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ABSTRACT
Defect Prediction Models aim at identifying error-prone parts
of a software system as early as possible. Many such mod-
els have been proposed, their evaluation, however, is still an
open question, as recent publications show.

An important aspect often ignored during evaluation is the
effort reduction gained by using such models. Models are
usually evaluated per module by performance measures used
in information retrieval, such as recall, precision, or the area
under the ROC curve (AUC). These measures assume that
the costs associated with additional quality assurance activ-
ities are the same for each module, which is not reasonable
in practice. For example, costs for unit testing and code
reviews are roughly proportional to the size of a module.

In this paper, we investigate this discrepancy using opti-
mal and trivial models. We describe a trivial model that
takes only the module size measured in lines of code into
account, and compare it to five classification methods. The
trivial model performs surprisingly well when evaluated us-
ing AUC. However, when an effort-sensitive performance
measure is used, it becomes apparent that the trivial model
is in fact the worst.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Complexity mea-
sures, Performance measures, Product metrics

Keywords
Defect Prediction, Cost-Sensitive Performance Measures

1. INTRODUCTION
Defect Prediction Models aim at identifying error-prone parts
of a software system as early as possible, so that these parts
can be scheduled for additional quality assurance activities,
such as testing or code review. Many such models have been

proposed, for example, based on static code metrics, change
information, or fault history.

The evaluation of defect prediction models is still an open
debate, as recent publications show [16, 11]. Often, per-
formance measures from machine learning or information
retrieval are used, but as pointed out by Arisholm et al. [1],
these measures may not represent the cost effectiveness of
the prediction models. One reason for this discrepancy is
a skewed distribution of source code: a small percentage of
modules may contain a large portion of the code, at least
when measured in lines of code. However, costs of qual-
ity assurance treatment are often not fixed per module, but
dependent upon the size of the module.

In a recent paper, we proposed a performance measure that
takes these considerations into account and assesses defect
prediction models by comparing them to the optimal per-
formance of an imaginary best classifier [20]. However, this
metric has been empirically validated only on confidential
industrial data but not on publicly available data sets yet.

Contributions. In this paper, we investigate the usabil-
ity of this performance measure on publicly available defect
data sets from the NASA metrics data program (MDP)1.
First, we evaluate a trivial classifier based only on the size –
measured in lines of code – using classical performance mea-
sures. This classifier performs surprisingly well. Afterwards,
we compare five different classification algorithms and our
trivial model on several data sets, using a traditional per-
formance measure and our newly proposed one. Our trivial
model performs surprisingly well when evaluated using the
former, while our newly proposed metric identifies it as an
insufficient model.

Overview. The remainder of this paper is organized as
follows: First, we discuss related work in Section 2. After-
wards, in Section 3, we describe a trivial model and evaluate
its performance briefly. In Section 4, we compare our trivial
model with several data mining algorithms on thirteen data
sets from the NASA MDP. Finally, Section 5 concludes.

2. RELATED WORK
Predicting defective parts of a software system has been ac-
tively researched for more than a decade. The task can be
seen as a classification problem: The goal is to predict the
outcome of a dependent variable with a classification tech-

1http://mdp.ivv.nasa.gov
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nique using several independent variables. The dependent
variable is often a binary classification whether a file or mod-
ule is defective within a certain time frame. Classification
techniques used for defect prediction vary from regression
models to data mining algorithms. Independent variables in-
clude code complexity measures, reuse information, or churn
metrics.

Most of the early work in defect prediction used proprietary
data, which made comparisons of different approaches and
performance results difficult. With the availability of pub-
lic defect data sets from the NASA MDP or the PROMISE
repository2, this situation has improved. Comparisons of
different classifications algorithms [22], different input at-
tributes [14], or the influence of input data transformation
[12] can now be published in a repeatable way.

However, the evaluation of defect prediction models is still
a debated topic as the discussion between Zhang et al. [30]
and Menzies et al. [21], or the recent work by Lessmann et
al. [16] and Jiang et al. [11] show.

