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ABSTRACT 

In ICSE’08, Zimmermann and Nagappan show that network 

measures derived from dependency graphs are able to identify 

critical binaries of a complex system that are missed by 

complexity metrics. The system used in their analysis is a 

Windows product. In this study, we conduct additional 

experiments on public data to reproduce and validate their results. 

We use complexity and network metrics from five additional 

systems. We examine three small scale embedded software and 

two versions of Eclipse to compare defect prediction performance 

of these metrics. We select two different granularity levels to 

perform our experiments: function-level and source file-level. In 

our experiments, we observe that network measures are important 

indicators of defective modules for large and complex systems, 

whereas they do not have significant effects on small scale 

projects.   

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Metrics—Complexity measures, 

Process metrics. D.4.8  [Performance]: Measurements, Modeling 

and Prediction.  

General Terms 

Experimentation, Measurement, Performance. 

Keywords 

Code metrics, network metrics, defect prediction, public datasets. 

1. INTRODUCTION 
As software systems become larger and more complex, the need 

for effective guidance in decision making has considerably 

increased. Various methods/ tools are used to decrease the time 

and effort required for testing the software to produce high quality 

products [2, 3, 12]. Recent research in this context shows that 

defect predictors provide effective solutions to the software 

industry, since they can provide the developers potentially 

problematic areas in the software [4, 5, 6, 8]. With such intelligent 

oracles, resources spent for testing and bug tracing can be 

allocated effectively while preserving quality of the software at 

the same time.  

Learning-based defect predictors are often built using static code 

attributes and the location of defects, both of which are extracted 

from completed projects. Static code attributes are widely 

accepted by many researchers, since they are easily collected from 

various systems using automated tools and they are practical for 

the purpose of defect prediction [2, 4, 5, 6, 8, 10, 11, 19]. 

Although successful defect predictors can be built using static 

code attributes, it is observed that their information content is 

limited [18]. Therefore, many algorithms suffer from a ceiling 

effect in their prediction performances such that they are unable to 

improve the defect detection performance using size and 

complexity metrics. 

There are studies that focus on other factors affecting an overall 

software system such as development processes [7], dependencies 

[1], code churn metrics [15] or organizational metrics [16]. 

Results of these studies show that the ability of process related 

factors to identify failures in the system is significantly better than 

the performance of size and complexity metrics [1, 14, 15]. In a 

recent study, Zimmermann and Nagappan also challenged the 

limited information content of data in defect prediction [1]. The 

authors proposed to use network metrics that measure 

dependencies, i.e. interactions, between binaries of Windows 

Server 2003. Results of their study show that recall, i.e. detection 

rate, is by 10% higher, when network metrics are used to find 

defective binaries than code complexity metrics.  

In this research, we extend the study of network analysis in order 

to reproduce the previous work [1], validate and/or refute its 

results using new datasets and further improve the performance of 

these metrics in defect prediction by using additional 

methodologies. First, we evaluate both code complexity and 

network metrics using five additional data sets: three projects 

from relatively small scale embedded software of a white-goods 

manufacturer and two versions of Eclipse, all of which are 

publicly available [20]. We have designed two experimental 

setups. One of them is the replication of the previous study that 

proposed the significance of network measures in predicting 

critical software components [1]. The other one is that, we 

propose a learning-based defect prediction model to evaluate and 
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compare with the previous models. To further improve the 

prediction performance of the learning based model, we 

incorporate a simple weighting framework based on the inter-

module interactions of software systems. In our experiments we 

show that network metrics are important indicators of defective 

modules in large and complex systems. On the other hand, we 

argue that these metrics do not have significant effects on small 

scale projects. 

We present our study as follows: We start with a discussion on the 

related work in Section 2. In Section 3, we explain the data 

collection process, our data sources, their complexity metrics, 

dependency data as well as the network metrics derived from 

these dependencies. Later, we present the results of replication 

study using new datasets and describe our defect predictor with its 

extension of a simple weighting framework in Section 4 as well as 

the results in Section 5. In Section 6, we conclude our study and 

discuss future research directions. 

