
Validation of Network Measures as Indicators of Defective

Modules in Software Systems
Ayşe Tosun

Department of Computer Engineering,
Boğaziçi University,

Istanbul, Turkey
+90 212 359 7227

ayse.tosun@boun.edu.tr

Burak Turhan
Institute for Information Technology,

National Research Council,
Ottawa, Canada
+1 613 993 7291

Burak.Turhan@nrc-cnrc.gc.ca

Ayşe Bener
Department of Computer Engineering,

Boğaziçi University,
Istanbul, Turkey

+90 212 359 7226

bener@boun.edu.tr

ABSTRACT

In ICSE’08, Zimmermann and Nagappan show that network

measures derived from dependency graphs are able to identify

critical binaries of a complex system that are missed by

complexity metrics. The system used in their analysis is a

Windows product. In this study, we conduct additional

experiments on public data to reproduce and validate their results.

We use complexity and network metrics from five additional

systems. We examine three small scale embedded software and

two versions of Eclipse to compare defect prediction performance

of these metrics. We select two different granularity levels to

perform our experiments: function-level and source file-level. In

our experiments, we observe that network measures are important

indicators of defective modules for large and complex systems,

whereas they do not have significant effects on small scale

projects.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—Complexity measures,

Process metrics. D.4.8 [Performance]: Measurements, Modeling

and Prediction.

General Terms

Experimentation, Measurement, Performance.

Keywords

Code metrics, network metrics, defect prediction, public datasets.

1. INTRODUCTION
As software systems become larger and more complex, the need

for effective guidance in decision making has considerably

increased. Various methods/ tools are used to decrease the time

and effort required for testing the software to produce high quality

products [2, 3, 12]. Recent research in this context shows that

defect predictors provide effective solutions to the software

industry, since they can provide the developers potentially

problematic areas in the software [4, 5, 6, 8]. With such intelligent

oracles, resources spent for testing and bug tracing can be

allocated effectively while preserving quality of the software at

the same time.

Learning-based defect predictors are often built using static code

attributes and the location of defects, both of which are extracted

from completed projects. Static code attributes are widely

accepted by many researchers, since they are easily collected from

various systems using automated tools and they are practical for

the purpose of defect prediction [2, 4, 5, 6, 8, 10, 11, 19].

Although successful defect predictors can be built using static

code attributes, it is observed that their information content is

limited [18]. Therefore, many algorithms suffer from a ceiling

effect in their prediction performances such that they are unable to

improve the defect detection performance using size and

complexity metrics.

There are studies that focus on other factors affecting an overall

software system such as development processes [7], dependencies

[1], code churn metrics [15] or organizational metrics [16].

Results of these studies show that the ability of process related

factors to identify failures in the system is significantly better than

the performance of size and complexity metrics [1, 14, 15]. In a

recent study, Zimmermann and Nagappan also challenged the

limited information content of data in defect prediction [1]. The

authors proposed to use network metrics that measure

dependencies, i.e. interactions, between binaries of Windows

Server 2003. Results of their study show that recall, i.e. detection

rate, is by 10% higher, when network metrics are used to find

defective binaries than code complexity metrics.

In this research, we extend the study of network analysis in order

to reproduce the previous work [1], validate and/or refute its

results using new datasets and further improve the performance of

these metrics in defect prediction by using additional

methodologies. First, we evaluate both code complexity and

network metrics using five additional data sets: three projects

from relatively small scale embedded software of a white-goods

manufacturer and two versions of Eclipse, all of which are

publicly available [20]. We have designed two experimental

setups. One of them is the replication of the previous study that

proposed the significance of network measures in predicting

critical software components [1]. The other one is that, we

propose a learning-based defect prediction model to evaluate and

© 2009 Association for Computing Machinery, Inc. ACM
acknowledges that this contribution was co-authored by an
employee of the National Research Council of Canada (NRC).
As such, the Crown in Right of Canada retains an equal interest
in the copyright. Reprint requests should be forwarded to ACM,
and reprints must include clear attribution to ACM and NRC.
© 2009 ACM 978-1-60558-634-2/09/05/…$10.00

compare with the previous models. To further improve the

prediction performance of the learning based model, we

incorporate a simple weighting framework based on the inter-

module interactions of software systems. In our experiments we

show that network metrics are important indicators of defective

modules in large and complex systems. On the other hand, we

argue that these metrics do not have significant effects on small

scale projects.

We present our study as follows: We start with a discussion on the

related work in Section 2. In Section 3, we explain the data

collection process, our data sources, their complexity metrics,

dependency data as well as the network metrics derived from

these dependencies. Later, we present the results of replication

study using new datasets and describe our defect predictor with its

extension of a simple weighting framework in Section 4 as well as

the results in Section 5. In Section 6, we conclude our study and

discuss future research directions.