One of the main problems is to find suitable performance
measures. Scalar values, such as accuracy, precision, or re-
call that are derived from a confusion matrix are commonly
used in information retrieval, and have been used in defect
prediction as well. It is well known that accuracy is a bad
performance measure for imbalanced data [29] – when one
class is much less likely than the other – and thus not suited
for defect predictors [7, 18]. Other performance measures
derived from the confusion matrix, such as precision and re-
call, are more appropriate for imbalanced data. Recall is
defined as the ratio of detected defective modules among all
defective modules, while precision is the ratio of actually de-
fective modules within the modules predicted as defective.
These measures are sensible only in combination – increas-
ing one of them independently usually decreases the other.
While recall is often used and seems to be generally accepted,
precision is not, as the discussion between Zhang et al.[30],
and Menzies et al.[21] shows: On the one hand, high pre-
cision is desirable to achieve models that are cost effective.
But since precision is also influenced by the ratio of defective
to non-defective files (pos/neg ratio), a comparison of recall
and precision across data sets with different pos/neg ratios
is difficult.

Additionally, the underlying classification technique is of-
ten a probabilistic classifier, assigning scores instead of class
labels to each observation [8]. It can be turned into a bi-
nary classifier by user-defined thresholds, but then measures
based on the confusion matrix are assessing only the per-
formance of one specific threshold. One way to evaluate
probabilistic classifiers are receiver operating characteristic
(ROC) curves. These ROC curves plot the probability of
detection on the y-axis and probability of false alarm on the
x-axis. According to Fawcett[8], ROC curves are not sen-
sitive to changes in the pos/neg ratio, which makes them
particularly suited to compare classifiers over different data
sets[16]. A scalar performance measure derived from ROC
curves is the area enclosed by the curve and the x-axis. This
scalar is known as area under curve (AUC). A perfect clas-

2http://www.promisedata.org

sifier has AUC=1, while a random classifier is expected to
achieve AUC=0.5. As a scalar value, AUC is well suited to
compare the performance of different classifiers, and is often
used for that purpose.

An advantage of probabilistic classifiers is that the scores
can be used to rank modules according to their (predicted)
fault proneness, and thus support prioritizing their treat-
ment. This approach is, for example, advocated by Ohlss-
son et al. [23], Ostrand et al. [24] or Khoshgoftaar et al. [15],
and coined Module-Order-Model (MOM) by the latter. It
enables to select a fixed percentage of modules for further
treatment – a more realistic scenario for projects with a
fixed quality assurance budget. MOMs can be evaluated
by assessing which percentage of defects is detected at fixed
percentages of modules. For example, Ostrand et al. [24]
found up to 83% of the defects in 20% of the files

One way to graphically evaluate MOMs are lift charts, some-
times known as Arberg diagrams [23]. They are created by
ordering modules according to the score assigned by a pre-
diction model, and denoting for each ratio of modules on the
x-axis which cumulative ratio of defects has been identified
on the y-axis. Thus for any selected percentage of modules,
one can easily identify the percentage of correctly predicted
defective modules.

Two recent papers specifically address the evaluation of de-
fect prediction models, and are thus particularly important
in the following. Both compare different classifiers on data
sets from the NASA MDP repository. The methodology
to compare classifiers in both of them is based on work by
Demšar[5]: He describes a set of non-parametric hypothesis
tests to compare the performance of two or more classifiers
over multiple data sets. Demšar’s approach is described in
Section 4.

Lessmann et al. [16] identify the need for a common evalua-
tion framework for defect prediction models. They propose
to use AUC to assess the performance of prediction mod-
els, and to use the process described by Demšar to compare
the performance of different classification algorithms. They
conclude that sophisticated data mining techniques, such as
Random Forests, are performing best, although many sim-
pler algorithms are not significantly worse.

Jiang et al. [11] evaluate different classification techniques on
eight data sets from the NASA MDP. They compare several
performance measures, among them AUC and lift charts,
and conclude that different performance measures are suit-
able for different application scenarios, that is, advocate the
choice of different classification techniques for different data
sets. In a subsequent study, they explore the performance
of defect prediction models from the perspective of misclas-
sification costs, that is the ratio of costs for false positives to
the costs of false negatives [13]. They conclude that different
misclassification costs have a huge impact on the selection
of appropriate prediction models, but also point out that
they assume the same misclassification costs for each mod-
ule, which might be unreasonable in practice.