2. RELATED WORK 
Size and complexity metrics such as static code attributes have 

been so far widely used in many defect prediction studies to 

predict defective modules of a system [2, 4, 5, 6, 8, 10, 11, 19]. 

Menzies et al. defines the current status of the research in 

empirical software engineering as static due to the fact that many 

complex algorithms fail to improve the performance of the defect 

predictors [18]. The authors discussed that researchers need to 

find new ways to have a better insight on the data used in defect 

prediction studies. Improvement on the information content of the 

data can be one option rather than applying complex algorithms.  

Various researchers focus on critical factors that would capture 

additional information about the overall software system [1, 14, 

15, 16]. Code churn metrics are used to examine the change in the 

code over time [15]. Specific results indicate that these metrics are 

able to discriminate failures in the system with an accuracy of 89 

percent. However, software data with a version history or code 

churn measures are not publicly available for other researchers to 

reproduce the results. Recently, process metrics related with the 

organizational structure has been integrated into defect prediction 

studies to investigate the relationship between human factors, 

processes, organizational complexity and defects in the software 

[16]. Although these metrics predict failure-proneness in the 

software system with significant precision and recall values, it is 

often hard to collect such information from open source projects 

or from small scale companies. Especially in small scale 

organizations, there exists limited number of engineers where the 

depth of the organizational structure tree may not provide 

remarkable measures about the company [16].  

Nagappan and Ball, on the other hand, examined software 

dependencies and code churn measures while predicting failures 

of Windows Server 2003 [14]. They showed that those metrics are 

statistically significant indicators of post-release failures in the 

system. Furthermore, Zimmermann and Nagappan extended that 

research by comparing network and complexity measures, where 

network metrics are derived from the interactions between 

binaries of Windows Server 2003 [1]. They used automated tools 

to build dependency graphs between binaries and extract network 

measures. Their results provide significant conclusions: Network 

metrics derived from dependency graphs are able to predict 

defects in the system better than the complexity metrics. However, 

their results come from only one project (Windows product). 

Results may change on different datasets depending on the 

underlying system architecture. 

On the other hand, transfer of the current experimental knowledge 

and generalization of the results is only possible with replication 

studies, which is one of the most difficult approaches in empirical 

studies [5]. In replication experiments, it is fundamental but not 

sufficient to reproduce the previous setting as similar as possible. 

Researchers must address new and deeper research questions to 

“increase the confidence” of their results and focus on different 

factors affecting the final outcome.  We have been motivated by 

the fact that empirical software engineering is seemed to be less 

ideal due to isolated experiments and less generalized results in 

the recent research [30]. Thus, our research goals are stated as: 

 Analysis of network measures as indicators of defective 

modules in different software systems. 

 Reproduction of the previous experimental setups which 

focus on the relation between network measures and 

defect-prone components of a software product [1]. 

 Challenging these results on five public datasets. 

 Improving the outcomes with new factors such as call 

graph based weighting framework and learning based 

oracles.  

3. SOFTWARE DATA & METRICS 
Zimmermann and Nagappan employed their studies on Windows 

Server 2003 product [1]. To externally validate their results, we 

used publicly available datasets from two sources, whose metrics 

are collected in different granularity levels. Therefore our results 

can easily be repeated and refuted [20].  Furthermore, the data 

sources we used contain diversities in terms of the size, 

programming language, the domain and the functionality of the 

software. Our results will show whether network metrics have 

different effects on predicting defective modules in various 

software systems.  

We have used two public data sources: three small scale 

embedded software from a Turkish white goods manufacturer and 

two releases of an open source project, Eclipse [20]. We extract 

code complexity metrics (Section 3.1), dependency data (Section 

3.2) and network metrics (Section 3.3) from these projects. To 

further extend the idea of the previous study [1], we apply a 

simple weighting framework, i.e. Call Graph Based Ranking 

Framework (CGBR) on code complexity and network (Section 

4.2). Using CGBR framework, we weight modules based on their 

inter-module dependencies. 

