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ABSTRACT

In empirical disciplines, data sharing leads to verifiable re-
search and facilitates future research studies. Recent efforts
of the PROMISE community contributed to data sharing
and reproducible research in software engineering. However,
an important portion of data used in empirical software en-
gineering research still remains classified. This situation is
unlikely to change because many companies, governments,
and defense organizations will be always hesitant to share
their project data such as, effort and defect data, due to var-
ious confidentiality, privacy, and security concerns. In this
paper, we present, demonstrate, and evaluate a novel tree-
based data perturbation approach. This approach does not
only preserve privacy effectively, but it also preserves the
predictive patterns in the original data set. Consequently,
the empirical software engineering researchers will have ac-
cess to another category of data sets, transformed data sets,
which will increase the verifiability of research results and
facilitate the future research studies in this area. Our ap-
proach can be immediately useful to many researchers and
organizations who are willing to share their software engi-
neering data but cannot do so due to privacy concerns.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics/Measurement—

complexity measures, performance measures; M.13.3 [Services

Computing]: Security and Privacy in Services—privacy
management in data transformation, privacy management
in data dissemination; K.4.1 [Computing Milieux]: Com-
puters and Society— Privacy
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1. INTRODUCTION

An important characteristic of the PROMISE effort has been
its emphasis on developing an infrastructure where researchers
share not only their results and papers, but also the data
used in their studies. In addition, PROMISE conference
encourages researchers to use the data sets available in the
PROMISE repository. Benefits of data sharing have been
observed and expressed in other scientific domains, e.g., in
bioinformatics [11]. The UCI’s machine learning repository
of public data sets have been acknowledged by software en-
gineering researchers as an exemplary effort that needs to
be adopted [8]. Reporting not only the research results but
also the underlying research data increases the verifiability
of the research results and facilitates further research studies
exploring similar or related questions.

Despite its potential benefits, both obtaining and sharing
data pertaining to software development efforts has been a
major challenge for software engineering researchers [8, 9]. A
recent systematic review of software defect prediction stud-
ies found that, in spite of the recent efforts of the PROMISE
repository, only 31% of the studies made their data public
[7]. An important reason is that companies consider the
potential use or misuse of software development data a ma-
jor risk that can damage their reputation or cause business
disadvantages. Defense and government organizations have
generally similar concerns; in addition, they might even have
stricter policies to assure confidentiality. Therefore, facili-
tating data sharing is still a major challenge in the field of
empirical software engineering. We are in need of techniques
that can transform software engineering data to preserve the
privacy of software engineering professionals, projects, and
organizations.

Note that, in preserving privacy, removing the identifiers
in a data set such as names, addresses, personal id num-
bers, etc., is insufficient. Even without looking at such iden-
tifiers, inspectors can examine the values of various other
variables and identify the owner of a data point (e.g., a per-
son, project, or a module) by also using other information
available to them. Alternatively, they might be able to nar-
row down the possible owners of a data point to a small
set, which significantly increases the chances for successful
identification. Consider the original COCOMO data set in
Table 1 (in the Appendix) where each data point correspond-
ing to a project includes a product size value in Kilo—lines-
of-code (loc). If an inspector knows which products were



the largest products and some of the project characteristics
for those largest products that are coded in the data set,
such as, the use of tools (tool), database size (data), time
and memory constraints (time and stor), it will be easier to
identify the individual projects among those with the largest
products. Then, this identification can reveal how personnel
variables were scored in the identified projects, for exam-
ple, analysts capability (acap) and programmers capability
(pcap). Therefore, preserving privacy through data pertur-
bation becomes necessary, which can increase the chances
for data sharing by alleviating some of the confidentiality
concerns.

For data perturbation, a number of techniques such as gen-
eralization [2, 10, 17] or adding random noises [1] could
be used to anonymize software engineering data. However,
those techniques were designed with other utility concerns
in mind, such as anonymizing patient records in hospital
databases to protect patient privacy but still being able to
extract and use patient data for reporting purposes. They
fail to effectively preserve the predictive patterns in the orig-
inal data. Preserving such patterns is necessary if data will
be used for research purposes, especially when building pre-
dictive models, because the patterns indicate how certain
predictor variables relate to the outcome variable. For ex-
ample, consider the researchers building statistical models
to predict project effort. As we demonstrate in this paper,
if they use the existing data perturbation techniques mainly
designed to protect privacy, the patterns for project effort
observed from the perturbed data will be lost, leading to low
prediction performance.

Preserving both privacy and predictive patterns is an im-
portant but, at the same time, a challenging problem be-
cause preserving privacy often requires distortion to the data
whereas preserving patterns requires the opposite. As a
starting point, in this paper we focus on perturbing data
by preserving a specific type of patterns, those formed by
the rules in regression trees. The use of regression trees in
software engineering research can be seen in [22, 27]. Their
use in this study is limited to data perturbation purposes.
Regression trees do not make assumptions about the func-
tional forms of the relationships between the response and
predictor variables. They create a set of rules that partition
the data into subsets which are as homogeneous as possi-
ble in terms of the response variable values. We observed
that the rules formed during this process enable us to per-
turb data values in certain value ranges without changing
the patterns observed in the original data. Based on this
observation, we developed a novel tree-based data pertur-
bation technique that we call Pattern Preserving Tree-based
algorithm, or PPT for short.

PPT receives the original data and a regression tree gener-
ated using the original data from the researchers who would
like to transform their data and share it (called producers).
Then, it perturbs the original data considering the patterns
existing in the original tree. Unlike existing data pertur-
bation techniques, PPT takes special care to preserve those
patterns during data perturbation. Finally, it produces a
new regression tree from the perturbed data, which can be
published along with the perturbed data to other researchers
(called readers). Indeed the patterns are preserved to the

extent that, except showing normalized variables, the new
regression tree looks exactly the same as the original one. To
our best knowledge, there is not any other available tech-
nique or tool achieving this goal. Consequently, other re-
searchers can use the perturbed data effectively to verify
earlier results or to explore further research questions.