These imbalanced test costs for modules are an important
aspect that is often neglected during the evaluation, as pointed



out by Arisholm et al. [1]: The costs of treatment of mod-
ules predicted as defective, for example, by testing or manual
inspection, is not the same for all modules, but roughly pro-
portional to the size of a module, for example measured in
lines of code. They propose to use a variation of lift charts
where the x-axis contains the ratio of lines of code instead
of modules, and evaluate various data mining algorithms
by measuring the performance improvement provided by a
classification technique over a random selection of modules.
In a recent paper, we have extended this approach to take
the characteristics of the data set into account by measur-
ing the deviation from an optimal model [20]. The resulting
performance measure is described in Section 3.

The aspect of cost effectiveness is also investigated by Os-
trand et al. [25]. They define four different models and again
consider the upper 20% of the files as defective. One of their
models is a trivial one, ordering files solely by their size mea-
sured in lines of code. They note that this model performs
surprisingly well. Contrary to their previous publications,
they also record the percentage of the source code measured
in lines of code. For all models, the 20% of the files predicted
as defective contain much more than 20% of the source lines,
concretely, between 59.5% and 69.9%. For the trivial model,
the percentage of defects found is even smaller than the per-
centage of source lines predicted as defective. However, they
argue that testing, especially integration and system testing,
is not closely related to the number of lines, and thus eval-
uating on the file level is superior.

3. ISSUES OF MODULE-BASED EVALUA-
TIONS

As we have described in the previous section, module-order
models are a realistic approach to use defect prediction mod-
els in practice, since the budget for validation and verifica-
tion is typically limited. However, as argued by Arisholm
et al. [1], the costs of testing or reviewing a module are not
equally distributed, but depend to some extent on the size of
a module. Most of the traditional evaluation procedures ig-
nore module size, and in Section 3.1 we show how a classifier
can exploit that.

We use two data sets from NASA MDP, since this repos-
itory has become one of the standard means to evaluate
defect prediction models. Ma and Cukic have observed that
many of the defective modules within the MDP repository
are small if measured in lines of code (LoC) [18]. This can be
seen in Figure 1 as well, where we use boxplots to show the
distribution of LoC for defective and non-defective modules
in data sets KC1 and PC5 from NASA MDP. As we can see,
for both data sets, non-defective modules tend to be smaller
than defective ones, although this is much more extreme for
PC5 than for KC1. This information can be used to build
a simple classifier that orders modules just by decreasing
LoC. We use LoC-MOM (lines-of-code based module order
model) to refer to this prediction model. Such a model was
also used by Ostrand et al. [25] and performed surprisingly
well when evaluated on the module level. In the next sec-
tion, we investigate how our simple model performs when
the size is ignored, while Section 3.2 uses a performance
measure taking the module size into account.
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Figure 1: Log-scaled distribution of Lines of Code
for data sets KC1 and PC5.

3.1 Module-based Evaluation of a LoC-MOM
The cumulative lift charts in Figure 2 depict the performance
of three MOMs, namely an optimal, a trivial, and a random
ordering for two data sets, KC1 and PC5, when the module
size is ignored. The optimal model is created by ordering
modules according to their defect density. Defect prediction
models should be as close as possible to this optimal model,
and thus it may serve as a benchmark. A random classifier,
created by assigning random scores to each module, is de-
picted as the lower bound. As we can see, our trivial model
LoC-MOM performs surprisingly well on both data sets. Al-
though there is still room for improvements compared to the
optimal model, it clearly outperforms the random ordering.
When considering 20% of the files as defective, as Ostrand
et al. [24] do, LoC-MOM is able to identify around 55% of
the defects in KC1 and over 90% in PC5.

LoC-MOM performs much better on data set PC5 than on
KC1. This effect can be explained by data provided by Jiang
et al. [11]: They observed that for many of the MDP data
sets, fault-free modules tend to be short in terms of lines
of code (LoC). They calculated the 90th percentile of LoC
for defective and non-defective files. The 90th percentile is
the value for LoC so that 90% of the modules are shorter
than that value. For KC1, 90% of the fault-free modules
are smaller than 42 lines, while for PC5, 90% are smaller
than 7 lines. It seems that the trivial model performs better
for data sets where the 90th percentile of LoC for fault-free
files is lower. This can explain an observation we made in a
recent study: We found out that different prediction models
consistently performed better when header files where in-
cluded [20]. Since header files are usually much shorter than
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Figure 2: Module-based Cumulative Lift Charts of
three models for two data sets from NASA MDP:
KC1 and PC5.
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Figure 3: Lines of Code vs. defect density for defec-
tive modules in KC1.

their corresponding implementation files, and at least in our
case, header files contained fewer defects, the 90th percentile
for fault-free files was lower when we included header files.
Thus when selecting the files addressed by a defect predic-
tion model, this effect has to be considered.

