
ContextServ: A Platform for Rapid and Flexible Development of Context-Aware
Web Services

Quan Z. Sheng1, Sam Pohlenz1, Jian Yu1, Hoi S. Wong1, Anne H.H. Ngu2, and Zakaria Maamar3
1 School of Computer Science 2 Department of Computer Science 3 College of Information Technology

The University of Adelaide Texas State University Zayed University
Adelaide, SA 5005, Australia San Marcos, TX, USA Dubai, UAE

{qsheng, sam, jyu, hoi}@cs.adelaide.edu.au angu@txstate.edu zakaria.maamar@zu.ac.ae

Abstract
Context-aware Web services are currently emerging as

an important technology for building innovative context-
aware applications. Unfortunately, context-aware Web ser-
vices are still difficult to build. This paper describes Con-
textServ, a platform for rapid development of context-aware
Web services. ContextServ adopts model-driven develop-
ment where context-aware Web services are specified us-
ing ContextUML, a UML based modeling language. The
platform also offers a set of automated tools for generating
and deploying executable implementations of context-aware
Web services. This paper presents the motivation, system
design, implementation, and usage of ContextServ.

1 Introduction

Context awareness, which has been identified as one of
the key challenges for the next decade, refers to the ca-
pability of an application or a service being aware of its
physical environment or situation (i.e., context) and re-
sponding proactively and intelligently based on such aware-
ness [1, 4, 5]. With recent developments in computer hard-
ware, software, networking, and sensor technologies, con-
text awareness becomes one of the most important trends in
computing today that holds the potential to make our daily
lives more productive, convenient, and enjoyable. For ex-
ample, a dining service gives users suggestions on where
to have lunch by considering their current locations, food
preferences, and even the prevailing weather conditions.

Context-aware Web services (CASs) [2, 8] are recently
emerging as an important technology for building inno-
vative context-aware applications. Unfortunately, despite
the active research into, and development of, Web ser-
vices over the last few years, CASs are still difficult to
build [2, 6, 9]. One reason for this difficulty is that cur-
rent Web services standards, such as the Web Services De-
scription Language (WSDL) and the Simple Object Access

Protocol (SOAP) [3], are not sufficient for describing and
handling context information [6, 9]. CAS developers must
implement everything related to context management, in-
cluding collection, dissemination, and usage of context in-
formation, in an ad hoc manner. Due to heterogeneity of
context providers, quality of context information, and dy-
namics of context environments, context provisioning is not
trivial [4]. In particular, various context providers may pro-
vide the same piece of context information (usually with
different quality and data formats) and it is difficult to spec-
ify, at service design stage, which context provider should
be contacted for the provision of a specific context. Some-
times, the context required by a CAS may not even be di-
rectly available through any context provider. Furthermore,
Web service platforms often evolve rapidly, with continuous
updating of existing platforms, as well as the regular appear-
ance of new alternatives [9]. Service developers must ded-
icate considerable effort to manually porting service code
to different platforms or new versions of the same platform.
As a consequence, developing and maintaining CASs is a
very cumbersome, error-prone, and time consuming activ-
ity, especially when these CASs are complex.

Motivated by these concerns, we have developed the
ContextServ platform for rapid development of CASs. One
innovative feature of ContextServ is to use a model-driven
approach that offers significant design flexibility by separat-
ing the modeling of context and context awareness from ser-
vice components, which eases both development and main-
tenance of CASs. Another feature of ContextServ is that it
supplies a set of automated tools for generating and deploy-
ing executable implementations of CASs. As a result, de-
velopment costs can be significantly reduced. In the follow-
ing sections, we overview the design and implementation of
ContextServ, and sketch the proposed demonstration.

2 System Overview
ContextServ adopts model-driven development (MDD)

and the basic idea of MDD is illustrated in Figure 1. Adopt-

ICSE’09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/$25.00 © 2009 IEEE 619

ing a higher-level of abstraction, software systems can be
specified in platform independent models (PIMs), which are
then (semi)automatically transformed into platform specific
models (PSMs) of target executable platforms using some
transformation tools. The same PIM can be transformed
into different executable platforms (i.e., multiple PSMs),
thus considerably simplifying software development.

Platform
Independent Models

Model
Transformation

Target Executable
Platforms

Transformation
knowledge

Transformer

Models

Implementation
of platform 1

Implementation
of platform 2

Implementation
of platform 3

Figure 1. Model-driven development

ContextServ relies on ContextUML [7], a Unified Mod-
eling Language (UML) based modeling language that pro-
vides high-level, visual constructs for specifying CASs. In
particular, the language abstracts two context awareness
mechanisms, namely context binding and context trigger-
ing. The former models automatic contextual configuration
(e.g., automatic invocation of Web services by mapping a
context onto a particular service input parameter), while the
latter models contextual adaptation where services can be
dynamically modified based on context information. Ser-
vice models specified in ContextUML are then automati-
cally translated into executable implementations (e.g., WS-
BPEL specifications) of specific target service implementa-
tion platforms (e.g., IBM’s BPWS4J1).