2. RELATED WORK
Size and complexity metrics such as static code attributes have

been so far widely used in many defect prediction studies to

predict defective modules of a system [2, 4, 5, 6, 8, 10, 11, 19].

Menzies et al. defines the current status of the research in

empirical software engineering as static due to the fact that many

complex algorithms fail to improve the performance of the defect

predictors [18]. The authors discussed that researchers need to

find new ways to have a better insight on the data used in defect

prediction studies. Improvement on the information content of the

data can be one option rather than applying complex algorithms.

Various researchers focus on critical factors that would capture

additional information about the overall software system [1, 14,

15, 16]. Code churn metrics are used to examine the change in the

code over time [15]. Specific results indicate that these metrics are

able to discriminate failures in the system with an accuracy of 89

percent. However, software data with a version history or code

churn measures are not publicly available for other researchers to

reproduce the results. Recently, process metrics related with the

organizational structure has been integrated into defect prediction

studies to investigate the relationship between human factors,

processes, organizational complexity and defects in the software

[16]. Although these metrics predict failure-proneness in the

software system with significant precision and recall values, it is

often hard to collect such information from open source projects

or from small scale companies. Especially in small scale

organizations, there exists limited number of engineers where the

depth of the organizational structure tree may not provide

remarkable measures about the company [16].

Nagappan and Ball, on the other hand, examined software

dependencies and code churn measures while predicting failures

of Windows Server 2003 [14]. They showed that those metrics are

statistically significant indicators of post-release failures in the

system. Furthermore, Zimmermann and Nagappan extended that

research by comparing network and complexity measures, where

network metrics are derived from the interactions between

binaries of Windows Server 2003 [1]. They used automated tools

to build dependency graphs between binaries and extract network

measures. Their results provide significant conclusions: Network

metrics derived from dependency graphs are able to predict

defects in the system better than the complexity metrics. However,

their results come from only one project (Windows product).

Results may change on different datasets depending on the

underlying system architecture.

On the other hand, transfer of the current experimental knowledge

and generalization of the results is only possible with replication

studies, which is one of the most difficult approaches in empirical

studies [5]. In replication experiments, it is fundamental but not

sufficient to reproduce the previous setting as similar as possible.

Researchers must address new and deeper research questions to

“increase the confidence” of their results and focus on different

factors affecting the final outcome. We have been motivated by

the fact that empirical software engineering is seemed to be less

ideal due to isolated experiments and less generalized results in

the recent research [30]. Thus, our research goals are stated as:

 Analysis of network measures as indicators of defective

modules in different software systems.

 Reproduction of the previous experimental setups which

focus on the relation between network measures and

defect-prone components of a software product [1].

 Challenging these results on five public datasets.

 Improving the outcomes with new factors such as call

graph based weighting framework and learning based

oracles.

3. SOFTWARE DATA & METRICS
Zimmermann and Nagappan employed their studies on Windows

Server 2003 product [1]. To externally validate their results, we

used publicly available datasets from two sources, whose metrics

are collected in different granularity levels. Therefore our results

can easily be repeated and refuted [20]. Furthermore, the data

sources we used contain diversities in terms of the size,

programming language, the domain and the functionality of the

software. Our results will show whether network metrics have

different effects on predicting defective modules in various

software systems.

We have used two public data sources: three small scale

embedded software from a Turkish white goods manufacturer and

two releases of an open source project, Eclipse [20]. We extract

code complexity metrics (Section 3.1), dependency data (Section

3.2) and network metrics (Section 3.3) from these projects. To

further extend the idea of the previous study [1], we apply a

simple weighting framework, i.e. Call Graph Based Ranking

Framework (CGBR) on code complexity and network (Section

4.2). Using CGBR framework, we weight modules based on their

inter-module dependencies.

Data of three small scale projects, namely AR3, AR4 and AR5,

have embedded controller software for white-goods, manufactured

in a local company [20]. Code complexity metrics, collected from

functional methods, and defect data matched with those methods

can be accessed via Promise Repository [20]. In addition, we have

extracted dependency data between functional methods of the

projects to serve the following purposes: a) to collect network

metrics with Ucinet 6 Network Analysis tool [22] as in the study

of [1], b) to weight intra-module complexities, i.e. complexity

metrics, with inter-module dependencies using CGBR framework.

We have used our open-source metrics extraction tool, Prest, to

obtain inter-module dependencies [23]. Prest is able to parse C,

C++, Java, Jsp and PL/ SQL files to extract static code attributes

of the modules (either package, class, file or method level) in any

software system. In addition, it builds static call dependency

matrices between modules, i.e. methods, of a project. Prest can

capture both inter-module and intra-module relations inside a

system.

Second data source contains releases 2.0 and 2.1 (from years 2002

and 2003) of an open source environment, Eclipse [20]. We treat

these releases as two projects and named them as v2_0 and v2_1.

