
Practical Considerations in Deploying AI for Defect

Prediction: A Case Study within the Turkish

Telecommunication Industry
Ayşe Tosun

Department of Computer
Engineering,

 Boğaziçi University, Istanbul, Turkey
+90 212 359 7227

ayse.tosun@boun.edu.tr

 Burak Turhan
Institute for Information Technology

National Research Council,
Ottawa, ON, Canada

+1 613 993 7291

Burak.Turhan@nrc-cnrc.gc.ca

Ayşe Bener
Department of Computer

Engineering,
 Boğaziçi University, Istanbul, Turkey

+90 212 359 7227

bener@boun.edu.tr

ABSTRACT

We have conducted a study in a large telecommunication

company in Turkey to employ a software measurement program

and to predict pre-release defects. We have previously built such

predictors using AI techniques. This project is a transfer of our

research experience into a real life setting to solve a specific

problem for the company: to improve code quality by predicting

pre-release defects and efficiently allocating testing resources. Our

results in this project have many practical implications that

managers have started benefiting: code analysis, bug tracking,

effective use of version management system and defect prediction.

Using version history information, developers can find around

88% of the defects with 28% false alarms, compared to same

detection rate with 50% false alarms without using historical data.

In this paper we also shared in detail our experience in terms of

the project steps (i.e. challenges and opportunities).

Categories and Subject Descriptors

D.2.9 [Management]: Software Quality Assurance. D.4.8

[Performance]: Measurements, Modeling and Prediction.

General Terms

Measurement, Prediction.

Keywords

Software defect prediction, AI methods, experience report, static

code attributes.

1. INTRODUCTION
Telecommunications is a highly competitive and booming

industry in Turkey and its neighbours. The leading GSM

operator in Turkey operates in Azerbaijan, Kazakhstan, Georgia,

Northern Cyprus and Ukraine with a customer base of 53,4

million. The company has grown very rapidly and successfully

since its inception in 1994. It has an R&D centre having 200

researchers and engineers with 1 to 10 years of experience. Their

legacy software has millions of lines of code that needs to be

maintained.

The company is under constant pressure to launch new and better

campaigns in limited amount of time with tight budgets. As the

technology changes and the customers require new functionalities,

they have to respond faster than ever by means of new software

releases. Currently, they make releases in every two weeks. They

use incremental software development [21], where each release

has additional or modified functionalities, compared to the

previous releases. So there is a limited time to track, control and

fix the problems in their software. Similar to other software

development companies, testing is one of the most critical stages

in their development cycle [2, 12, 14]. Accordingly, the managers

seek to lever any opportunity for improving their software

development.

Our study involved in construction of a metrics program and a

decision support system to predict defects and apply more

effective release management. Previous studies have implemented

extensive automated metrics and defect prediction programs using

data mining, specifically at NASA [1]. In this paper, we describe

our experience in translating those programs to a

telecommunication company. While the company‟s development

practices are very different from those of NASA, the automated

AI methods ported with relatively little effort. However, we spent

much time learning the organization and working within their

current practices. In that respect, we present our experience on the

practical applications of AI techniques to solve the problems of

the company‟s software development processes. The results of our

study showed that practitioners can benefit from a learning-based

defect predictor on the allocation of resources, bug tracing and

measurement in a large software system. Using code metrics and

version history, we managed to keep high stable detection rates,

on the average 88%, while decreasing false alarms by 44%. Those

improvements in the classification accuracy also affected the

estimated inspection costs of testers to detect defective modules.

2. GOALS OF THE PROJECT
Our goals in this project are defined as building a code

measurement, bug tracing/ matching program and a defect

prediction model. We have jointly agreed on these goals with the

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
 © ACM 2009 ISBN: 978-1-60558-634-2...$10.00

R&D manager, project managers and development team during

the project kick-off meeting. Furthermore, senior management

strongly believed that they should adjust their development

processes to increase software quality as well as to make efficient

resource allocation. We have decided on the roles and

responsibilities and aligned the goals of the project with their

business goals (Table 1). We clearly explained to them what they

will have at the end.