Data of three small scale projects, namely AR3, AR4 and AR5, 

have embedded controller software for white-goods, manufactured 

in a local company [20]. Code complexity metrics, collected from 

functional methods, and defect data matched with those methods 

can be accessed via Promise Repository [20]. In addition, we have 

extracted dependency data between functional methods of the 

projects to serve the following purposes: a) to collect network 

metrics with Ucinet 6 Network Analysis tool [22] as in the study 

of [1], b) to weight intra-module complexities, i.e. complexity 

metrics, with inter-module dependencies using CGBR framework. 

We have used our open-source metrics extraction tool, Prest, to 



obtain inter-module dependencies [23]. Prest is able to parse C, 

C++, Java, Jsp and PL/ SQL files to extract static code attributes 

of the modules (either package, class, file or method level) in any 

software system. In addition, it builds static call dependency 

matrices between modules, i.e. methods, of a project. Prest can 

capture both inter-module and intra-module relations inside a 

system. 

Second data source contains releases 2.0 and 2.1 (from years 2002 

and 2003) of an open source environment, Eclipse [20]. We treat 

these releases as two projects and named them as v2_0 and v2_1. 

We have used their file-level code complexity metrics from the 

Promise Repository [20]. We have combined pre- and post- 

release defect contents and matched them with the code metrics. 

Furthermore, we have accessed the source codes of v2_0 and 

v2_1 from the online web source [21], and built their dependency 

matrices using Prest [23]. Since Prest only builds dependencies at 

the functional method level, we have first computed method-level 

network metrics from two Eclipse projects and then converted 

them to source-file level values to match with the file-level 

complexity metrics and the defects.   

General properties of all projects used in our study can be seen in 

Table 1. The sizes of the projects vary between 2732 LOC and 

987603 LOC with different defect rates. We have used two 

different granularity levels in our data sources such that a module 

is a single functional method for the first three projects, whereas it 

is a source file for the last two projects. Therefore, the number of 

modules represents the number of methods for AR3, AR4 and 

AR5, whereas, it is the number of files for v2_0 and v2_1.  

 

Table 1. General properties of datasets 

 
Code 

metrics 

Network 

metrics 

Total 

LOC 
Modules 

Defect 

Rate 

AR3 29 23 5624 63 0.12 

AR4 29 23 9196 107 0.18 

AR5 29 23 2732 36 0.20 

v2_0 198 23 796941 6729 0.013 

v2_1 198 23 987603 7888 0.004 

 

3.1 Code Complexity Metrics 
We use code complexity metrics in order to provide a baseline for 

the performance of our defect prediction model and then, to 

compare their results with the network metrics. We select static 

code attributes such as McCabe, Halstead and LOC metrics as the 

complexity metrics, since they are widely-used, practical and 

easily collected through automated tools [10, 11]. Many 

researchers accept these attributes as significant indicators of 

defective modules in learning-based defect predictors [2, 4, 6, 8, 

10, 11, 19]. Therefore, we also assume that static code attributes 

provide as much information as possible so far to make accurate 

predictions in software systems. A complete list of static code 

attributes along with their explanations from [4] can be seen in 

Appendix A. Similarly, various complexity metrics are collected 

from Eclipse projects by Schröder et al. [24] and average, sum 

and maximum values are extracted for each Java file in the 

versions 2_0 and 2_1. We have used all of these complexity 

metrics in our experiments. 

3.2 Dependency Graph 
A software dependency shows a directed relation between two 

elements of the code, i.e. binaries, files or methods [1]. Different 

kinds of dependency exist such as data dependencies, which 

observe the declaration and use of data values, and call 

dependencies, which observe the declaration and call of the 

elements [1]. Dependency graph of a software system is simply a 

directed graph, where the nodes are the elements of the software 

and the edges are the dependencies, i.e. caller-callee relations, 

between these elements. Zimmermann and Nagappan used an 

automated tool developed in Microsoft to build the dependency 

graph of their Windows binaries [1]. We have tracked dependency 

information with our metrics extraction tool, Prest [23], and 

stored this data as an NxN matrix which contains static caller-

callee relations between methods of the projects.  