To be clear, regression trees are only used for data perturba-
tion purposes in this study, not to make predictions. That is,
we are not suggesting that researchers should always use re-
gression trees for their modeling purposes. We suggest that
researchers use the modeling techniques best suited to their
particular research questions. Furthermore, we encourage
them to share their original data sets because any data per-
turbation method will result in some degree of information
loss. However, when sharing the original data is impossi-
ble, under certain plausible situations, PPT can be used to
transform the research data. Currently, the only alternative
to PPT is not to publish any data.

To summarize, this study mainly addresses and facilitates
the following two challenge areas in software engineering re-
search:

o Verifiable and repeatable research: The studies that
cannot publish their actual data can publish the trans-
formed data by using PPT. Therefore, other researchers
can repeat the analysis employed in the original study
by using the transformed data in order to verify and
validate the original results. For example, consider
some researchers in a company who collected project
size and cost drivers data to create a COCOMO model
[3]. Due to the proprietary nature of the data, they
could use PPT and transform it in order to be able to
publish it. Other researchers building the COCOMO
model with the PPT-transformed data would obtain a
reasonable prediction performance.

e [Ezxploration of further research questions: In the long-
run, an accumulation of such transformed data sets
can enrich the repertoire of the data sets available to
researchers. This will allow researchers and practition-
ers to build prediction models while exploring similar
or relevant questions by also giving them more insight
about the patterns observed in the proprietary and/or
confidential data sets.

In the rest of the paper, we start by introducing the related
work. Then, we introduce the methods used in the study; we
explain the overall process of perturbing the COCOMO data
set; we discuss the algorithm for PPT in detail; we demon-
strate the tradeoff between privacy and prediction perfor-
mance when PPT is used; and, we explain how we produced
the final perturbed COCOMO data. Then, in our discussion
section, we mention where PPT is applicable and effective.
Finally, we conclude the paper. Following the tradition of
the PROMISE effort, both the original and perturbed data
sets are included in the Appendix, and they will be avail-
able at the PROMISE repository. In addition, an R package
including the programs that implement the PPT algorithm
will be made available at the PROMISE repository.



2. RELATED WORK

Recently, privacy has also become an important issue for
the software engineering community, in addition to the tra-
ditional quality attributes such as reliability, usability, per-
formance, etc. In a recent article, Spiekermann and Cranor
[23] discuss in length how to engineer privacy in informa-
tion technology products. Their discussion mostly focuses
on understanding the privacy requirements of users and sys-
tem stakeholders, and how to design software systems to
meet those privacy requirements.

A similar study was conducted by Canfora and Visaggio [5],

which appeared in the International Symposium on Empir-

ical Software Engineering and Measurement (ESEM). The

researchers stressed the potentials of using anonymization

techniques in engineering software systems, and demonstrated
the use of those techniques using a medical database. They

pointed to the trade-off between data quality and anonymiza-

tion, and stated that this trade-off should be managed for

each application. The authors’ more recent study [6] re-

ported similar results.

Different from [5, 6, 23], in this research, our goal is to fa-
cilitate the use and sharing of data collected for research
purposes. Such data could be related to not only users or
stakeholders of software systems, but also related to software
developers, managers, projects, processes, development en-
vironments, and organizations.

Cukic and Ma [8] mention that researchers and companies
are sensitive when it comes to sharing software development
data despite the advances in data anonymization techniques.
However, it is worth to note that the most advanced tech-
niques in data anonymization did not focus on preserving
the predictive patterns existing in original data effectively,
which might have prevented their adoption in software en-
gineering research.

Nevertheless, there has been a rich body of work on protect-
ing privacy in the database and data mining fields. The
existing work can be divided into three categories based
on the target of protection: personal identity (called data
anonymization), sensitive attribute values, and sensitive pat-
terns. The research in data anonymization is based on two
privacy protection models: K-anonymity and L-diversity.
The K-anonymity model [24] protects the data against link-
ing attacks. The L-diversity model [20] was proposed as a
complement to K-anonymity. L-diversity further protects
the data against elimination attack (when attackers can ex-
clude certain values). Many studies have been conducted
on how to implement these two models. A widely used ap-
proach is generalization, i.e., replacing values of attributes
with more general values [2, 10, 17].

Research on protecting sensitive values is also called privacy-
preserving data mining because its goal is to preserve pri-
vacy and at the same time allow data mining on the modi-
fied data. A survey of the existing methods can be found in
[30]. The most well known method in this field is random
perturbation, which adds some random noise to sensitive
attribute values [1]. However, Kargupta et al. [13] showed
that random perturbation method is subjected to attacks
using correlations of data. A tree-based approach perturba-

Perturbed Data
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PPT: Data
Perturbation

Producers Readers

Tree 1:
Regression Tree
Model with
Original Data

Tree 2:
Regression Tree
Model with
Perturbed Data

Figure 1: Using PPT: Original data is normalized
and then perturbed heavily. Except showing nor-
malized values, Tree 2 is the same as Tree 1 pre-
serving predictive patterns. The perturbed data
can be used to build prediction models by other re-
searchers.

tion approach, K-D tree [19] was also proposed. The basic
idea is to divide data into groups using K-D tree, and re-
place values of sensitive attributes with the average of their
values within a group.

The technique proposed in this paper can preserve the pre-
dictive patterns formed by the regression tree models. This
is an important point while sharing data for research pur-
poses, however, it has not been the essential focus in the area
of privacy preserving data mining. Some studies mentioned
that the prediction performance did not degrade much when
the perturbed data was used (e.g., [1]). However, the au-
thors did not focus on preserving the patterns in the data.
Furthermore, their observation is not guaranteed to apply
to all data perturbation or transformation schemes. Indeed,
some studies (e.g., [5, 6]) mentioned the loss in the predic-
tion performance as the degree of anonymization increases.
To our best knowledge, none of the previous studies could
achieve preserving both privacy and predictive patterns at
a reasonable level and in a controllable manner as done in
this study.