We have used their file-level code complexity metrics from the

Promise Repository [20]. We have combined pre- and post-

release defect contents and matched them with the code metrics.

Furthermore, we have accessed the source codes of v2_0 and

v2_1 from the online web source [21], and built their dependency

matrices using Prest [23]. Since Prest only builds dependencies at

the functional method level, we have first computed method-level

network metrics from two Eclipse projects and then converted

them to source-file level values to match with the file-level

complexity metrics and the defects.

General properties of all projects used in our study can be seen in

Table 1. The sizes of the projects vary between 2732 LOC and

987603 LOC with different defect rates. We have used two

different granularity levels in our data sources such that a module

is a single functional method for the first three projects, whereas it

is a source file for the last two projects. Therefore, the number of

modules represents the number of methods for AR3, AR4 and

AR5, whereas, it is the number of files for v2_0 and v2_1.

Table 1. General properties of datasets

Code

metrics

Network

metrics

Total

LOC
Modules

Defect

Rate

AR3 29 23 5624 63 0.12

AR4 29 23 9196 107 0.18

AR5 29 23 2732 36 0.20

v2_0 198 23 796941 6729 0.013

v2_1 198 23 987603 7888 0.004

3.1 Code Complexity Metrics
We use code complexity metrics in order to provide a baseline for

the performance of our defect prediction model and then, to

compare their results with the network metrics. We select static

code attributes such as McCabe, Halstead and LOC metrics as the

complexity metrics, since they are widely-used, practical and

easily collected through automated tools [10, 11]. Many

researchers accept these attributes as significant indicators of

defective modules in learning-based defect predictors [2, 4, 6, 8,

10, 11, 19]. Therefore, we also assume that static code attributes

provide as much information as possible so far to make accurate

predictions in software systems. A complete list of static code

attributes along with their explanations from [4] can be seen in

Appendix A. Similarly, various complexity metrics are collected

from Eclipse projects by Schröder et al. [24] and average, sum

and maximum values are extracted for each Java file in the

versions 2_0 and 2_1. We have used all of these complexity

metrics in our experiments.

3.2 Dependency Graph
A software dependency shows a directed relation between two

elements of the code, i.e. binaries, files or methods [1]. Different

kinds of dependency exist such as data dependencies, which

observe the declaration and use of data values, and call

dependencies, which observe the declaration and call of the

elements [1]. Dependency graph of a software system is simply a

directed graph, where the nodes are the elements of the software

and the edges are the dependencies, i.e. caller-callee relations,

between these elements. Zimmermann and Nagappan used an

automated tool developed in Microsoft to build the dependency

graph of their Windows binaries [1]. We have tracked dependency

information with our metrics extraction tool, Prest [23], and

stored this data as an NxN matrix which contains static caller-

callee relations between methods of the projects.

3.3 Network Metrics
We have worked with Ucinet 6 tool [22] to extract Ego and

Global Network Metrics both of which are called as network

metrics. While ego metrics measure the importance of the

modules within the local neighborhood, global metrics measures

the importance of the modules within the entire system [1]. A

complete list of network metrics is provided in Appendix B. We

have extracted network metrics based on the dependencies

between C methods in three embedded software systems and

between Java files in two Eclipse projects.

4. EXPERIMENTS
We conducted two types of experiments in order to a) reproduce

and evaluate the performance of network metrics by using new

datasets, and, b) improve the prediction performance of the

predictor using a Naïve Bayes model incorporated with Call

Graph Based Ranking (CGBR) Framework. Both experiments

have different experimental designs such that they are individually

described in their subsections. However, a typical and common

confusion matrix is preferred (Table 2) to assess the performance

of this empirical study [25]. From the confusion matrix, all

performance measures are computed as follows:

Table 2. Typical confusion matrix

Actual Predicted

 Defective Defect-free

Defective A B

Defect-free C D

pd (recall) = B) (A A / 

precision = C) (A A / 

pf = D) (CC/ 

bal = 2)1()0(1 22 pdpf 

In the previous study, authors computed recall and precision

measures from this matrix [1]. Both precision and recall should be

close to 1 so that the model does not produce false negatives or

false positives. Precision measures the percentage of defective

modules that are classified correctly, over the modules that are

predicted as defective. Recall, on the other hand, is the same as

probability of detection (pd). Pd measures how good our predictor

is in finding actual defective modules.

Instead of precision, we have measured probability of false alarm

rates (pf) in our previous studies [2, 8, 18, 19]. Pf measures the

false alarms of the predictor, when it classifies defect-free

modules as defective. We have computed pf to measure additional

costs our predictors would cause. Predicting actual defective

modules is the prior action in such oracles. However, increasing

pd or precision would cause additional false alarms, which means

we unnecessarily highlight safe regions in the software and waste

significant amount of time and effort. Therefore, one of our aims

during calibrating this predictor model should be decreasing this

pf rate, while keeping high pd rates and high precision rates. We

used all three measures in this study to make a comprehensive

comparison of our work with the previous study.