Table 1. Goals in line with business objectives

Goals of the project Management objectives

Code measurement and

analysis of the software

system.

-Improve code quality

Construction of a defect

prediction model to predict

defect prone modules

before testing phase.

-Decrease lifecycle costs

such as testing effort.

-Decrease defect rates

Storing a version history

and bug data.

-Measure/ control the time

to repair the defects

In order to track the progress of the project, we decided to make

monthly meetings with the project team, and quarterly meetings

with the senior management to present the progress and discuss

on the next step. Senior management meetings were quite

important either to escalate the problems or to get their blessing

on some critical decisions we had to make throughout the project.

During the life of the project, Softlab researchers were on-site on

a weekly basis to work with the coders, testers and quality teams.

Previously, the company did not employ any measurement

processes due to tight schedules and heavy workloads. Therefore,

we have planned our work in four main phases. In the first phase,

we aimed to measure static code attributes at functional/ method

level from their source code. In the second phase, we planned to

match software methods with pre-release defects. In the third and

fourth phases, we planned to build and calibrate a defect

prediction model, assuming that we would be able to collect

enough data to train our model. However, the outcomes of every

phase have led us to re-define and extend the original scope and

objectives in the later stages. In the next sections, we will explain

our initial plans, challenges we come across during each phase

and our methodology to solve these problems in detail.

3. PHASE I: CODE MEASUREMENT AND

ANALYSIS
In the first three months of the project, we aimed to analyze the

company‟s coding practices and to conduct a literature survey of

measurement and defect prediction in the telecommunications

industry. At the end of this phase, we aimed at having agreed on

the list of static code attributes and to decide on an automatic tool

to collect them. We also hoped to have collected the first set of

static code attributes from the source code in order to make a raw

code analysis. In order to do that, we would choose the sample

projects that we would collect data from.

We decided that static code attributes can be used to point out

current coding practices. Static code attributes are accepted as

reliable indicators of defective modules in the software systems.

They are widely used [1, 3, 6, 12, 15, 16, 17, 18] and easily

collected through automated tools. Therefore, we have defined the

set of static code attributes from NASA MDP Repository [12], as

the metrics to be collected from the software in the company.

Basically, we collected complexity metrics proposed by McCabe

[5], metrics related to unique number of operators and operands,

which are proposed by Halstead [4], size metrics to count

executable and commented lines of code, and CK object-oriented

metrics [19] from Java applications. Due to lack of space, we

could not publish the set of metrics collected from their software.

However, we have donated all data that comes from nine

applications of the software to the Promise Repository [7] in

terms of method, class, package and file levels. So they are

publicly available for replicated studies or new experiments.

3.1 Challenges during Phase I
As mentioned earlier, the company did not have a process or an

automated tool to measure code attributes. Our suggestion was to

buy a commercially available automated tool to extract metrics

information easily and quickly. However, due to budget

constraints and concerns for adequacy of functionalities of the

existing tools, senior management did not want to make an

investment on such a tool. Besides, their software systems contain

source codes and scripts written in different languages such as

Java, JSP. Therefore the management was not convinced to find a

cost effective single tool that would embrace all languages and

extract similar attributes easily from all of them.

Software system has the standard 3-tier architecture with

presentation, application and data layers. However, the content in

these layers cannot be separated as distinct projects. Any

enhancement to the existing software somehow touches all or

some of the layers at the same time, making it difficult to identify

code ownership as well as to define distinct software projects.

Another problem we have come across was related with the

metrics collection process. When we observed the software

development process with coding practices of the team, it seemed

that collecting static code attributes in the same manner with

NASA datasets, i.e. in functional method level, is almost

impossible due to lack of an available automated mechanisms that

would match those attributes with the defect data.

3.2 Our Methodology
Metric Extraction: We have implemented an all-in-one metrics

extraction and analysis tool, Prest, to extract code metrics [9].