3. METHODS

Figure 1 shows how PPT is used. The producer researchers
obtain a regression tree from the original data, represented
as Tree 1 in Figure 1. Then, they give Tree 1 and the orig-
inal data to PPT. PPT generates perturbed data by pre-
serving the patterns in Tree 1. The perturbed data can be
published to readers along with the regression tree PPT gen-
erated from the perturbed data, Tree 2 in Figure 1. Tree 1
and Tree 2 have the same patterns except that Tree 2 shows
the normalized data. Note that, readers can reproduce Tree
2 from perturbed data; they can also use the perturbed data
to rebuild the predictive models in order to validate the orig-
inal research results or to explore further research questions.

To demonstrate the use of PPT, we perturbed a publicly
available data set used to predict project effort by Boehm et
al. [3]. In the rest of this section, we first discuss the overall
process of perturbing the COCOMO data. Then, we present
some background and key observations for regression trees
in Section 3.2 which led to the development of PPT algo-
rithm. In Section 3.3, we present the algorithm for PPT
and explain the perturbation method in detail. Then, we
discuss the trade-offs between privacy and prediction per-



formance observed while using PPT. Lastly, we explain how
we produced the final perturbed COCOMO data.

3.1 Perturbation of COCOMO Data

The COCOMO data set we used is available at the PROMISE
repository [21] (called COC81). There are altogether 63 data

points (records) in this data set, each representing a software

project. All variables in this data set have numerical values.

The response variable is effort in person-months (actual),

and there are 16 predictor variables including the project

size in Kilo-lines of code (loc).

The COCOMO model can be written as:
Effort = ax* Size’ x H Cost Driver; (1)

7

This model suggests a linear relationship between the loga-
rithmic transform of Ef fort and the logarithmic transform
of Size and the cost drivers. That is,

In(Effort) =In(a) + b * In(Size) + Z In(Cost Driver;).
l @

Therefore, we performed the following steps:

1. We built a linear ordinary-least-squares (OLS) regres-
sion model [12] to predict In(Ef fort) using the loga-
rithmic transforms of the predictor variables, Size, and
the cost drivers in the original data. Table 1, which is
in the Appendix, shows the original COCOMO data
set in the log-transformed format®.

2. We obtained a regression tree from the log-transformed
COCOMO data. Then, we gave this tree to PPT along
with the log-transformed data (as depicted in Figure 1)
as inputs. To build regression trees, we used the rpart
package [26] available in the R statistical environment
[25]. PPT provided us with a perturbed data set.

3. On the perturbed data set, we built another linear OLS
regression model and compared its prediction perfor-
mance with that of the original model by using the
adjusted R? values obtained for both models. During
this process, we always used bootstrapping and shrunk
the models to correct for optimism in the adjusted R?
values. To quantify the level of privacy for the per-
turbed data set, we use the confidence interval mea-
sure [1] that measures the average privacy. This metric
measures how closely the original value of a perturbed
variable can be estimated. If a perturbed attribute x
can be estimated with ¢% confidence in the interval
[x1,x2], then the interval z2 — 1 indicates the degree
of privacy. The larger the interval, the better the pri-
vacy protection. For example, suppose the interval for
a variable is 0.4, and the perturbed value of the vari-
able is 0.5, then the original value may lie anywhere

More precisely, loglp function in the R statistical environ-
ment [25] was used. This function adds 1 before taking the
natural logarithm in order to avoid the problem of taking
the logarithm of zero, which is undefined.

in 0.3 to 0.7 (i.e., 0.5-0.2 to 0.5+0.2). 95% confidence
interval was used in our experiments. Since different
variables may fall in different ranges, the interval is
also normalized to ;‘5:21 where zy is the maximal
value of x and xr, is the minimal value. We compute
this measure over all perturbed variables and report

the average.

4. We repeated Steps 2 and 3 many times by building
regression trees of different sizes and giving them to
PPT. We achieved this by manipulating the complexity
parameter (cp) of the rpart function. As we demon-
strate later, manipulating cp also changes privacy level
and prediction performance obtained from the PPT-
perturbed data. Finally, we chose a cp value that pro-
vided a good trade-off between privacy and prediction
performance, and we repeated Step 2 to obtain the fi-
nal perturbed data set, which is shown in Table 2 of
the Appendix.

3.2 Background and Key Observations for Re-

gression Trees

Regression trees are often used to predict the value of a
numerical response variable such as person-months, change
count, number of defects, etc. [14, 15, 16, 22, 27, 28, 29].
Typically, a regression tree, T, is obtained by recursively
partitioning all of the data points in a data set. The root
node of the tree includes all of the data points in the data
set. For each partitioning step, a predictor variable and a
split value (also called cut-off value) is chosen such that the
partitioning will minimize the total deviance of the response
variable in the child nodes. In other words, the maximum
deviance reduction possible is obtained in each split. The
selection of a split variable-value pair is performed automati-
cally using the available statistical analysis packages because
it requires trying many candidate predictors and split values
[4]. Each node also includes the mean of response variable
as the predicted value.
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Figure 2: The split at top node for COCOMO data.



(a) Regression Tree with
Original COCOMO Data (Log-transformed)

loc <> 2.86
tool <> 0.72 loc <> 4.63
@) 2 time <> 0.73 stor <> 0.78
2.8 3.82
13 obs 12 obs
3 4 & ®

4.62 5.88 6.94 8.97
13 obs 15 obs 7 obs 3 obs

(b) Regression Tree with Normalized COCOMO Data

loc <> 0.41
tool <> 0.89 loc <> 0.66
aQ 2 time <>0.74 stor <> 0.83
0.3 0.41
13 obs 12 obs
3 4 & ®

0.49 0.63 0.74 0.96
13 obs 15 obs 7 obs 3 obs

(c) Regression Tree with Perturbed COCOMO Data

loc <> 0.41
tool <> 0.89 loc <> 0.66
@ 2 time <>0.74 stor <>0.83
0.3 0.41
13 obs 12 obs
3 4 & ®

0.49 0.63 0.74 0.96
13 obs 15 obs 7 obs 3 obs

Figure 3: Regression trees generated using original and perturbed data.