In the ideal case, we expect from a predictor to catch maximum

number of defective modules (ideally pd = 1, precision = 1).

Moreover, it should give minimum false alarms by misclassifying

actual defect-free modules as defective (ideally pf = 0). Finally, to

measure how close our estimates are to the ideal case, we use

balance measure. The ideal case is very rare, since the predictor is

activated more often in order to get higher probability of detection

rates [4]. This, in turn, leads to higher false alarm rates. Thus, we

need to achieve a prediction performance which is as near to (1, 1,

0) in terms of (precision, pd, pf) rates as possible.

4.1 Replication: Logistic Regression with

PCA
In the replication part, we used the same algorithms used by

Zimmermann and Nagappan: logistic regression and linear

regression models. Linear regression and correlation analysis

show that network metrics such as Fragmentation and

dwOutReach are positively correlated with defects in software

systems. However, we have only displayed the results of logistic

regression, since it produces likelihood probabilities instead of R-

square measures of linear model. Thus, its prediction performance

can be easily illustrated via recall and precision measures. Similar

to Zimmermann and Nagappan, we have applied Principal

Components Analysis to overcome the problem of inter-

correlations among metrics [1]. We selected principal components

whose cumulative variance is above 95 percent.

In the experimental design, we have separated two thirds of each

dataset as training and the rest as testing sets. After 50 random

splits, recall (pd), precision, pf and balance (bal) measures in

percent, using only complexity metrics (CM), only network

metrics (NM) and both of them (ALL), can be seen in Table 3.

We took the average of 50 random iterations and represented in

percent. We can interpret the results in Table 3 as follows:

 Network metrics are not significant indicators of

defective modules in small-scale projects, predicting

around 30% of defective modules in AR3, AR4 and

AR5, whereas they compete with the complexity metrics

in Eclipse versions, around 70% detection rates.

 Therefore, as opposed to the findings in the previous

study [1], the performance of network metrics in defect

prediction changes with respect to size and complexity

of software systems.

 Although the performance of logistic regression in v2_0

and v2_1 are quite satisfactory in terms of pd, pf and

bal, it could not go beyond 40% prediction accuracy in

three embedded software.

 One threat to internal validity of these results could be

the algorithm. Logistic regression may fail to fit on

embedded software data. Therefore, we have decided to

reproduce those experiments with a learning based

model.

Table 3. Results (%) of the logistic regression with PCA

 pd precision pf bal

AR3 CM 37 30 10 55

 NM 26 34 10 47

 ALL 34 33 10 53

AR4 CM 61 46 12 71

 NM 19 5 18 41

 ALL 45 47 12 60

AR5 CM 44 48 15 59

 NM 51 60 12 64

 ALL 49 62 12 63

avg CM 47 41 12 62

 NM 32 33 14 51

 ALL 43 47 12 59

v2_0 CM 69 56 19 74

 NM 70 61 23 73

 ALL 70 59 19 75

v2_1 CM 68 44 9 76

 NM 69 56 19 73

 ALL 69 49 14 76

avg CM 69 50 14 75

 NM 70 59 21 73

 ALL 70 54 16 76

4.2 Extension: Naïve Bayes Predictor Using

CGBR (Our Proposed Model)
To observe different factors that may affect the prediction

performance; we have focused on increasing the information

content using additional metrics extracted from dependencies.

Moreover, we have used Naïve Bayes classifier, since recent study

shows that learning-based defect predictors with a Naïve Bayes

classifier outperform other machine learning methods with an

average (71%, 25%) in terms of (pd, pf) [4]. One of the reasons

for the success of Naïve Bayes algorithm is that it manages to

combine signals coming from multiple attributes [2, 4]. It simply

uses attribute likelihoods derived from historical data to make

predictions for the modules of a software system [4, 25].

As the inputs to the model, we have collected complexity and

network metrics together with the actual defect information from

five software systems. Since complexity metrics are highly

skewed and Naïve Bayes assumes Gaussian distribution of data,

we have log-filtered all metrics before applying the model on the

datasets [4]. Our model outputs a posterior probability indicating

whether a module, either a method or a file depending on the data

source, is defect-prone or not.

We have incorporated a Call Graph Based Ranking Framework to

our prediction model before the metrics are fed into the system.

This framework adjusts the data by multiplying each module with

a rank derived from call dependency matrices. Our previous work

on CGBR Framework shows that inter-module call dependencies

adjust the complexity metrics significantly so that the defect

prediction model produces fewer false alarms [26]. The essential

algorithm of the CGBR framework is explained in subsection

4.2.1 in detail.