3.3 Network Metrics 
We have worked with Ucinet 6 tool [22] to extract Ego and 

Global Network Metrics both of which are called as network 

metrics. While ego metrics measure the importance of the 

modules within the local neighborhood, global metrics measures 

the importance of the modules within the entire system [1]. A 

complete list of network metrics is provided in Appendix B. We 

have extracted network metrics based on the dependencies 

between C methods in three embedded software systems and 

between Java files in two Eclipse projects.  

4. EXPERIMENTS 
We conducted two types of experiments in order to a) reproduce 

and evaluate the performance of network metrics by using new 

datasets, and, b) improve the prediction performance of the 

predictor using a Naïve Bayes model incorporated with Call 

Graph Based Ranking (CGBR) Framework. Both experiments 

have different experimental designs such that they are individually 

described in their subsections. However, a typical and common 

confusion matrix is preferred (Table 2) to assess the performance 

of this empirical study [25]. From the confusion matrix, all 

performance measures are computed as follows:  

 

Table 2. Typical confusion matrix 

Actual Predicted 

 Defective Defect-free 

Defective A B 

Defect-free C D 

 

pd (recall) =  B) (A A /   

precision =  C) (A A /   

pf =  D)  (CC/   

bal = 2)1()0(1 22 pdpf   

 

In the previous study, authors computed recall and precision 

measures from this matrix [1]. Both precision and recall should be 

close to 1 so that the model does not produce false negatives or 

false positives. Precision measures the percentage of defective 



modules that are classified correctly, over the modules that are 

predicted as defective. Recall, on the other hand, is the same as 

probability of detection (pd). Pd measures how good our predictor 

is in finding actual defective modules.  

Instead of precision, we have measured probability of  false alarm 

rates (pf) in our previous studies [2, 8, 18, 19]. Pf measures the 

false alarms of the predictor, when it classifies defect-free 

modules as defective. We have computed pf to measure additional 

costs our predictors would cause. Predicting actual defective 

modules is the prior action in such oracles. However, increasing 

pd or precision would cause additional false alarms, which means 

we unnecessarily highlight safe regions in the software and waste 

significant amount of time and effort. Therefore, one of our aims 

during calibrating this predictor model should be decreasing this 

pf rate, while keeping high pd rates and high precision rates. We 

used all three measures in this study to make a comprehensive 

comparison of our work with the previous study. 

In the ideal case, we expect from a predictor to catch maximum 

number of defective modules (ideally pd = 1, precision = 1). 

Moreover, it should give minimum false alarms by misclassifying 

actual defect-free modules as defective (ideally pf = 0). Finally, to 

measure how close our estimates are to the ideal case, we use 

balance measure. The ideal case is very rare, since the predictor is 

activated more often in order to get higher probability of detection 

rates [4]. This, in turn, leads to higher false alarm rates. Thus, we 

need to achieve a prediction performance which is as near to (1, 1, 

0) in terms of (precision, pd, pf) rates as possible.  

4.1 Replication: Logistic Regression with 

PCA 
In the replication part, we used the same algorithms used by 

Zimmermann and Nagappan: logistic regression and linear 

regression models. Linear regression and correlation analysis 

show that network metrics such as Fragmentation and 

dwOutReach are positively correlated with defects in software 

systems. However, we have only displayed the results of logistic 

regression, since it produces likelihood probabilities instead of R-

square measures of linear model. Thus, its prediction performance 

can be easily illustrated via recall and precision measures. Similar 

to Zimmermann and Nagappan, we have applied Principal 

Components Analysis to overcome the problem of inter-

correlations among metrics [1]. We selected principal components 

whose cumulative variance is above 95 percent.  

In the experimental design, we have separated two thirds of each 

dataset as training and the rest as testing sets. After 50 random 

splits, recall (pd), precision, pf and balance (bal) measures in 

percent, using only complexity metrics (CM), only network 

metrics (NM) and both of them (ALL), can be seen  in Table 3. 

We took the average of 50 random iterations and represented in 

percent. We can interpret the results in Table 3 as follows: 

 Network metrics are not significant indicators of 

defective modules in small-scale projects, predicting 

around 30% of defective modules in AR3, AR4 and 

AR5, whereas they compete with the complexity metrics 

in Eclipse versions, around 70% detection rates. 