The good performance of LoC-MOM on the module level
does not necessarily mean that it is usable in practice, or
that one should focus validation and verification activities on
large files first. Ideally, a defect prediction model identifies
modules with a high defect density first. The distribution
of defect density in Figure 3 indicates that an ordering of
files just by decreasing file size does not create an optimal
model. In contrary, many files with high defect density are
rather short in terms of LoC.

3.2 LoC-based Evaluation of a LoC-MOM
As we have seen in the previous section, our LoC-MOM per-
forms surprisingly well when evaluated on the module level.
However, a useful defect prediction model has to outperform
the random inspection of source code, as pointed out by Ar-
isholm et al. [1]. They calculate a cost effectiveness estima-
tion based on the assumption that there is a relationship
between the effort to inspect or test a file and its size, and
that, on average, a random selection of n% of the source lines
contains n% of the defects. In that case, a defect prediction
model is cost-effective when the files predicted as defective
contain a larger percentage of defects than their percentage
of lines of code. Their performance measure CE can be cal-
culated in a LoC-based cumulative lift chart by calculating
the area under the prediction model’s curve which lies above
a line of slope one. The latter represents the average per-
formance of a random selection of source lines. This area is
marked with CE in the LoC-based cumulative lift chart in
Figure 4(b).

CE was defined to assess the cost effectiveness of predic-
tion models and not to compare the performance of differ-
ent classification algorithms, so that negative values for the
cost effectiveness are not defined. Additionally, CE ignores
the actual defect distribution inside a system. It reports
how much better than a random model a predictor is, but it
does not tell anything about how close the predictor comes
to an optimal model.
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Figure 4: LoC-based Cumulative Lift Charts of
three models for two data sets from NASA MDP:
KC1 and PC5.

Therefore we extended the idea of CE and proposed a new
performance evaluation measure popt by comparing a predic-
tion model with an optimal model [20]. An optimal model
would be created as follows: We order all modules by de-
creasing defect density (and increasing lines of code, in case
of ties), and predict the modules with highest defect densi-
ties first. When we use our prediction model to order mod-
ules according to their score (and use lines of code as a tie
breaker again), and plot the result in the same way, we can
investigate how well our model performs compared to the op-
timal model. When we do this for our trivial model, using
lines of code as a surrogate for treatment effort, as depicted
in Figure 4(a) and Figure 4(b), we can see that the trivial
model performs similar to or worse than a random selection
of modules.

Similar to the AUC metric for ROC curves, we define ∆opt

as the area between the optimal model and the predicted
model, which results in a scalar value, where a higher value
means a greater difference between the optimal and our pre-
dicted model. To get a performance measure that ranks bet-
ter classifier with higher numerical values than worse clas-
sifiers, we define popt = 1 − ∆opt. The corresponding area
is marked popt in Figure 4(b). This measure has two de-
sirable properties: It takes costs associated with testing or
reviewing a module into account, and it considers the actual
distribution of faults by benchmarking against a theoreti-
cally possible optimal model.

Ostrand et al. state that lines of code may be valid to esti-
mate effort for unit tests, but doubt that it reflects the effort
required to test files during integration or system test, and
thus conclude that using LoC to assess the cost effectiveness
of defect prediction models is not valid [25]. Yet, quite likely
cost effectiveness for integration and system test is not to-
tally independent from lines of code. Additionally, it is an
important factor for code inspections.

At any rate, we can proceed with the assumption that cost
effectiveness is not just a function of the pure number of
modules, since testing effort is likely not the same for all
modules. Our evaluation measure popt can be adjusted ac-
cordingly by using a more appropriate surrogate measure for
integration testing effort that future research comes up with.
In the mean time, we argue that LoC is at least superior to
a module-based evaluation, as the overly optimistic results
for LoC-MOM in Section 3 show.