In our experimental design, we have kept one project as the test

set and used random sampling to select 90 percent of the other

projects in the same data source to form the training set. We have

repeated this procedure 100 times for five projects to overcome

the ordering effects [17, 25]. Then, we have presented the

performance measures of the experiments after

(100 randomize orderings for the training set) x (5 projects) =

500 iterations.

4.2.1 Call Graph Based Ranking Framework
We have collected static caller - callee relations as dependency

data to weight modules based on their interactions. In the

previous research, Kocak et al. [26] and Turhan et al. [27] used

these call dependencies to increase the information content of the

static code attributes. These calls are represented as 1’s or 0’s in a

matrix, depending on which module calls the others or is called by

the other modules. Since these call dependencies represent

structural complexities, they succeeded to build a model that not

only use intra-module complexities derived from complexity

metrics, but also inter-module complexities. Their results show

the effectiveness of dependencies on adjusting static code

attributes by taking into account the structural complexity of

projects.

We have added the CGBR framework to our model in order to

further quantify the effects of dependencies on complexity and

network metrics. An overview of our defect prediction model with

a schema representing the flow can be seen in Figure 1. On the

left side of the schema, Naïve Bayes classifier is applied to log-

filtered data which is adjusted with CGBR weights. To calculate

these weights for each module of the software, we have composed

an NxN matrix, M, where rows represent all modules that call

others and columns represent modules that are called by the

others. After constructing call dependency matrices, we have

utilized a web link based paging algorithm, PageRank, to

calculate ranks, i.e. weights, for the modules of all projects [28].

The basic flow for producing CGBR values is illustrated in Figure

2. Inspired from the web page ranking algorithms, we have treated

each interaction between modules as a hyperlink from one page to

another. We have assigned equal ranks to the modules of a project

and iteratively increased module ranks using PageRank algorithm.

After achieving CGBR values, we have normalized these values

into the range between 0.1 and 1.0. Finally, we have adjusted

complexity and network metrics by multiplying the metrics of

each module with its corresponding rank value. In order to assign

optimum CGBR ranks to the modules, we have iterated our

PageRank algorithm 40 times until it converges.

Figure 1. An overview of the proposed model (Section 4.2)

Figure 2. Producing CGBR values (Section 4.2.1)

5. RESULTS
The results of our experiments on three local projects and two

Eclipse releases are presented in Table 4 and Table 5 respectively.

Tables include five consequent experiments completed with

complexity metrics (CM), network metrics (NM) and combination

of them (ALL). We have conducted our experiments twice by

adjusting the metrics with CGBR and without CGBR framework

for two different data sources. First, we have measured the

performance of our model using only complexity metrics. Then,

we have adjusted these metrics with CGBR values to see the

effects of using inter-module interactions. After setting the

baseline with complexity metrics, we have used the same

procedure for network metrics alone to observe their defect

detection performance. Finally, we applied CGBR framework

onto all metrics and evaluated the performance.

Table 4 shows that complexity metrics (CM) adjusted with CGBR

framework increases pd slightly, whereas it increases precision

significantly when compared to CM alone. On the other hand, the

adjustment with CGBR significantly decreases false alarm rates

for the local projects. When we observe the experiments done

with network metrics (NM), it is clearly seen that using NM

dramatically decreases detection rates, including precision, and

increases false alarms. Therefore, network metrics in small scale

projects could not provide significant information about the defect

contents as in the case of complexity metrics.

Table 4. Performance measures (%) for small projects

 CM
CM+

CGBR
NM

CM+

NM

ALL+

CGBR

AR3

pd 86 88 13 87 86

precision 67 73 27 69 67

pf 42 33 35 40 43

bal 69 75 34 70 68

AR4

pd 50 55 55 55 50

precision 74 85 47 79 67

pf 18 10 62 15 25

bal 62 67 46 66 60

AR5

pd 100 88 50 100 50

precision 78 83 52 78 78

pf 29 18 47 29 14

bal 79 85 51 79 63

Avg

pd 79 77 39 80 66

precision 72 79 45 74 71

pf 30 20 48 28 27

bal 74 78 45 76 69

Table 5. Performance measures (%) for large systems

 CM
CM+

CGBR
NM

CM+

NM

ALL+

CGBR

V2_0

pd 70 65 61 68 67

precision 66 65 64 66 68

pf 36 35 35 35 32

bal 67 65 63 66 67

V2_1

pd 81 82 79 82 82

precision 63 64 56 63 64

pf 48 47 62 48 47

bal 63 64 54 64 64

Avg

pd 76 74 70 75 75

precision 64 64 59 64 65

pf 42 41 49 42 40

bal 66 66 59 65 67

The results in Table 5 show similar performances using

complexity or network metrics. One of them is not significantly

better than the other and they reach, on the average 70% to 76%

detection rates. Moreover when we use both metrics adjusted with

CGBR framework, we would further improve the prediction

performance for Eclipse data. Therefore, we can conclude that

network metrics are also successful indicators of defective

modules as the complexity metrics in large and complex systems.