 Therefore, as opposed to the findings in the previous 

study [1], the performance of network metrics in defect 

prediction changes with respect to size and complexity 

of software systems. 

 Although the performance of logistic regression in v2_0 

and v2_1 are quite satisfactory in terms of pd, pf and 

bal, it could not go beyond 40% prediction accuracy in 

three embedded software.  

 One threat to internal validity of these results could be 

the algorithm. Logistic regression may fail to fit on 

embedded software data. Therefore, we have decided to 

reproduce those experiments with a learning based 

model.  

 

Table 3. Results (%) of the logistic regression with PCA 

  pd precision pf bal 

AR3 CM 37 30 10 55 

 NM 26 34 10 47 

 ALL 34 33 10 53 

AR4 CM 61 46 12 71 

 NM 19 5 18 41 

 ALL 45 47 12 60 

AR5 CM 44 48 15 59 

 NM 51 60 12 64 

 ALL 49 62 12 63 

avg CM 47 41 12 62 

 NM 32 33 14 51 

 ALL 43 47 12 59 

v2_0 CM 69 56 19 74 

 NM 70 61 23 73 

 ALL 70 59 19 75 

v2_1 CM 68 44 9 76 

 NM 69 56 19 73 

 ALL 69 49 14 76 

avg CM 69 50 14 75 

 NM 70 59 21 73 

 ALL 70 54 16 76 

 

4.2 Extension: Naïve Bayes Predictor Using 

CGBR (Our Proposed Model) 
To observe different factors that may affect the prediction 

performance; we have focused on increasing the information 

content using additional metrics extracted from dependencies.  

Moreover, we have used Naïve Bayes classifier, since recent study 

shows that learning-based defect predictors with a Naïve Bayes 

classifier outperform other machine learning methods with an 

average (71%, 25%) in terms of (pd, pf) [4]. One of the reasons 



for the success of Naïve Bayes algorithm is that it manages to 

combine signals coming from multiple attributes [2, 4]. It simply 

uses attribute likelihoods derived from historical data to make 

predictions for the modules of a software system [4, 25].  

As the inputs to the model, we have collected complexity and 

network metrics together with the actual defect information from 

five software systems. Since complexity metrics are highly 

skewed and Naïve Bayes assumes Gaussian distribution of data, 

we have log-filtered all metrics before applying the model on the 

datasets [4]. Our model outputs a posterior probability indicating 

whether a module, either a method or a file depending on the data 

source, is defect-prone or not. 

We have incorporated a Call Graph Based Ranking Framework to 

our prediction model before the metrics are fed into the system. 

This framework adjusts the data by multiplying each module with 

a rank derived from call dependency matrices. Our previous work 

on CGBR Framework shows that inter-module call dependencies 

adjust the complexity metrics significantly so that the defect 

prediction model produces fewer false alarms [26]. The essential 

algorithm of the CGBR framework is explained in subsection 

4.2.1 in detail.  

In our experimental design, we have kept one project as the test 

set and used random sampling to select 90 percent of the other 

projects in the same data source to form the training set. We have 

repeated this procedure 100 times for five projects to overcome 

the ordering effects [17, 25]. Then, we have presented the 

performance measures of the experiments after  

(100 randomize orderings for the training set) x (5 projects) = 

500 iterations. 

4.2.1 Call Graph Based Ranking Framework 
We have collected static caller - callee relations as dependency 

data to weight modules based on their interactions. In the 

previous research, Kocak et al. [26] and Turhan et al. [27] used 

these call dependencies to increase the information content of the 

static code attributes. These calls are represented as 1’s or 0’s in a 

matrix, depending on which module calls the others or is called by 

the other modules. Since these call dependencies represent 

structural complexities, they succeeded to build a model that not 

only use intra-module complexities derived from complexity 

metrics, but also inter-module complexities. Their results show 

the effectiveness of dependencies on adjusting static code 

attributes by taking into account the structural complexity of 

projects. 