For example, Figure 3-(a) shows the regression tree gener-
ated from the log-transformed original COCOMO data in
Table 1. Each node in the tree contains the split variable
and splitting value. For example, in the top split, those
with In (loc) < 2.86 go to the left child and those with
In (loc) > 2.86 go to the right child. In each leaf node,
the predicted value and the number of records in that leaf
are shown in Figure 3.

Figure 2 illustrates how the split value for the top node is
found. The tree building algorithm considers all possible
split values for each predictor variable. The split that mini-
mizes the deviance will be selected. In Figure 2, the split at

In (loc) = 2.86 minimizes the deviance on response variable
(the effort) because the effort values of projects to the left of
the split value are mostly quite small while the effort values
of projects to the right are mostly quite large. Thus it is
selected as the split value. The split value is selected as the
midpoint of boundary values in the left and right child. The
boundary value in the left child is the maximal In (loc) value
in the left child (2.83 in this case) and boundary in the right
child is the minimal In(loc) value in the right child (2.89 in
this case).

To ensure that the patterns in the original regression tree
will be preserved using the perturbed data, we use the fol-



lowing two key observations:

THEOREM 1. If each variable column (also called variable
vector) is divided by a constant, the regression tree will re-
main unchanged except that split values and predicted values
in the tree are also divided by that constant.

The proof of this theorem is quite straightforward because
the deviance after the division equals the original deviance
divided by square of the constant. Thus, for any two splits,
suppose that the deviance of split one is less than that of
split two, the same occurs after the division. This will ensure
that the same split variable and the corresponding normal-
ized value will be selected at each step in the regression tree
building algorithm. Thus, the structure of the regression
tree generated from the perturbed data will be exactly the
same as the tree generated from the original data.

In this paper, we assume that each variable has a non-
negative numerical value. This theorem indicates that we
can normalize each variable by dividing the maximal value
of that variable, without changing the regression tree. Fig-
ure 3-(b) shows the tree generated from the normalized data.
This tree is the same as the tree generated from the origi-
nal data, Figure 3-(a), except that split values and predicted
values in the tree are normalized. This step also brings some
privacy protection because unless someone knows the max-
imal value for a variable, one can not discover the actual
value of that variable easily. However, note that, this step is
just the start of the major perturbation performed by PPT.

THEOREM 2. If data perturbation preserves the order of
values for each predictor variable and leaves the response
variable value unchanged, the regression tree gemerated from
the perturbed data will be the same as the tree generated
from the original data, except that the split values need to be
computed from the perturbed boundary values.

Example 1: The key observation is that the deviance of a
certain split only depends on the two sets of response vari-
able values in the two child nodes generated by the split.
For example, consider the top node in Figure 3-(a). The
split at In(loc) = 2.86 will generate two child nodes: those
In(loc) < 2.86 and those with In(loc) > 2.86. The deviance
is determined by the set of effort values in the two child
nodes.

Now, we modify the In(loc) values, but make sure the mod-
ified values preserve the order in the original data. An im-
portant observation is that the modified In(loc) values of
projects in the left child are still less than the modified
In(loc) values of projects in the right child due to the or-
der preserving property. Thus each project in the modified
data still goes to the same child as in the original data.

For example, suppose that there are two projects, one with
In(loc) = 2.83, and the other with In(loc) = 2.89. Thus
the first project belongs to the left child and the second
project belongs to the right child. Now, suppose that the
modified In(loc) values for these two projects are 2.73 and

2.99, respectively. The first project still belongs to the left
child and the second project still belongs to the right child.

The order preserving property ensures that each split will
generate the same two sets of projects as in original data.
Since we do not modify the response variable values, the two
sets of response variables do not change. Hence the deviance
after the split also does not change. This will ensure that the
tree building algorithm will generate the same split at each
step as in the original data, and the same tree will be gener-
ated over the perturbed data. The only difference now is the
split value needs to be set to the new midpoints between the
boundary values in the modified data. For instance, the split
value in the above example equals the midpoint of perturbed
boundary values (2.73 and 2.99).

3.3 PPT Data Perturbation Algorithm

Figure 4 shows the Pattern Preserving Tree-Based data per-
turbation algorithm. At Step 1, the algorithm normalizes all
variables to take values in the range [0,1] by dividing each
value of a variable in a record by the maximal value of that
variable in the data set. As shown in Theorem 1, this step
will not change the tree model created from the data.

In Steps 2 to 5, the algorithm computes the minimal and
maximal values of each child node in 7. For example, in
Figure 3-(b), the minimal In(tool) value for the left most
leaf node (with a circle 1) is 0.5445, and the maximal value
is 0.8595. At step 6, these minimal and maximal values will
divide the range of each split variable into intervals, where
these minimal and maximal values are boundaries of inter-
vals. For example, there is only one node in Figure 3-(b) that
have In(tool) as split variable. Thus there will be 4 minimal
and maximal values (2 for each child node). These values
will divide the values of In(tool) into 3 intervals: [0.5445,
0.8595], [0.8595, 0.92], and [0.92, 1.0].

At Step 8, each value is replaced with the mean of the inter-
val. For example, any In(tool) value in the range of [0.5445,
0.8595] will be replaced with the mean 0.8395. Note that this
step will not modify the order of values. For example, if vy
belongs to [0.5445, 0.8595] and v belongs to [0.92, 1.0], then
v1 < v2. Step 8 will transform v; and v2 to the mean of val-
ues in these two intervals, respectively. Note that the mean
of values in the first interval must be less than the mean
of values in the second interval. For example, the mean in
the first interval is 0.8395, which is less than the mean in
the second interval, 0.932. Thus the perturbed value of vy
is also less than the perturbed value of v2. Since the order
is preserved in the perturbed data by Theorem 2, the re-
gression tree generated from the perturbed data will be the
same as the regression tree generated from the original data,
except that the split values need to be computed from per-
turbed boundary values. Finally, Steps 9 to 13 will adjust
the boundaries of intervals to ensure that the split values in
the tree generated from perturbed data will be the same as
the split values in the original tree.