ContextServ distinguishes between atomic and compos-
ite contexts. The former are low-level and independent con-
texts that do not rely on any other contexts and can be pro-
vided directly by context providers. By contrast, the latter
are high-level contexts that may not have direct counterparts
on the context provision and have to aggregate multiple
contexts, either atomic or composite. For instance, in the
scenario of attraction searching service, temperature
and rainLikelihood are atomic contexts because they
can be provided by e.g., GlobalWeather Web service2.
Whereas, harshWeather is a composite context that
depends on the former two contexts. For example, if
temperature>40◦C or rainLikelihood>80%, the
value of harshWeather may be set to “true”. The con-
cept of composite context improves the modeling power of
context information to CAS designers. By applying com-
posite contexts, service designers can model any high-level
context attributes that are useful in CASs.

ContextServ exploits the concept of context community
to address the issue posed by heterogeneous and dynamic
context information. A context community is essentially

1http://www.alphaworks.ibm.com/tech/bpws4j.
2http://www.capescience.com/webservices/globalweather.

ContextUML model

Context-aware Web
service interface

Service
Developer

WSDL
specification

of service

Web service
registry (UDDI)

Execution
engine (e.g.,

BPWS4J)

Web server

Transform to WSDL Publish service to registry

Service
consumer

Deploy service

Transform service
model to executable
specification

Configure and run service
at the engine

Invoke
service

Search
serviceBind to service

implementation
Specify service
interface

Specify context
provisioning

Specify context-
aware Web
service in
ContextUML

Context

Context Manager

community composition

ContextUML Modeler

Executable specification
of service (e.g., BPEL)

RubyMDA Transformer

Figure 2. Architecture of ContextServ

a container where multiple context sources—from which
contexts are retrieved—are aggregated and a unified inter-
face is offered. The abstraction of context communities
provides a significant flexibility for context provisioning
through dynamic binding of context resources, and ensures
the quality of context information by enforcing Quality of
Context (QoC) based selection policies. CAS designers do
not have to decide and even do not have to know, at service
design time, which context providers will be used.

3 Implementation

The ContextServ platform provides an environment (Fig-
ure 2) where a service developer specifies the required con-
texts and context-aware Web services using high-level and
visual modeling languages. The service model is automat-
ically transformed, using a set of transformation rules, to
the executable specification of the target platform, which is
then deployed to the corresponding execution engine. At
this point, the service provider also needs to create a WSDL
specification for the service and publish it (e.g., to UDDI
registry) for free location and invocation.

The ContextServ architecture features three main com-
ponents, namely the context manager, the ContextUML
modeler, and the RubyMDA transformer. The context
manager provides facilities for service developers to spec-
ify context provisioning. Current implementation sup-
ports atomic context, composite context, and context com-
munity. In ContextServ, composite contexts are mod-
eled using statecharts, a widely used formalism that is
emerging as a standard for process modeling follow-
ing its integration into UML. The statechart of a com-
posite context is then exported into State Chart Ex-
tensible Markup Language (SCXML), an XML based
language for describing generic statecharts, and exe-
cuted in a SCXML execution engine such as Commons
SCXML3. A context community implements a common in-
terface (e.g., addContextSource(), removeConte-
xtSource(), selectContextSource()) for con-

3http://commons.apache.org/scxml.

620

text sources that provide same context information.
The ContextUML modeler provides a visual interface for

defining context-aware Web services using ContextUML.
In the implementation, we extended ArgoUML, an existing
UML editing tool4, by developing a new diagram type, Con-
textUML diagram, which implements all the abstract syntax
of the ContextUML language [7]. Services represented in
ContextUML diagrams are exported as XMI files for sub-
sequent processing by the RubyMDA transformer, which
is responsible for transforming ContextUML diagrams into
executable Web services, using RubyGems 1.0.15. The
ContextServ platform currently supports WS-BPEL, a de
facto standard for specifying executable processes. Once
the BPEL specification is generated, the model transformer
deploys the BPEL process to a Web server and exposes it
as a Web service. In the implementation, JBoss Applica-
tion Server is used as the Web server since it is an open
source and includes a BPEL execution engine, jBPM-BPEL
1.1. A set of mapping rules—from ContextUML diagram to
BPEL and WSDL specifications—has been developed for
the transformation purposes.

4 Demonstration Scenario
Several context-aware applications have been developed

using ContextServ platform. In this demonstration, we fo-
cus on a tourism service that provides “intelligent” recom-
mendations of attractions to tourists. The service works
as follows: (i) the service recommends attractions accord-
ing to a user’s location (e.g., the city that the user is cur-
rently in), and (ii) during the recommendation, the service
also considers other contexts like weather. If the weather is
harsh, the service will only suggest indoor attractions (e.g.,
South Australian Museum). The definition of weather be-
ing harsh depends on a couple of contexts like temperature
(e.g., above 40 degree Celsius) and likelihood of rain (e.g.,
more than 80%).