Compared to other commercial and open source tools, Prest

embraces many distinctive features and it is freely available. It

extracts 22 to 26 static code attributes in different granularities,

i.e. package, class, file, method level. It is able to parse

programming languages such as C, C++, Java, JSP, PL/SQL, and

forms a dependency matrix that keeps inter-relations between

modules of the software systems. Prest has a simple user interface,

where the user can import the source code and parse his/her

project using one or more language parsers. It is able to parse

different parts of the code, using parsers of different programming

languages (Figure 1). Then, static code attributes extracted in four

granularity levels are displayed on the screen. Additional analysis

on modules helps to identify critical modules whose attributes do

not meet the coding standards of NASA MDP [12]. Sample

screenshot for a GSM project can be seen in Figure 2.

Figure 1. Screenshot from Prest: Parsing a project

Figure 2. Screenshot from Prest: Displaying results

We were able to collect static code attributes from 22 critical

applications of the company. Moreover, we have inserted defect

labels, i.e., 1 for defective and 0 for defect-free, to the modules

using the UI. Then, we converted them to arff format to use in the

classifier component of the tool. Currently, classifier component

of Prest applies Naïve Bayes and Decision Tree algorithms, from

which we have used the former one as the algorithm of our

predictor.

Project Selection: This was one of our first critical decisions in

this project in order to define the scope and to choose projects

and/ or units of production that would be under study. Although

project managers initially wanted to focus on presentation and

application layers due to the complexity of the architecture, we

jointly decided to take 22 critical and highly interconnected Java

applications embedded in these layers. We refer to them as

projects during this study.

Level of granularity: As we mentioned in the previous section, we

were unable to use method-level metrics in the software system,

since we could not collect method-level defect data from the

developers in such limited amount of time. Therefore, we have

aggregated our method-level attributes to the file-level by taking

minimum, maximum, average and sum values of each file [17] in

order to make them compatible with defect data.

4. PHASE II: BUG TRACING AND

MATCHING
The second phase of our study was originally planned to store

defect data, i.e. test and production defects. If things had their

normal course of action in Phase I, we would have collected

metrics from the completed versions of 22 projects and matched

the bugs as well.

4.1 Challenges during Phase II
This phase took much longer than we anticipated. First of all,

there was no process for bug tracing. Secondly, test defects were

not stored at method level during development activities. Thirdly,

there was no process to match bugs.

The project team has realized that the system is very complex such

that it needs too much time and effort to match each defect with

its file constantly. Additionally, developers did not volunteer to

participate in this process, since keeping bug reports would have

increased their busy workloads.

4.2 Our Methodology
To solve these issues, we called for an emergency meeting with

senior management as well as with the heads of development,

testing and quality teams. As a result, the company agreed to

change their existing code development process. They built a

version control log to keep changes in the source code done by

the development team. These changes can be either bug fixing or

new requirement request, all of which are uniquely numbered in

the system. Whenever a developer checks in the source code to

the version control system, he/she should provide additional

information about the modified file, i.e. id of test defect or

requirement request. Then, we would be able to retrieve those

defect logs from the history and match them with the files of the

projects in that version. We manually combined static code

attributes with a defect flag, indicating 1 for defective files and 0

for defect-free files. This process change also enabled the

company to establish code ownership.

During adaptation of this process change, we did additional

analysis on static code attributes to point out some of the

problems in the coding practices of the company‟s development

team. Our intention was to represent the software development

practices in the company, mention critical aspects and convince

the team and the managers for those required course of actions.

We have taken best practice coding standards of NASA MDP

Repository [12] and compared them with our measurements.

Based on our analysis, we have seen that there are two

fundamental issues in the coding practices: a) No comments at all,

which makes the source code hard to read and understand by

other developers, b) Limited usage of vocabulary, which brings

that the system is unnecessarily modular due to JSP codes from

the application layer. This code analysis supports the necessity to

improve the software quality.