We use an example to illustrate how to achieve this. Con-
sider the left most node in the second level of the tree in Fig-
ure 3 (b) (the node with condition “In(tool) <> 0.89”). The
maximal value in the left child equals 0.8595 and the min-
imal value in the right child equals 0.92. The original split



PPT(D,T) where D is the original data and the 7 is the regression-tree

model whose patterns need to be preserved

Normalize each variable V; in D by dividing value of V; by the maximal value of Vj.

For each node N; in T

Suppose V; is the split variable, compute the minimal and maximal of V; in its left child.

Do the same for the right child.

For each predictor variable V; in D

Use the minimal and maximal values recorded in step 4 and 5 to divide V; into intervals.
For each interval, replace every value in the interval with the mean in the interval.

1
2
3
4.
5. end for
6
7
8
9

. For each node in 7T that has condition V; <wv and V; > v
10. Let Umar1 be the maximal V; value in the left child
and Umin2 be the minimal V; in the right child.
Let U;nu.;vl and U;m-nz be the current value of Umaz1 and vmin2 set at step 9, respectively.

11. Compute § = MiN{Vmaz1 — Vinawl, Viminz — Vmin2 } -
12. Replace Umazi and Umin2 With Umae1 — 0 and vmin2 + 6, respectively.
13. end for

14. end for

Figure 4: Pattern-Preserving Tree-Based Algorithm

value 0.88975 is the midpoint of these two values. At Step
8, these two values are set to 0.8395 (the mean of values in
[0.5445,0.8595]) and 0.932 (the mean of values in [0.92,1.0]),
respectively. In order to make sure the split point is the
same, we need to ensure that the midpoint (average) of per-
turbed boundary values equals the old split value 0.88975.

Figure 5 illustrates how this is done. Note that the split
value in the original tree equals to the average of the original
boundaries (0.8595 and 0.92). We can decrease the value of
0.8595 (the original left boundary) and increase the value
of 0.92 (the original right boundary) by the same amount
0. This will not change the split value because the average
of 0.8595 — § and 0.92 + ¢ equals the average of 0.8595 and
0.92. In the mean time, the perturbed value for 0.8595 must
be greater than or equal to the mean in the left interval
(0.8395) because all other “In(tool)” values in the left child
has been perturbed to 0.8395 and we need to preserve the
order. Similarly, the perturbed value for 0.92 must be less
than or equal to the mean in the right interval (0.932). Thus
step 12 computes the maximal possible ¢, which equals 0.012
(the min of 0.8595 —0.8395 and 0.932—0.92). Finally 0.8595
is set to 0.8475 and 0.92 is set to 0.932. The midpoint is still
0.88975.

Our approach has the following favorable characteristics:

1. The regression tree model generated using the per-
turbed data is the same as the model generated from
the original data. This can be proved as follows. First,
by Theorem 1, the normalization step (Step 1) pre-
serves the regression tree. Second, subsequent steps of
the PPT algorithm do not change the order of values.
Thus, by Theorem 2, the regression tree is preserved
except for split values. Finally, Steps 9 to 13 ensure
that the split values in the tree are also preserved.

2. The data values have been perturbed heavily as fol-
lows. The values of a predictor variable that appears
in the regression tree are set to mean of intervals gen-
erated in Step 8. The values of a predictor variable

that does not appear in the regression tree (thus not
too useful for prediction) are set to the mean of that
variable. The values of the response variable are also
normalized such that it will be difficult to know the ex-
act values without knowing the maximal value in the
data set. As a result, privacy is greatly preserved.

Original Split value on variable “tool”
= AVG(0.8595,0.92)
=0.88975

Original Data

0.5445 0.8595

A
1
1
1
1
1
+ 1
A [
0.8395 1 .
! 1
0.8475 New Split value
= AVG(0.8595-0.012,
Transformed Data 0.92+0.012)
=0.88975

Figure 5: Example of preserving split values using
In(tool).



4. RESULTS

We perturbed the log-transformed COCOMO data by exe-
cuting the PPT algorithm with different sizes of regression
trees (denoted as T in Figure 4). While doing so, we ob-
served how the privacy and prediction performance changed.

Figure 6 shows the tradeoff between privacy and prediction
performance. Using the original log-transformed data (see
Table 2), the adjusted R? value obtained from the OLS re-
gression model (based on the Equation 2) was 0.92. This
value is shown as a horizontal line in Figure 6. The com-
plexity parameter (cp) determines the decrease needed in
the overall lack of fit in order to attempt a split while build-
ing regression trees. The smaller cp values typically result
in greater numbers of splits and, therefore, larger trees. The
larger cp values typically result in smaller number of splits
and, therefore, smaller trees. We observed that the smaller
cp values resulted in higher adjusted R? obtained from the
perturbed data, however, less privacy. The greater cp values
resulted in lower adjusted R? obtained from the perturbed
data, however, higher privacy.

The tradeoff shown in Figure 6 is a typical and expected
one. Smaller trees usually have more data points per leaf
compared to larger trees; therefore, PPT can perturb the
data points in those leaves more heavily using the algorithm
shown in Figure 4. On the other hand, the larger trees have
usually more rules preserving the patterns for the relation-
ships between the outcome and predictor variables better
and resulting in higher adjusted R? values.

For any data set that needs to be transformed, the pro-
ducers of the data set should examine the tradeoff between
privacy and prediction performance before making a final de-
cision about the input regression tree. Note that the rpart
function in the R statistical environment allows some other
parameters to be manipulated too, such as minimum leaf
size to attempt a split (minsplit) and minimum bucket size
(minbucket). After examining Figure 6, we decided that
cp = 0.025 (the vertical line in Figure 6) was a good value
to provide a balance between privacy and prediction perfor-
mance.

