzi. Transpar-
ent reputation management for composite web services. In
Proceedings of ICWS 2008, pages 621–628. IEEE Computer
Society, 2008.

[5] D. Bianculli, R. Jurca, W. Binder, C. Ghezzi, and B. Falt-
ings. Automated dynamic maintenance of composite ser-
vices based on service reputation. In Proceedings of IC-
SOC’07, volume 4749 of LNCS, pages 449–455. Springer,
2007.

[6] A. Josang, R. Ismail, and C. Boyd. A survey of trust and rep-
utation systems for online service provision. Decis. Support
Syst., 43(2):618–644, 2007.

[7] R. Jurca and B. Faltings. Minimum payments that reward
honest reputation feedback. In Proceedings of EC’06, pages
190–199. ACM, 2006.

[8] Y. Liu, A. H. Ngu, and L. Z. Zeng. QoS computation and
policing in dynamic web service selection. In Proceedings
of WWW Alt. ’04, pages 66–73. ACM, 2004.

[9] U. S. Manikrao and T. V. Prabhakar. Dynamic selection
of web services with recommendation system. In Proceed-
ings of NWESP’05, pages 117–121. IEEE Computer Soci-
ety, 2005.

[10] E. M. Maximilien and M. P. Singh. Conceptual model of
web service reputation. SIGMOD Rec., 31(4):36–41, 2002.

[11] E. M. Maximilien and M. P. Singh. Toward autonomic web
services trust and selection. In Proceedings of ICSOC’04,
pages 212–221. ACM, 2004.

[12] OASIS. Web Service Business Process Execution Language
Version 2.0 Specification, 2007.

[13] L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei.
Personalized qos prediction for web services via collabora-
tive filtering. In Proceedings of ICWS 2007, pages 439–446.
IEEE Computer Society, 2007.

[14] N. Thio and S. Karunasekera. Web service recommendation
based on client-side performance estimation. In Proceedings
of ASWEC’07, pages 81–89. IEEE Computer Society, 2007.

[15] Y. Wang and J. Vassileva. A review on trust and reputa-
tion for web service selection. In Proceedings of ICDCS’07
Workshops, pages 25–32. IEEE Computer Society, 2007.

[16] S. J. H. Yang, J. S. F. Hsieh, B. C. W. Lan, and J.-Y. Chung.
Composition and evaluation of trustworthy web services. In
Proceedings of BSN’05, pages 5–12. IEEE Press, 2005.

[17] A. Zisman, J. Dooley, and G. Spanoudakis. Proactive run-
time service discovery. In Proceedings of SCC 2008, pages
237–245. IEEE Computer Society, 2008.

626

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Carlo Ghezzi