We have added the CGBR framework to our model in order to 

further quantify the effects of dependencies on complexity and 

network metrics. An overview of our defect prediction model with 

a schema representing the flow can be seen in Figure 1. On the 

left side of the schema, Naïve Bayes classifier is applied to log-

filtered data which is adjusted with CGBR weights. To calculate 

these weights for each module of the software, we have composed 

an NxN matrix, M, where rows represent all modules that call 

others and columns represent modules that are called by the 

others. After constructing call dependency matrices, we have 

utilized a web link based paging algorithm, PageRank, to 

calculate ranks, i.e. weights, for the modules of all projects [28]. 

The basic flow for producing CGBR values is illustrated in Figure 

2. Inspired from the web page ranking algorithms, we have treated 

each interaction between modules as a hyperlink from one page to 

another. We have assigned equal ranks to the modules of a project 

and iteratively increased module ranks using PageRank algorithm. 

After achieving CGBR values, we have normalized these values 

into the range between 0.1 and 1.0. Finally, we have adjusted 

complexity and network metrics by multiplying the metrics of 

each module with its corresponding rank value. In order to assign 

optimum CGBR ranks to the modules, we have iterated our 

PageRank algorithm 40 times until it converges. 

 

 
Figure 1. An overview of the proposed model (Section 4.2) 

 

 

Figure 2. Producing CGBR values (Section 4.2.1) 

 

5. RESULTS 
The results of our experiments on three local projects and two 

Eclipse releases are presented in Table 4 and Table 5 respectively. 

Tables include five consequent experiments completed with 

complexity metrics (CM), network metrics (NM) and combination 

of them (ALL). We have conducted our experiments twice by 

adjusting the metrics with CGBR and without CGBR framework 

for two different data sources. First, we have measured the 

performance of our model using only complexity metrics. Then, 

we have adjusted these metrics with CGBR values to see the 

effects of using inter-module interactions. After setting the 

baseline with complexity metrics, we have used the same 

procedure for network metrics alone to observe their defect 

detection performance. Finally, we applied CGBR framework 

onto all metrics and evaluated the performance. 

Table 4 shows that complexity metrics (CM) adjusted with CGBR 

framework increases pd slightly, whereas it increases precision 

significantly when compared to CM alone. On the other hand, the 



adjustment with CGBR significantly decreases false alarm rates 

for the local projects. When we observe the experiments done 

with network metrics (NM), it is clearly seen that using NM 

dramatically decreases detection rates, including precision, and 

increases false alarms. Therefore, network metrics in small scale 

projects could not provide significant information about the defect 

contents as in the case of complexity metrics.  

 

Table 4. Performance measures (%) for small projects 

 CM 
CM+ 

CGBR 
NM 

CM+ 

NM 

ALL+ 

CGBR 

AR3 

pd 86 88  13 87 86 

precision 67 73 27 69 67 

pf 42 33 35 40 43 

bal 69 75 34 70 68 

AR4 

pd 50 55 55 55 50 

precision 74 85 47 79 67 

pf 18 10 62 15 25 

bal 62 67 46 66 60 

AR5 

pd 100 88 50 100 50 

precision 78 83 52 78 78 

pf 29 18 47 29 14 

bal 79 85 51 79 63 

Avg 

pd 79 77 39 80 66 

precision 72 79 45 74 71 

pf 30 20 48 28 27 

bal 74 78 45 76 69 

 

Table 5. Performance measures (%) for large systems 

 CM 
CM+ 

CGBR 
NM 

CM+ 

NM 

ALL+ 

CGBR 

V2_0 

pd 70 65 61 68 67 

precision 66 65 64 66 68 

pf 36 35 35 35 32 

bal 67 65 63 66 67 

V2_1 

pd 81 82 79 82 82 

precision 63 64 56 63 64 

pf 48 47 62 48 47 

bal 63 64 54 64 64 

Avg 

pd 76 74 70 75 75 

precision 64 64 59 64 65 

pf 42 41 49 42 40 

bal 66 66 59 65 67 

 

The results in Table 5 show similar performances using 

complexity or network metrics. One of them is not significantly 

better than the other and they reach, on the average 70% to 76% 

detection rates. Moreover when we use both metrics adjusted with 

CGBR framework, we would further improve the prediction 

performance for Eclipse data. Therefore, we can conclude that 

network metrics are also successful indicators of defective 

modules as the complexity metrics in large and complex systems.  