Finally, we produced a regression tree with cp = 0.025 and
used it to produce the final perturbed data set (with default
minbucket and minsplit values). This perturbed data set is
shown in Table 2 in the Appendix. The regression tree used
for final perturbation is the one shown in Figure 3-a with
the original log-transformed COCOMO data. As seen in
Figure 3-b, the exact same tree structure is obtained when
the log-transformed data is normalized. Furthermore, as
seen in Figure 3-c, even after the data is perturbed using the
PPT algorithm, the tree structure is preserved because PPT
pays particular attention to preserving the pattern observed
in the regression tree obtained from the original data set.
With ep = 0.025, the adjusted R? obtained from the simple
linear regression model (based on the Equation 2) was 0.82.

It is worth to note that, we also experimented with the ex-
isting privacy preserving data transformation approaches in
order to understand whether they could be used for our re-
search objective, that is, preserving privacy and prediction
performance at the same time. The K-D tree approach [18,

19] is the state-of-the-art tree-based data perturbation ap-
proach in the field of privacy preserving data mining. The
average privacy we obtained from our K-D tree experiments
was around 0.9%, which was slightly above the highest pri-
vacy that can be obtained from the PPT approach. How-
ever, compared to PPT, the K-D tree approach was very
ineffective when it came to preserving the predictive pat-
terns. With different settings of K-D trees, we were able to
obtain, at most, an adjusted R? value around 0.30 for the
OLS models generated from the K-D tree perturbed data.
We also observed that, since K-D tree approach was not cre-
ated to preserve the predictive patterns, the perturbed data
changed greatly when we used different settings to create
K-D trees, some of which produced very low adjusted R>
values.

To summarize, as we demonstrated, PPT did not only pro-
duce the exact same regression tree showing the same pat-
terns, it also resulted in a reasonable prediction performance
when we generated the OLS models from the perturbed data
based on the COCOMO model. Therefore, PPT success-
fully met our research objective of preserving privacy while
preserving the utility of the perturbed data when used for
research purposes.

S. DISCUSSION

We developed a tree-based perturbation approach because
regression trees have nice properties that give us some inter-
vals in which it is possible to perturb data flexibly without
causing changes in the patterns observed for the original
data.

Naturally, the quality of the conclusions that can be drawn
from the perturbed data is also related to the internal va-
lidity and prediction performance of the original model ob-
tained from the original data set. For example, in this re-
search, we used the COCOMO model pointing to a linear
relationship between the logarithm of effort and the loga-
rithms of the predictor variables (e.g. size). Since the OLS
model based on Equation 2 gives an adjusted R? value of
0.92 (after correcting for optimism) for the original data set,
the OLS model obtained from the perturbed data leads to
useful models with high prediction performance. However,
when the prediction performance obtained from the original
model is very low or when there are known internal valid-
ity threats, data perturbation might not lead to useful data
sets. Otherwise, using PPT and publishing perturbed data
can significantly enhance the verifiability of research results
and facilitate further research studies in the same area.

We should note that the PPT technique described in this pa-
per is applicable when data is not censored and the predictor
and outcome variables are numeric. The data sets with cen-
sored, categorical, and ordinal variables will perhaps require
different techniques to preserve both privacy and predictive
patterns at the same time.

2The program generating K-D trees was implemented by
Steven Michael of MIT Lincoln Laboratory. We archived
the URL of the web site posting this program. See
http://www.webcitation.org/5fryepiDd
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6. CONCLUSION

Benefiting from privacy preserving data perturbation tech-
niques can enable data sharing for proprietary and confiden-
tial data, which is commonly found in software engineering
research. Research in this direction holds strong potentials
to facilitate software engineering research studies in the fu-
ture.

In this paper, we presented a novel tree-based data per-
turbation technique that we call Pattern-Preserving Tree-
Based Algorithm, or PPT for short. This approach preserves
privacy effectively while also preserving the predictive pat-
terns in the original data. As a result, data perturbation
using PPT can significantly enhance our capacity to verify
the published research results. In addition, it facilitates fu-
ture research studies investigating similar or related research
questions.

The results obtained in this study encourage us to conduct
further research on this topic. We plan to work on other
data sets to understand the feasibility and effectiveness of
our approach and to further generalize and refine it.
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APPENDIX

Table 1 is the log-transformed original COCOMO data (called
COCS81 in the PROMISE repository). Table 2 is the PPT-
perturbed output using Table 1 and Figure 3-(a) as inputs
for D and T in the PPT algorithm shown in Figure 4, re-
spectively.