The difference between CE and popt is the baseline a predic-
tion model is compared to: For CE, it is a random ordering,
while for popt , it is an optimal ordering. In Section 4.4, we
evaluate whether the two metrics actually measure the same,
or whether there are differences.

4. COMPARING THREE PERFORMANCE
MEASURES

In the last section, we have seen that our model LoC-MOM
performs surprisingly well, at least on two MDP data sets. In
this section, we evaluate how LoC-MOM performs compared
to popular classification algorithms, where the performance
is assessed using AUC, popt , and CE. The goal is to compare
the alternative means to evaluate predictors based on their
judgement on a trivial predictor versus advanced classifiers.



Name Modules % Faulty

KC1 2107 15.42
KC2 522 20.50
KC3 458 9.39
KC4 125 48.80
JM1 10878 19.32
PC1 1107 6.87
PC2 5589 0.41
PC3 1563 10.24
PC4 1458 12.21
PC5 17186 3.00
CM1 505 9.50
MC2 161 32.30
MW1 403 7.69

Figure 5: The thirteen data sets from NASA MDP
used for evaluation.

The experimental setup is described in Section 4.1. The
evaluation results for AUC and popt are presented in Sec-
tion 4.2 and Section 4.3, respectively. In Section 4.4, we
compare popt with Arisholm et al.’s performance measure
CE assessing the cost effectiveness [1]. Threats to validity
are discussed in Section 4.5.

4.1 Experimental Setup
The experimental setup closely follows Lessmann et al. [16]
and Jiang et al. [11] in the selection of data sets, algorithms,
and evaluation methodology.

Data Sets: We use thirteen data sets from NASA MDP
shown in Figure 5. These represent the union of data sets
used by Lessmann et al. and Jiang et al. A detailed descrip-
tion of these systems can be found elsewhere [11, 16]. For all
data sets, we calculate our dependent variable as a binary
classification: defective for files where ERROR COUNT >
0, and non-defective otherwise. We use all input attributes
available for each data set as independent variables, except
the module identifier and metrics related to error count and
density. These attributes include static code metrics, such
as Halstead’s[10] or McCabe’s [19] complexity measures.

Algorithms: Our selection of data mining algorithms closely
resembles the choice by Jiang et al. and can be found in
Figure 6. All algorithms were implemented in version 2.8.1
of R[27]. Jiang et al. additionally used a nearest neighbor
clustering algorithm, but the R implementation knn was not
able to make predictions for all data sets because of too many
ties, so we excluded it. All algorithms are used with their
default parameters, so further tuning might improve their
results. Additionally, we use the trivial classifier LoC-MOM
described in Section 3.1.

Evaluation: We use ten times ten-fold cross-validation to
train and test all algorithms on all data sets. All algorithms
use the same partitioning. As performance measures, we use
averaged AUC in Section 4.2, averaged popt in Section 4.3,
and averaged CE in Section 4.4.

Comparing classifiers by just comparing scalar performance
measures may be misleading due to inherent variance, so

Name Description

NB A naive Bayes classifier from R package
e1071[6], naively assuming independent in-
put variables to calculate conditional class
probabilities using Bayes Rule.

Logistic A logistic regression model build using
the R function glm with parameter fam-

ily=binomial("logit").
rpart An implementation of the CART decision

tree learner [4] in R package rpart.
Bag An implementation of the ensemble algo-

rithm bagging (Bootstrap aggregating) [2]
using bootstrap samples of the training set
to build multiple models and average their
response. We use the implementation in
package ipred [26] with rpart as its base
classifier.

RF An implementation of the random forest
algorithm [3] using a majority voting of
500 decision trees in package randomFor-
est [17].

Figure 6: The six classification algorithms used for
evaluation.

statistical hypothesis tests are necessary. One approach,
described by Demšar[5], uses non-parametric statistics to
evaluate whether the performance of several classifiers over
multiple data sets is significantly different. This approach
is used by both Lessmann et al. and Jiang et al., so we also
adopt it here.