In summary, we have analyzed the effect of network metrics on

defect proneness in different software systems. We have

challenged the fact that network measures produce better pd rates

than complexity measures in predicting defective modules.

Finally, we have reached two different conclusions: a) Complexity

metrics adjusted with CGBR framework are effective indicators of

defective modules in small projects with (77, 79, 20, 78) in terms

of (pd, precision, pf, bal), compared to (39, 45, 48, 35) using

network metrics. b) Network metrics produces similar results in

large and complex systems, i.e., (70, 59, 49, 59), when compared

to (76, 64, 42, 66) using complexity metrics alone in terms of (pd,

pf, bal). These results support our claim that improving

information content using intra-module dependencies would also

improve the prediction performance of defect predictors.

Moreover, we have accomplished that network metrics would

have different effects on defect proneness in different software

systems: Larger and more complex systems tend to have

significant relationship between intra-module dependencies and

defects compared to small-scale projects.

5.1 Threats to Validity
One threat to validity of our results can be the level of the

granularity that is different in two data sources. We have

performed our experiments in two different data sources whose

metrics are available at function and file levels. Therefore, when

network metrics are collected at function-level, one cannot clearly

claim that network metrics are effective indicators of defective

modules in large and complex systems. To avoid such threat, we

need to enrich our software data repositories to replicate this study

with different size of projects on various granularity levels,

separately. Another threat to validity can be the type of defect

data, i.e. pre-release vs. post-release that is used interchangeably

during the experiments. Small projects have only pre-release test

defects, whereas Eclipse projects consist of all defect sets. We are

aware of the fact that correlation between post-release defects and

the network measures should present different conclusions in

contrast to the correlation between pre-release defects and the

network metrics. Therefore, we need to focus on the correlation

between pre-release and post-release defects while conducting

future experiments.

6. CONCLUSION & FUTURE WORK
In this research, we have carried out an empirical evaluation of

network metrics by taking the study of Zimmermann and

Nagappan [1] as the baseline. We have measured the effects of

network metrics on defect prediction performance. For this, we

have collected code complexity metrics, dependency data and

network metrics from two public data sources: a white-goods

manufacturer located in Turkey and an open source environment.

To extend the previous study, we have incorporated a simple

weighting framework (CGBR) that measures inter-module

complexities.

Previous research indicates that network metrics are effective

indicators of critical binaries in a Windows product and their

prediction performance is 10% higher than complexity metrics

[1]. We reproduced this study using the same experimental design

and extending it with new methodologies. Both replication

experiments and our results reveal that network metrics are

significant indicators of defective modules in large and complex

systems. On the other hand, they do not provide significant effect

on small scale projects.

In empirical studies, we cannot assume that the results present a

general trend beyond the environments and the systems software

data is gathered [14]. It would be more confident to support our

claims when we observe similar behaviors in different

applications. We try to extend the data sources by adding different

projects with varying characteristics to support our claims with

higher confidence. Furthermore, it is one of our future research

directions to expand this public test-bed with additional projects

from a large and complex system taken from a local GSM

company. Currently, static code attributes of various projects from

this GSM company are publicly available in the Promise

Repository [20]. However, network metrics should be separately

extracted to validate the performance of network metrics on new

large-scale projects.

7. ACKNOWLEDGMENT
This research is partly supported by Turkish Scientific Research

Council, TUBITAK, under grant number EEEAG108E014, and

Bogazici University under grant number DPT 2007K120610

TAM.

8. APPENDIX A: Static Code Attributes
The list of static code attributes with their definitions can be seen

in Table A.1 [4].

Table A1. Static code attributes

Name Description

Branch Count Number of branches in a given

module.

Operators Total number of operators

found in a module.

Operands Total number of operands found

in a module.

Unique Operators

Number of unique operators

found in a module.

Unique Operands

Number of unique operands

found in a module.

Executable of Lines of

Code

Source lines of code that

contain only code and white

space.

Lines of Comment Source lines of code that are

purely comments

Lines of Code and

Comment

Lines that contain both code

and comment.

Blank Lines Lines with only white space.

Lines of Code Total number of lines in a

module.

Halstead Vocabulary n = number of unique

operands+number of unique

operators

Halstead Length N =operands + operators

Halstead Volume V = N*log(n)

Halstead Level L = V*/V

Halstead Difficulty D = 1/L

Halstead Programming

Effort

E = V / L

Halstead Error Estimate B = V / S

Halstead Programming

Time

T = E / 18

Cyclomatic Complexity -

V(g)

V(g) = edge count - node count

+ 2*num. unconnected parts in

g

Cyclomatic Density -

Vd(g)

V(g) / executable lines of code

Decision Density - Dd(g) condition count / decision count

Module Design

Complexity - Iv(g)

Iv(g) = call pairs

Design Density - Id(g) Id(g) = Iv(g) / V(g)

Normalized Cyc. Comp. -

NormV(g)

Norm V(g) = V(g) / lines of

code

Call Pairs Number of calls to other

functions in a module.