In summary, we have analyzed the effect of network metrics on 

defect proneness in different software systems. We have 

challenged the fact that network measures produce better pd rates 

than complexity measures in predicting defective modules. 

Finally, we have reached two different conclusions: a) Complexity 

metrics adjusted with CGBR framework are effective indicators of 

defective modules in small projects with (77, 79, 20, 78) in terms 

of (pd, precision, pf, bal), compared to (39, 45, 48, 35) using 

network metrics. b) Network metrics produces similar results in 

large and complex systems, i.e., (70, 59, 49, 59), when compared 

to (76, 64, 42, 66) using complexity metrics alone in terms of (pd, 

pf, bal). These results support our claim that improving 

information content using intra-module dependencies would also 

improve the prediction performance of defect predictors. 

Moreover, we have accomplished that network metrics would 

have different effects on defect proneness in different software 

systems: Larger and more complex systems tend to have 

significant relationship between intra-module dependencies and 

defects compared to small-scale projects. 

5.1 Threats to Validity 
One threat to validity of our results can be the level of the 

granularity that is different in two data sources. We have 

performed our experiments in two different data sources whose 

metrics are available at function and file levels. Therefore, when 

network metrics are collected at function-level, one cannot clearly 

claim that network metrics are effective indicators of defective 

modules in large and complex systems. To avoid such threat, we 

need to enrich our software data repositories to replicate this study 

with different size of projects on various granularity levels, 

separately. Another threat to validity can be the type of defect 

data, i.e. pre-release vs. post-release that is used interchangeably 

during the experiments. Small projects have only pre-release test 

defects, whereas Eclipse projects consist of all defect sets. We are 

aware of the fact that correlation between post-release defects and 

the network measures should present different conclusions in 

contrast to the correlation between pre-release defects and the 

network metrics. Therefore, we need to focus on the correlation 

between pre-release and post-release defects while conducting 

future experiments.  

6. CONCLUSION & FUTURE WORK 
In this research, we have carried out an empirical evaluation of 

network metrics by taking the study of Zimmermann and 

Nagappan [1] as the baseline. We have measured the effects of 

network metrics on defect prediction performance. For this, we 

have collected code complexity metrics, dependency data and 

network metrics from two public data sources: a white-goods 

manufacturer located in Turkey and an open source environment. 

To extend the previous study, we have incorporated a simple 

weighting framework (CGBR) that measures inter-module 

complexities.  

Previous research indicates that network metrics are effective 

indicators of critical binaries in a Windows product and their 

prediction performance is 10% higher than complexity metrics 



[1]. We reproduced this study using the same experimental design 

and extending it with new methodologies. Both replication 

experiments and our results reveal that network metrics are 

significant indicators of defective modules in large and complex 

systems. On the other hand, they do not provide significant effect 

on small scale projects.  

In empirical studies, we cannot assume that the results present a 

general trend beyond the environments and the systems software 

data is gathered [14]. It would be more confident to support our 

claims when we observe similar behaviors in different 

applications. We try to extend the data sources by adding different 

projects with varying characteristics to support our claims with 

higher confidence. Furthermore, it is one of our future research 

directions to expand this public test-bed with additional projects 

from a large and complex system taken from a local GSM 

company. Currently, static code attributes of various projects from 

this GSM company are publicly available in the Promise 

Repository [20]. However, network metrics should be separately 

extracted to validate the performance of network metrics on new 

large-scale projects. 
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8. APPENDIX A: Static Code Attributes 
The list of static code attributes with their definitions can be seen 

in Table A.1 [4]. 

 

Table A1. Static code attributes 

Name Description 

Branch Count Number of branches in a given 

module. 

Operators  Total number of operators 

found in a module. 

Operands  Total number of operands found 

in a module. 

Unique Operators  

 

Number of unique operators 

found in a module. 

Unique Operands  

 

Number of unique operands 

found in a module. 

Executable of Lines of 

Code  

 

Source lines of code that 

contain only code and white 

space. 