rely data cplx time stor virt turn acap aexp pcap vexp lexp modp tool sced loc actual
1 0.63 0.77 053 069 0.72 077 073 078 076 0.77 0.74 0.69 0.81 0.74 0.71 4.74 7.62
2 0.63 0.77 062 069 072 069 073 069 065 069 064 0.67 0.74 0.69 0.69 5.68 7.38
3 0.69 0.77 062 069 069 063 066 062 060 062 064 0.67 0.65 0.65 0.69 4.89 5.50
4 0.56 0.77 053 069 0.69 063 069 078 065 088 0.69 0.67 0.81 0.69 0.71 4.11 5.48
5 0.63 0.66 069 069 069 063 069 069 069 062 064 0.67 0.81 0.69 0.69 2.83 3.53
6 0.56 0.69 062 069 079 069 069 090 069 088 064 0.67 0.81 0.74 0.69 1.61 3.78
7 0.56 0.69 069 069 069 063 063 069 069 069 064 0.67 0.65 0.65 0.69 2.07 2.20
8 077 0.66 083 098 094 083 069 054 065 069 079 0.76 0.74 074 0.73 3.14 6.98
9 077 066 083 0.83 079 0.77 0.69 062 069 062 074 073 065 0.69 069 3.43 6.05
10 0.88 0.66 083 075 094 069 0.73 062 060 062 064 0.69 0.69 0.69 0.69 3.40 5.77
11 088 066 083 075 094 069 0.73 062 060 062 064 0.69 0.69 0.69 0.69 3.50 5.39
12 077 0.66 0.83 0.75 0.72 069 069 0.62 060 062 069 067 065 069 0.73 3.64 5.31
13 077 066 083 075 072 077 069 054 069 053 074 0.69 0.60 0.69 0.69 3.26 4.38
14 077 066 097 083 094 077 0.69 062 069 053 074 0.73 0.74 081 0.80 1.39 4.30
15 088 066 0.83 083 072 077 063 062 07 0.62 0.79 0.76 0.65 0.69 0.80 1.59 4.13
16 088 0.69 083 083 094 069 063 062 069 062 069 0.69 0.69 0.69 0.69 1.96 3.71
17 088 069 083 083 094 069 063 062 060 062 069 0.69 0.69 0.69 0.69 1.53 2.30
18 07 077 077 083 079 069 073 062 069 0.69 0.69 0.69 0.81 0.74 0.73 5.77 9.34
19 o077 073 069 075 079 063 066 054 065 069 069 0.69 0.65 0.65 0.69 7.05 8.79
20 088 073 083 075 079 077 073 054 060 073 0.74 0.73 0.81 0.69 0.73 5.70 8.76
21 069 077 077 072 0.76 063 063 062 069 069 0.69 0.69 0.65 0.65 0.69 5.53 7.81
22 077 069 069 082 0.72 069 069 062 060 0.62 0.64 0.69 0.65 0.69 0.80 4.78 6.59
23 077 069 069 073 072 069 0.69 062 060 062 064 069 069 0.69 080 4.36 6.29
24 063 069 062 072 072 069 063 069 083 0.69 0.74 0.67 0.60 0.60 0.69 4.51 6.12
25 077 077 083 0.77r 0.72 069 063 062 069 0.62 0.74 0.69 0.60 0.65 0.73 3.66 6.26
26 0.66 0.69 062 073 072 077 073 062 069 062 074 0.69 0.65 0.74 0.73 3.89 5.96
27 077 066 0.77 0.85 0.79 0.69 063 0.69 069 0.69 0.69 0.69 0.60 0.74 0.73 2.34 4.49
28 077 073 083 075 0.79 077 073 062 069 062 074 0.73 0.74 0.74 0.69 2.64 4.60
29 0.63 069 069 069 069 069 069 074 083 062 069 0.69 0.65 0.65 0.80 1.14 2.12
30 0.63 069 069 069 069 069 069 069 083 0.62 0.69 0.69 0.65 0.65 0.80 1.09 1.93
31 088 073 069 091 094 077 073 062 060 062 074 0.73 0.69 0.69 0.69 4.14 6.97
32 063 073 062 069 069 069 069 054 060 069 069 0.69 0.74 0.74 0.69 5.97 6.56
33 088 073 083 091 094 077 066 062 060 0.62 0.64 0.69 0.65 0.65 0.69 3.76 6.41
34 077 073 069 072 069 069 0.63 069 069 069 069 069 065 0.74 080 3.18 5.44
35 056 066 0.83 072 0.79 077 069 069 065 0.69 0.74 0.69 0.81 0.81 0.69 2.64 4.42
36 063 073 062 069 069 063 063 078 069 0.77 0.64 0.67 0.69 0.65 0.71 2.77 4.03
37 063 066 053 069 072 069 0.69 062 060 062 069 069 069 0.69 069 4.11 3.87
38 0.69 069 077 069 0.69 063 063 054 065 0.69 0.64 0.67 0.60 0.65 0.69 2.77 2.56
39 069 069 077 069 069 063 069 054 060 0.53 0.69 0.67 0.65 0.74 0.69 1.97 2.20
40 0.69 0.66 083 069 069 069 063 062 060 077 0.69 0.69 0.74 0.69 0.69 1.39 2.20
41 0.63 066 0.69 0.69 0.69 063 063 069 060 0.53 0.64 0.67 0.65 0.65 0.69 1.84 1.95
42 063 071 073 069 072 063 073 062 069 0.66 0.64 0.67 0.67 0.67 0.71 3.84 3.83
43 069 0.71 073 069 0.79 063 073 062 069 069 064 0.67 0.69 0.69 0.71 3.39 4.43
44 063 071 0.73 0.72 0.79 063 073 069 069 0.69 0.64 0.67 0.74 0.69 0.71 3.45 4.48
45 063 071 073 069 0.72 063 073 069 069 0.69 0.64 0.67 0.69 0.67 0.71 3.58 4.67
46 0.63 0.71 073 069 072 063 073 069 069 062 0.64 0.67 0.69 0.69 0.71 4.30 4.84
47 056 066 0.83 0.69 0.69 063 063 054 060 053 0.74 0.73 0.74 0.69 0.71 3.18 3.61
48 0.63 066 062 0.69 069 063 0.69 078 065 077 064 067 074 069 071 6.14 7.15
49 069 069 0.62 069 0.69 069 063 054 069 053 0.74 0.69 0.60 0.65 0.69 4.52 5.06
50 0.77 069 0.69 083 0.79 069 063 062 069 0.62 0.74 0.69 0.69 0.69 0.69 3.22 5.18
51 0.63 0.69 069 069 069 069 077 078 069 088 0.69 0.67 0.81 0.74 0.71 240 4.81
52 0.63 066 0.62 0.69 0.72 0.77 069 069 069 0.69 074 0.73 0.81 0.74 0.69 2.22 3.74
53 0.63 066 0.77 0.75 0.79 0.83 069 054 069 053 074 0.73 0.69 074 0.73 1.84 2.71
54 0.69 066 069 069 072 077 063 069 060 069 069 0.67 0.65 0.74 0.69 1.69 3.04
55 0.63 066 0.53 0.69 0.69 063 063 062 060 0.77 0.64 0.67 0.74 0.69 0.69 1.99 2.94
56 0.77 066 0.83 083 0.79 069 069 062 065 0.69 0.74 0.73 0.74 0.74 0.73 3.33 6.87
57 0.69 066 077 075 0.79 083 069 069 069 069 074 0.73 0.74 0.74 0.80 2.89 5.47
58 0.88 066 0.83 098 0.79 0.69 069 054 060 0.53 0.64 0.67 0.65 0.69 0.69 3.26 4.88
59 0.69 066 077 072 072 069 0.63 069 069 069 069 069 065 0.69 069 3.18 4.26
60 0.77 066 0.83 0.75 0.72 0.69 069 062 07 0.62 0.74 0.73 0.74 0.74 0.73 2.04 4.06
61 0.69 066 0.77 0.69 0.69 063 063 062 069 0.62 0.64 0.69 0.60 0.69 0.69 3.37 3.93
62 063 066 083 075 079 0.77 0.69 058 060 053 079 0.76 065 0.81 0.69 2.31 3.66
63 0.69 066 0.77 0.69 0.69 0.69 063 054 060 0.62 0.69 0.69 0.60 0.69 0.69 2.40 2.77
Table 1: ORIGINAL COCOMO 81 DATA SET (LOG TRANSFORMED AND ROUNDED TO TwO FRACTIONAL DIGITS)