Demšar uses the Friedman test [9] to check whether the null
hypothesis, namely, that all classifiers perform equal on the
selected data sets, can be rejected. The Friedman test is a
non-parametric statistical test using only relative rankings,
and not performance values directly, thus making no as-
sumptions on the distribution of performance values. It can
be calculated using the following formulas from Demšar[5],
where k denotes the number of classifiers, N the number of
data sets, and Rj the average rank of classifier j on all data
sets:

χ2
F = 12N

k(k+1)

 P
j

R2
j − k(k+1)2

4

!
and FF =

(N−1)χ2
F

N(k−1)−χ2
F

.

FF is distributed according to the F-Distribution with k− 1
and (k− 1)(N − 1) degrees of freedom. Once computed, we
can check FF against critical values for the F-Distribution
and then accept or reject the null hypothesis.

When the Friedman test rejects the null hypothesis, we can
use the Nemenyi post-hoc test to check whether the perfor-
mance of two classifiers is significantly different. The test
uses the average ranks of each classifier and checks for each
pair of classifiers whether the difference between their ranks

is greater than the critical difference CD = qα

q
k(k+1)

6N
,

where k and N are the same as above, and qα is a crit-
ical value depending on the number of classifiers and the
significance level α. For our setup with k = 6 and α = 0.05,
q0.05 = 2.85.
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Figure 8: Nemenyi’s Critical-Difference Diagram for
the evaluation using AUC.

We use Lessmann et al.’s [16] modified version of Demšar’s
significance diagrams to depict the results of Nemenyi’s post-
hoc test: For each classifier on the y-axis, the average rank
is plotted on the x-axis, together with a line segment whose
length encodes CD. All classifiers that do not overlap in this
plot perform significantly different.

Implementation: All our analyses are implemented in ver-
sion 2.8.1 of the statistical package R[27]. We use the R
package ROCR[28] to calculate AUC values.

4.2 AUC Results
The AUC values for all classifiers and data sets can be found
in Figure 7. The ordering of classifiers by average rank is the
same as those of Jiang et al. [11], and the values are similar
to many values given by Lessmann et al. [16].

The Friedman test can be calculated using the formulas de-
scribed above and yields FF = 8.66. The critical value for
the F-Distribution and α = 0.05 with 5 and 60 degrees of
freedom is 2.368, so the null hypothesis that all classifiers
perform equally well can be rejected. Nemenyi’s critical
difference can be calculated as CD = 2.09. The pairwise
comparison using Nemenyi’s CD can be found in Figure 8.
Random Forests is the best algorithm, although according
to Nemenyi’s test, only the difference to rpart is significant.

What is most interesting, however, is the good performance
of our trivial classifier: For most of the data sets, its AUC
value is well above 0.7 and reaches up to 0.93. Furthermore,
it ranks, on average, equal to the logistic regression classi-
fier and quite closely to Naive Bayes, and is among the best
classifiers for three data sets. This indicates that an evalu-
ation of defect predictors based on a module-based measure
such as AUC alone may produce misleading results. In case
AUC is used anyway, one should at least report results for
LoC-MOM, since it is easy to obtain and may serve as a
lower bound.

4.3 popt Results
When we perform the same evaluation and use popt as the
underlying performance measure, our results are quite dif-
ferent. The detailed popt values and the average ranking per
classifier can be found in Figure 9. The Friedman test yields
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Figure 10: Nemenyi’s Critical-Difference Diagram
for the evaluation using popt .

FF = 6.56, again our critical value is 2.368, so we can reject
the null hypothesis that there is no significant performance
difference between our classifiers.

The results of the pairwise post-hoc test can be found in
Figure 10. Using this metric, our trivial classifier performs,
as expected, worst among all classifiers. But the ordering of
the other algorithms changes as well: Random Forest is no
longer the best, and the ranking of rpart is much better than
in Section 4.2. A similar effect was observed by Arisholm
et al. [1] where a tree-based algorithm performed favorable
when lines of code where taken into account.

A visualization of the performance of three different classi-
fiers compared to the optimal model can be found in Fig-
ure 11. For PC1, rpart and Bagging perform quite simi-
larly, while Random Forest performs even worse than a ran-
dom selection of source lines. However, popt is rather low
for all three classifiers, leaving much room for improvement.
For data set PC4, the situation is different: all three classi-
fiers achieve quite good performance, which is reflected in a
higher popt value. We have not yet investigated which data
set characteristics influence this difference.