Condition Count Number of conditionals in a

given module.

Decision Count Number of decision points in a

given module.

Edge Count Number of edges found in a

given module.

Formal Parameter Count Number of parameters to a

given module.

9. APPENDIX B: Network Metrics
Network metrics described below are collected from dependency

graphs using Ucinet 6 tool [22].

Table B1. Network metrics from [1,27]

Name Description

Size
The size of the ego network is the

number of nodes.

Ties
The number of directed ties

corresponds to the number of edges.

Pairs

The number of ordered pairs is the

maximal number of directed ties,

i.e. Size x (Size-1).

Density
The percentage of possible ties that

are actually present, i.e. Ties/Pairs.

WeakComp

The number of weak components

(=sets of connected modules) in

neighborhood.

n WeakComp

The number of weak components

normalized by size, i.e.,

WeakComp/Size.

TwoStepReach
The percentage of nodes that are

two steps away.

ReachEfficiency

The reach efficiency normalizes

TwoStepReach by size, i.e.,

TwoStepReach/Size. High reach

efficiency indicates that ego’s

primary contacts are influential in

the network.

Brokerage The number of pairs not directly

connected. The higher this number,

the more paths go through ego, i.e.,

ego acts as a “broker” in its

network.

nBrokerage

The Brokerage normalized by the

number of pairs, i.e.,

Brokerage/Pairs.

EgoBetween

The percentage of shortest paths

btw neighbors that pass through

ego.

nEgoBetween
The Betweenness normalized by the

size of the ego network.

EffSize

The effsize is the number of modules

that are connected to a module X

minus the average number of ties

between these modules.

Efficiency

Efficiency norms the effective size of

a network to the total size of the

network.

Constraint

Constraint measures how strongly a

module is constrained by its

neighbors. The idea is that

neighbors that are connected to

other neighbors can constrain a

module.

Hierarchy

Hierarchy measures how the

constraint measure is distributed

across neighbors.

Eigenvector

Eigenvector centrality is similar to

Google’s PageRank value; it

assigns relative scores to all

modules in the dependency graphs.

Fragmentation
Proportion of mutually reachable

nodes

Betweenness

Betweenness centrality measures

for a module on how many shortest

paths between other modules it

occurs.

Information

Information centrality is the

harmonic mean of the length of

paths ending at a module.

Power
Power based on the notion of

"dependency."

Closeness (in/out)

Closeness is the sum of the lengths

of the shortest (geodesic) paths

from a module (or to a module)

from all other modules.

Degree
The degree measures the number of

dependencies for a module.

dwReach (int/out)

dwReach is the number of modules

that can be reached from a module

(or which can reach a module).

10. REFERENCES
[1] Zimmermann, T. and Nagappan, N. 2008. Predicting Defect

Using Network Analysis on Dependency Graphs. In Proceedings

of the International Conference on Software Engineering

(ICSE’08), Leipzig, Germany, 531-540.

[2] Tosun, A., Turhan, B. and Bener, A. 2008. Ensemble of

Software Defect Predictors: A Case Study. In Proceedings of the

International Conference on Empirical Software Engineering and

Measurement (ESEM), Keiserslautern, Germany, 318-320.

[3] Adrion, R.W., Branstad, A.M. and Cherniavsky, C.J. 1982.

Validation, Verification and Testing of Computer Software. ACM

Computing Surveys, June 1982, Vol. 14, No. 2, 159-192.

[4] Menzies, T., Greenwald, J. and Frank, A. 2007. Data Mining

Static Code Attributes to Learn Defect Predictors. IEEE

Transactions on Software Engineering, January 2007, Vol. 33,

No. 1, 2-13.

[5] Mendonca, M.G., Maldonado, J.C., De Oliveira, M.C.F.,

Carver, J., Fabbri, S.C.P.F., Shull, F., Travassos, G.H., Hohn,

E.N. and Basili, V.R. 2008. A Framework for Software

Engineering Experimental Replications. 13th IEEE International

Conference on Engineering of Complex Computer Systems

(ICECCS 2008), 203-212.

[6] Challagula, U.B.V., Bastani, B.F., Yen, L. and Paul, A.R.

2005. Empirical Assessment of Machine Learning based Software

Defect Prediction Techniques. In Proceedings of the 10th IEEE

International Workshop on Object-Oriented Real Time

Dependable Systems, Sedona, USA, 2-4 February 2005, 263-270.