rely data cplx time stor virt turn acap aexp pcap vexp lexp modp tool sced loc actual
1 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.93 0.89 0.76 0.82
2 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.76 0.79
3 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.84 0.89 0.76 0.59
4 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.51 0.59
5 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.40 0.38
6 0.81 09 075 071 090 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.93 0.89 0.23 0.41
7 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.84 0.89 0.29 0.24
8 0.81 09 075 082 090 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.93 0.89 0.51 0.75
9 0.81 09 075 082 090 084 0.89 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.51 0.65
10 0.81 09 075 082 090 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.51 0.62
11 0.81 09 075 082 090 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.51 0.58
12 0.81 09 075 082 0.75 084 0.89 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.51 0.57
13 0.81 09 075 082 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.51 0.47
14 0.81 09 075 082 090 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.93 0.89 0.20 0.46
15 0.81 09 075 082 075 084 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.23 0.44
16 0.81 09 075 082 090 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.28 0.40
17 0.81 0.9 075 082 090 0.84 0.89 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.22 0.25
18 0.81 09 075 082 090 0.84 0.89 0.71 0.8 0.74 0.88 0091 0.86 0.93 0.89 0.76 1.00
19 0.81 09 075 082 090 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.84 0.89 0.94 0.94
20 0.81 09 075 082 090 0.84 0.89 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.76 0.94
21 0.81 09 075 071 07 084 089 0.71 0.8 0.74 0.88 0091 0.86 0.84 0.89 0.76 0.84
22 0.81 09 075 082 075 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.76 0.71
23 0.81 09 075 082 0.75 084 0.89 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.51 0.67
24  0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.84 0.89 0.51 0.65
25 0.81 09 075 082 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.84 0.89 0.51 0.67
26 0.81 09 075 077 075 084 089 0.71 0.8 074 0.88 0091 0.86 0.93 0.89 0.51 0.64
27 0.81 09 075 082 090 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.93 0.89 0.33 0.48
28 0.81 0.9 075 082 090 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.93 0.89 0.37 0.49
29 0.81 09 075 071 075 084 089 0.71 0.8 0.74 0.88 0091 0.86 0.84 0.89 0.16 0.23
30 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.84 0.89 0.15 0.21
31 0.81 09 075 082 090 0.84 0.89 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.51 0.75
32 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.93 0.89 0.76 0.70
33 0.81 09 075 082 090 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.84 0.89 0.51 0.69
34 0.81 09 075 071 0.75 084 0.89 0.71 0.8 0.74 0.88 0.91 0.86 093 0.89 0.51 0.58
35 0.81 09 075 071 090 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.93 0.89 0.37 0.47
36 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.84 0.89 0.39 0.43
37 0.81 09 075 071 0.75 084 0.89 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.51 0.41
38 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.84 0.89 0.39 0.27
39 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.93 0.89 0.28 0.24
40 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.20 0.24
41 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.84 0.89 0.26 0.21
42 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.84 0.89 0.51 0.41
43  0.81 09 075 071 090 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.51 0.47
44 0.81 09 075 071 090 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.51 0.48
45 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.84 0.89 0.51 0.50
46  0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.51 0.52
47  0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.51 0.39
48 0.81 09 075 071 0.75 084 0.89 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.94 0.77
49 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.84 0.89 0.55 0.54
50 0.81 09 075 082 090 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.51 0.55
51 0.81 09 075 071 075 084 089 0.71 0.8 0.74 0.88 0091 0.86 0.93 0.89 0.34 0.52
52 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.93 0.89 0.31 0.40
53 0.81 09 075 082 090 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.93 0.89 0.26 0.29
54 0.81 09 075 071 075 084 089 0.71 0.8 074 0.88 0091 0.86 0.93 0.89 0.24 0.33
55 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.28 0.32
56 0.81 09 075 082 090 0.84 0.89 0.71 0.8 0.74 0.88 0.91 0.86 0.93 0.89 0.51 0.73
57 0.81 09 075 082 090 0.84 0.89 0.71 0.8 0.74 0.88 0091 0.86 0.93 0.89 041 0.59
58 0.81 09 075 082 090 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.51 0.52
59 0.81 09 075 071 0.75 084 0.89 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.51 0.46
60 0.81 09 075 082 075 084 089 0.71 0.8 0.74 0.88 0091 0.86 0.93 0.89 0.29 0.43
61 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0.91 0.86 0.85 0.89 0.51 0.42
62 0.81 09 075 082 090 084 0.89 0.71 0.8 0.74 0.88 0.91 0.86 0.93 0.89 0.33 0.39
63 0.81 09 075 071 075 0.84 089 0.71 0.8 0.74 0.88 0091 0.86 0.85 0.89 0.34 0.30

Table 2: PERTURBED COCOMO 81 DATA SET (ROUNDED TO TwO FRACTIONAL DIGITS)
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