4.4 Cost Effectiveness Results
Arisholm et al. [1] have proposed to evaluate defect pre-
diction models based on a measure cost effectiveness (CE),
which inspired the creation of popt . The two measures are
very similar, however, aim at different goals: Our goal is to
be able to compare classifiers in the absolute sense, so we
take the optimal model for each data set into account. Their
goal for CE is to assess whether a model can be applied cost
effectively. They assume that, on average, a random inspec-
tion of n% lines of code should be able to find n% of the
defects. In a LoC based cumulative lift chart, this random
selection yields approximately a line of slope one, and they
calculate CE by computing the area above this line that is
enclosed by the curve of a prediction model. This area is
labeled CE in Figure 4(b).

In this section, we calculate CE for our six classifiers and
thirteen data sets for two reasons: On the one hand, we
want to investigate which algorithms are able to build cost
effective prediction models for which MDP data sets. On



KC1 KC2 KC3 KC4 JM1 PC1 PC2 PC3 PC4 PC5 CM1 MC2 MW1 AR
NB 0.79 0.84 0.81 0.75 0.69 0.71 0.86 0.76 0.85 0.94 0.77 0.72 0.80 3.38
Logistic 0.81 0.82 0.69 0.77 0.71 0.84 0.83 0.82 0.91 0.95 0.75 0.68 0.66 3.85
rpart 0.69 0.76 0.65 0.84 0.52 0.68 0.51 0.72 0.89 0.82 0.70 0.62 0.69 5.38
Bag 0.82 0.83 0.71 0.82 0.74 0.77 0.73 0.82 0.93 0.96 0.77 0.73 0.75 2.77
RF 0.84 0.84 0.75 0.83 0.75 0.86 0.90 0.86 0.95 0.97 0.75 0.75 0.71 1.77
Trivial 0.79 0.84 0.81 0.47 0.72 0.71 0.84 0.75 0.75 0.93 0.77 0.66 0.79 3.85

Figure 7: Performance of all classifiers on thirteen data sets measured using AUC and average rank (AR)
per classifier.

KC1 KC2 KC3 KC4 JM1 PC1 PC2 PC3 PC4 PC5 CM1 MC2 MW1 AR
NB 0.55 0.60 0.58 0.75 0.62 0.56 0.54 0.67 0.77 0.54 0.53 0.54 0.70 4.08
Logistic 0.63 0.63 0.66 0.78 0.57 0.53 0.42 0.61 0.89 0.64 0.68 0.71 0.58 3.38
rpart 0.57 0.65 0.66 0.86 0.34 0.64 0.79 0.67 0.83 0.64 0.63 0.56 0.63 3.00
Bag 0.67 0.62 0.67 0.82 0.62 0.71 0.72 0.73 0.89 0.73 0.65 0.66 0.72 2.00
RF 0.67 0.60 0.63 0.83 0.63 0.54 0.55 0.60 0.90 0.71 0.61 0.70 0.56 3.23
Trivial 0.53 0.57 0.56 0.41 0.54 0.54 0.56 0.50 0.59 0.47 0.51 0.49 0.66 5.31

Figure 9: Performance of all classifiers on thirteen data sets measured using popt and average rank (AR) per
classifiers.

the other hand, we want to compare popt and CE and check
whether these are actually different metrics.

The CE values are provided in Figure 12. As we can see,
most of them are rather low, indicating only a small benefit
provided by the prediction models. For four data sets, no
classifier achieves CE > 0.10. This means that for these
data sets, a random selection of source lines performs not
much worse than any of our defect prediction model.

To compare CE and popt , we calculate Spearman’s correla-
tion coefficient ρ between 78 models (six classifiers × thir-
teen data sets) once evaluated by CE, once by popt . The
relatively high value of ρ = 0.863 indicates a strong similar-
ity between both metrics. This can also be observed from
Figure 9 and Figure 12 by comparing which classifier per-
forms best on each data set: except for one data set (JM1),
the best classifier according to popt is also the best according
to CE.