The ContextServ platform provides an integrated envi-
ronment where service developers can specify and deploy
context-aware Web services. We will demonstrate: (i) how
to specify contexts, (ii) how to define an intelligent attrac-
tions search service using ContextUML language, and (iii)
how to automatically transform the service model into an
executable Web service.
Defining context provisioning. The context manager of-
fers facilities that service developers can use to specify dif-
ferent kinds of contexts involved in a CAS. The specifi-
cations of the contexts, including context name and con-
text retrieval mechanism, are stored in an XML docu-
ment, for subsequent usage in the specification of CASs.
The contexts of attractions search Web service are speci-
fied as shown in Figure 3. The context location is an

4http://argouml.tigris.org.
5http://rubyforge.org/projects/rubygems.

Figure 3. Specifying contexts

atomic context, provided by a location-based service that
returns the location information of a user with a GPS en-
abled mobile device. The contexts temperature and
rainlikelihood are provided by a context community
that aggregates several weather forecast services. Finally,
the context harshWeather is a composite context, which
specification is displayed in the right panel of Figure 3.
Defining a context-aware Web service using Contex-
tUML. The ContextUML modeler offers a graphical user
interface (GUI) (Figure 4) allowing service developers to
specify context-aware Web services using ContextUML
language. We developed a ContextUML diagram that im-
plements all ContextUML constructs and integrated the
module into ArgoUML (toolbars in the top of Figure 4), so
that service developers can use them. A context-aware Web
service is defined by drawing a ContextUML diagram (top
right panel of Figure 4). The information associated with
each element of the diagram (e.g., attributes of a class) can
be specified in the bottom left panel of Figure 4.
Transforming service model into an executable Web ser-
vice. Once a context-aware Web service has been defined
using the CAS modeler, the model transformer comes into
play during the model transformation process. This pro-
cess takes input the XMI document of the service model—
produced by the CAS modeler—and performs the following
tasks: (i) converting the service model into executable Web
service specifications, including BPEL and WSDL specifi-
cation and the relevant configuration files; and (ii) deploy-
ing the BPEL process to the Web server and exposing it as
a Web service.

The model transformer provides a set of automated tools
performing the transformation. In particular, XML2UML and
UML2CAS are used to transform the XMI document into
a Ruby structure representing the corresponding context-
aware Web service. CAS:BPEL is used to generate BPEL
and WSDL files of the service, while CAS:JBoss is used
to produce specific files that are required to deploy the
BPEL process to an execution engine (jBPM-BPEL in our
case) that is running on a Web server (JBoss Application

621

ContextUML diagram

ContextUML constructs

Figure 4. Defining context-aware Web services using ContextUML

Server in our case). A Web service can be published to the
UDDI registry, from which an end user can locate and in-
voke it.

5 Conclusion
In this paper, we have presented ContextServ, a com-

prehensive platform for simplifying the development of
context-aware Web services. ContextServ adopts model-
driven development where context-aware Web services are
specified in a high-level modeling language and their exe-
cutable implementations are automatically generated, thus
contributing significantly to both design flexibility and cost
savings. The platform has been validated by successfully
creating a number of context-aware Web services. Cur-
rently, we are extending the platform to: i) support more
context triggering mechanisms and ii) introduce semantic
support of context provisioning. Interested readers are re-
ferred to the project website6 for more details.

References

[1] G. D. Abowd et al. Context-Aware Computing. IEEE Perva-
sive Computing, 1(3):22–23, 2002.

6http://www.cs.adelaide.edu.au/∼contextserv.

[2] D. Benslimane and Z. Maamar. Special Issue on Context-
Aware Web Services. Distributed and Parallel Databases,
21(1):1–3, 2007.

[3] F. Curbera et al. Unraveling the Web Services Web: An In-
troduction to SOAP, WSDL, and UDDI. IEEE Internet Com-
puting, 6(2):86–93, March 2002.

[4] A. K. Dey and J. Mankoff. Designing Mediation for Context-
aware Applications. ACM Trans. on Computer-Human Inter-
action, 12(1):53–80, 2005.

[5] C. Julien and G.-C. Roman. EgoSpaces: Facilitating Rapid
Development of Context-Aware Mobile Applications. IEEE
Trans. on Software Engineering, 32(5):281–298, 2006.

[6] M. Keidl and A. Kemper. Towards Context-Aware Adaptable
Web Services. In Proc. of the 13th Intl. World Wide Web Conf.
(WWW’04), New York, USA, May 2004.

[7] Q. Z. Sheng and B. Benatallah. ContextUML: A UML-Based
Modeling Language for Model-Driven Context-Aware Web
Service Development. In Proc. of the 4th Intl. Conf. on Mobile
Business (ICMB’05), Sydney, Australia, July 2005.

[8] Q. Z. Sheng et al. WS3 - International Workshop on Context-
Enabled Source and Service Selection, Integration and Adap-
tation. In Proc. of the 17th Intl. World Wide Web Conf.
(WWW’08), Beijing, China, April 2008.

[9] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed. Deploying
and Managing Web Services: Issues, Solutions, and Direc-
tions. The VLDB Journal, 17(3):537–572, 2008.

622

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Authors