[7] Fenton, E.N. and Neil, M. 1999. A Critique of Software

Defect Prediction Models. IEEE Transactions on Software

Engineering, September/October 1999, Vol. 25, No. 5, 675-689.

[8] Turhan, B. and Bener, A. 2009. Analysis of Naive Bayes'

Assumptions on Software Fault Data: An Empirical Study. Data

and Knowledge Engineering Journal, Vol. 68, No. 2, 78-290.

[9] Ostrand, T. J., Weyuker, E. J. and Bell, R. M. 2005. Predicting

the Location and Number of Faults in Large Software Systems.

IEEE Transactions on Software Engineering, April 2005, Vol. 31,

No. 4, 340-355.

[10] Halstead, M.H. 1977. Elements of Software Science,

Elsevier, New York.

[11] McCabe, T. 1976. A Complexity Measure. IEEE

Transactions on Software Engineering, Vol.2, No.4, 308-320.

[12] Fagan, M. 1976. Design and Code Inspections to Reduce

Errors in Program Development. IBM Systems Journal, Vol. 15,

No. 3, 182-211.

[13] Nagappan, N. and Ball, T. 2005. Static Analysis Tools as

Early Indicators of Pre-Release Defect Density. In Proceedings of

the International Conference on Software Engineering (ICSE), St.

Louise, USA, 580-586.

[14] Nagappan, N. and Ball, T. 2007. Using Software

Dependencies and Churn Metrics to Predict Field Failures: An

Empirical Case Study. In Proceedings of the First International

Symposium on Empirical Software Engineering and Measurement

(ESEM), Madrid, Spain, 364-373.

[15] Nagappan, N. and Ball, T. 2005. Use of Relative Code Churn

Measures to Predict System Defect Density. In Proceedings of the

International Conference on Software Engineering (ICSE),

St.Louis, USA, 284-292.

[16] Nagappan, N., Murphy, B. and Basili, V.R. 2008. The

Influence of Organizational Structure on Software Quality: An

Empirical Case Study. In Proceedings of the International

Conference on Software Engineering (ICSE), Leipzig, Germany,

521-530.

[17] Hall, M. and Holmes, G. 2003. Benchmarking Attribute

Selection Techniques for Discrete Class Data Mining. IEEE

Transactions on Knowledge and Data Engineering, Vol. 15, No.

6, 1437-1447.

[18] Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B. and

Jiang, Y. 2008. Implications of Ceiling Effects in Defect

Predictors. In Promise Workshop (part of the 30th International

Conference on Software Engineering), Germany, 47-54.

[19] Turhan, B., Menzies, T., Bener, A., Distefano, J. 2008. On

the Relative Value of Cross-company and Within-Company Data

for Defect Prediction. accepted for publication in Empirical

Software Engineering Journal, DOI: 10.1007/s10664-008-9103-7.

[20] Boetticher, G., Menzies, T. and Ostrand, T. 2007. PROMISE

Repository of empirical software engineering data

http://promisedata.org/ repository, West Virginia University,

Department of Computer Science.

[21] Eclipse project archived downloads page:

http://archive.eclipse.org/eclipse/downloads

[22] Ucinet tool download page:

http://www.analytictech.com/ucinet/ucinet.htm.

[23] Prest. 2009. Department of Computer Engineering, Bogazici

University, http://code.google.com/p/prest/.

[24] Schröder, A., Zimmermann, T., Premraj, R. and Zeller, A.

2006. If Your Bug Database Could Talk… In Proceedings of the

International Symposium on Empirical Software Engineering

(ISESE), Brazil, 18-20.

[25] Alpaydin, E. 2004. Introduction to Machine Learning, MIT

Press, Massachusetts.

[26] Turhan, B., Bener, A. and Kocak, G. 2008. Data Mining

Source Code for Locating Software Bugs: A Case Study in

Telecommunication Industry. accepted for publication in Expert

Systems with Applications Journal, DOI:

10.1016/j.eswa.2008.12.028.

[27] Kocak, G. 2008. Software Defect Prediction Using Call

Graph Based Ranking (CGBR) Framework. MS Thesis, Boğaziçi

University, Turkey.

[28] Brin, S. and Page, L. 1998. The anatomy of a large-scale

hypertextual search engine. Computer Networks and ISDN

Systems, 107-117.

[29] Heeger, D. 1998. Signal Detection Theory.

http://www.cns.nyu.edu/~david/handouts/sdt/sdt.html.

[30] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones,

P.W., Hoaglin, D.C., El Emam, K., and Rosenberg, J. 2002.

Preliminary guidelines for empirical research in software

engineering. IEEE Transactions on Software Engineering, Vol.

28, No. 8, 721-734.

	Welcome
	Program
	Committees
	Author Index
	Repository
	Search