Lines of Comment Source lines of code that are 

purely comments 

Lines of Code and 

Comment 

Lines that contain both code 

and comment. 

Blank Lines Lines with only white space. 

Lines of Code Total number of lines in a 

module. 

Halstead Vocabulary n = number of unique 

operands+number of unique 

operators 

Halstead Length N =operands + operators 

Halstead Volume V = N*log(n) 

Halstead Level L = V*/V 

Halstead Difficulty D = 1/L 

Halstead Programming 

Effort 

E = V / L 

Halstead Error Estimate B = V / S 

Halstead Programming 

Time  

T = E / 18 

Cyclomatic Complexity - 

V(g) 

V(g) = edge count - node count 

+ 2*num. unconnected parts in 

g 

Cyclomatic Density - 

Vd(g) 

V(g) / executable lines of code 

Decision Density - Dd(g) condition count / decision count 

Module Design 

Complexity - Iv(g) 

Iv(g) = call pairs 

 

Design Density - Id(g) Id(g) = Iv(g) / V(g) 

Normalized Cyc. Comp. - 

NormV(g) 

Norm V(g) = V(g) / lines of 

code 

Call Pairs  Number of calls to other 

functions in a module. 

Condition Count Number of conditionals in a 

given module. 

Decision Count Number of decision points in a 

given module. 

Edge Count Number of edges found in a 

given module. 

Formal Parameter Count Number of parameters to a 

given module. 

 

9. APPENDIX B: Network Metrics 
Network metrics described below are collected from dependency 

graphs using Ucinet 6 tool [22].  

 

Table B1. Network metrics from [1,27] 

Name Description 

Size 
The size of the ego network is the 

number of nodes. 

Ties 
The number of directed ties 

corresponds to the number of edges. 

Pairs 

The number of ordered pairs is the 

maximal number of directed ties, 

i.e. Size x (Size-1). 

Density 
The percentage of possible ties that 

are actually present, i.e. Ties/Pairs. 

WeakComp 

The number of weak components 

(=sets of connected modules) in 

neighborhood. 

n WeakComp 

The number of weak components 

normalized by size, i.e., 

WeakComp/Size. 

TwoStepReach 
The percentage of nodes that are 

two steps away. 

ReachEfficiency 

The reach efficiency normalizes 

TwoStepReach by size, i.e., 

TwoStepReach/Size. High reach 

efficiency indicates that ego’s 

primary contacts are influential in 

the network. 

Brokerage The number of pairs not directly 



connected. The higher this number, 

the more paths go through ego, i.e., 

ego acts as a “broker” in its 

network. 

nBrokerage 

The Brokerage normalized by the 

number of pairs, i.e., 

Brokerage/Pairs. 

EgoBetween 

The percentage of shortest paths 

btw neighbors that pass through 

ego. 

nEgoBetween 
The Betweenness normalized by the 

size of the ego network. 

EffSize 

The effsize is the number of modules 

that are connected to a module X 

minus the average number of ties 

between these modules. 

Efficiency 

Efficiency norms the effective size of 

a network to the total size of the 

network. 

Constraint 

Constraint measures how strongly a 

module is constrained by its 

neighbors. The idea is that 

neighbors that are connected to 

other neighbors can constrain a 

module. 

Hierarchy 

Hierarchy measures how the 

constraint measure is distributed 

across neighbors. 

Eigenvector 

Eigenvector centrality is similar to 

Google’s PageRank value; it 

assigns relative scores to all 

modules in the dependency graphs. 

Fragmentation 
Proportion of mutually reachable 

nodes 

Betweenness 

Betweenness centrality measures 

for a module on how many shortest 

paths between other modules it 

occurs. 

Information 

Information centrality is the 

harmonic mean of the length of 

paths ending at a module. 

Power 
Power based on the notion of 

"dependency." 

Closeness (in/out) 

Closeness is the sum of the lengths 

of the shortest (geodesic) paths 

from a module (or to a module) 

from all other modules. 

Degree 
The degree measures the number of 

dependencies for a module. 

dwReach (int/out) 

dwReach is the number of modules 

that can be reached from a module 

(or which can reach a module). 
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