Nevertheless, popt and CE measure slightly different things,
and their difference depends on the distribution of faults in-
side a data set: When the area under the optimal model
is close to 1, and the predictor is always performing bet-
ter than a random selection, popt and CE differ just by 0.5.
When defects are distributed across the system, or the pre-
dictor performs sometimes better, sometimes worse than the
random model, the two measures become different. We con-
clude that both metrics are best-suited for their purpose:
popt provides a fair evaluation of a predictors performance,
while CE offers an insight into the cost effectiveness of a
model on one data set.

4.5 Threats to Validity
As every empirical study, ours is subject to some threats
to validity. First of all, we cover only a small number of
data sets from one specific source, namely, NASA MDP.
We cannot necessarily generalize to other data sets from the
current study, since the characteristics of these data sets
may not be representative.

Nevertheless, our study shows that a module-based evalua-
tion leads to surprising results, and thus measures taking the
amount of source code predicted as defective into account,
as our measure popt does, are much more desirable. This is
definitely true for the data sets analyzed here. Additionally,
our study shows that the performance of a classifier cannot
be assessed by looking just at AUC values: For some of the
NASA data sets, these are high even for our trivial model.

The biggest threat to popt is that lines of code may not be
an appropriate surrogate measure for treatment costs. How-
ever, as described in Section 3.2, it can be easily adopted to
more appropriate measures. As long as no other more ap-
propriate measure is known and available, we recommend
to use measures taking the size of modules into account, be-
cause otherwise performance of classifiers is too dependent
on the fault distribution. Additionally, the results in Sec-
tion 3.1 and Section 4.2 show that module-based evaluations
are too optimistic.

5. CONCLUSION
In this paper, we evaluated a trivial defect prediction model
based only on the size of modules measured in LoC on thir-
teen data sets from the NASA MDP. This model performs
surprisingly well when evaluated using AUC to assess pre-
dictive performance, and we were not able to show statistical
significant differences to some advanced data mining algo-
rithms.

When the same model is evaluated using our proposed per-
formance measure popt that takes the size of the modules
into account, it becomes apparent that the trivial model is
in fact not better or even worse than a random selection of
source files. Additionally, it reveals that on many data sets,
all algorithms considered here are far from an optimal pre-
diction. This result indicates the need for further research
to improve existing prediction models, not only by more so-
phisticated classification algorithms, but also by searching
for better independent variables.



KC1 KC2 KC3 KC4 JM1 PC1 PC2 PC3 PC4 PC5 CM1 MC2 MW1 AR
NB 0.007 0.013 0.059 0.128 0.054 0.055 0.097 0.129 0.195 0.014 0.038 0.025 0.153 4.000
Logistic 0.044 0.025 0.090 0.153 0.001 0.044 0.041 0.076 0.318 0.077 0.133 0.095 0.062 3.308
rpart 0.014 0.041 0.118 0.221 — 0.107 0.287 0.118 0.259 0.082 0.103 0.026 0.122 2.885
Bag 0.078 0.023 0.122 0.180 0.025 0.168 0.217 0.182 0.316 0.168 0.106 0.067 0.161 2.000
RF 0.082 0.016 0.072 0.198 0.030 0.041 0.051 0.075 0.325 0.152 0.085 0.087 0.059 3.308
Trivial 0.004 0.007 0.050 0.001 — 0.039 0.117 0.013 0.039 0.001 0.034 0.013 0.129 5.500

Figure 12: Cost Effectiveness according to Arisholm et al. and average rank (AR) per classifier on thirteen
data sets.
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Figure 11: LoC-based cumulative lift chart for three
classifiers on two data sets.

Interestingly, the worst algorithm according to AUC is quite
good according to popt , namely rpart. We currently do not
have an explanation for this, but a similar behavior was ob-
served by Arisholm et al. [1], where rather simple algorithms
performed better under a changed performance measure.

We conclude that performance measures should always take
into account the percentage of source code predicted as de-
fective, at least for unit testing and code reviews. If bet-
ter cost metrics for specific quality assurance techniques are
known, it is easy to modify popt accordingly. And even when
module-based metrics are preferred, at least the trivial clas-
sifier LoC-MOM should be assessed in order to be able to
“normalize” the resulting performance values.

In future work, we want to investigate whether cost-sensitive
learning algorithms can be used to build better defect predic-
tion models. Additionally, we need more appropriate surro-
gate measures for treatment costs, since we expect that our
approach of using LoC leaves room for improvements.
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