Moreover, as an alternative analysis, we have conducted a rule-

based code review process, based on code metrics. Our aim here

was to present what amount of code should be reviewed and how

much testing effort is needed to inspect defect-prone modules in

the company [14]. To do this, we have simply defined rules for

each attribute, based on its recommended minimum and maximum

values [12]. These rules are fired, if a module‟s selected attribute

is not in the specified interval. This also indicates that the module

could be defect-prone, therefore, it should be manually inspected.

The results of the rule-based model can be seen in Figure 3, where

there are 17 basic rules with the corresponding attributes and two

additional rules derived from all of the attributes. Rule #18 is fired

if any of 17 rules is fired. This rule shows that we need to inspect

100% LOC to find defect-prone modules of the overall system.

Besides, Rule #19 is fired if all basic rules, but the Halstead rules,

are fired. This reduces the firing frequency of the former rule such

that 45% of the code (341655 LOC) should be reviewed to detect

potentially problematic modules in the software.

We have seen that rule-based code review process is impractical

in the sense that we need to inspect 45% of the code [14]. So, it is

obvious that we need more intelligent oracles to decrease testing

effort and defect rates in the software system.

Figure 3. Rule based analysis

5. PHASE III: DEFECT PREDICTION

MODELLING
The original plan in this phase was to start constructing our

prediction model with the data we had been collecting from the

projects. We had planned to test the performance of our model

with the ones in the literature. We would try different

experimental designs, sampling methods, and AI algorithms to

build such a model.

We planned to build a learning-based defect predictor for the

company. We have agreed to use Naïve Bayes classifier as the

learner of this model, since a) it is simple and robust as a machine

learning technique, b) it performs the best prediction accuracy,

compared to other machine learning methods [1], and c) recent

study by Lessmann et al. also shows that most of the machine

learning algorithms are not significantly better than each other in

defect prediction [18]. We also agreed on the performance

measures of the defect predictor that we would build. We decided

using three measures: probability of detection, pd, probability of

false alarm, pf, and balance from signal detection theory [13]. Pd

measures the percentage of defective modules that are correctly

classified by the predictor. Pf, on the other hand, is a measure to

calculate the ratio of defect-free modules that are wrongly

classified as defective with our predictor. In the ideal case, we

expect to see {100%, 0} for {pd, pf} rates, however, the model

trigger more often which has a cost of false alarms [1]. Finally,

balance indicates how close our estimates to the ideal case by

calculating the Euclidean distance between the performance of our

model and the point {100, 0}. Obviously, we have computed

these measures by comparing our predictions with the actual

defect data at every release. A confusion matrix is used to

compute performance measures (Table 2) with the formulas.

Table 2. Typical confusion matrix

predicted
Actual

defective defect free

defective A B

defect free C D

pd = A / (A + C)

pf = B / (B + D)

bal = 2pd)-(1 pf)-(0 -1 22 

In order to interpret our results to business managers, we also

agreed to construct a cost-benefit analysis based on Arisholm and

Briand‟s work [23]. We would simply measure the amount of

LOC or the number of modules that our model would predict as

defective. Then we would compare this with a random testing

strategy to measure how much we gain from testing effort by

using our predictor. In a random testing strategy, it is assumed

that we need to inspect K percent of LOC to detect K percent of

defective modules [23]. Our aim is to decrease this inspection cost

with the help of our predictor.

5.1 Challenges during Phase III
Although we started collecting data from completed versions of

the software system, we have realized that constructing such a

dataset would take a long time. We have seen that building a

version history is an inconsistent process. Developers could

allocate extra time to write all test defects they fixed during the

testing phase due to other business priorities. In addition,

matching those defects with corresponding files of the software

cannot be automatically handled. We could not form an effective

training set for a long time. Therefore, we were not able to build

our defect prediction model.

5.2 Our Methodology
Instead of waiting for a complete dataset, we have come up with

an alternative way to move ahead. In our previous research, we

had suggested companies, like this GSM operator, to build defect

predictors with other companies‟ data, i.e. cross-company data

[6]. Cross-company data can be used effectively in the absence of

a local data repository, especially when special filtering

techniques are used:

 Selecting similar projects from cross-company data

using nearest neighbor sampling [8].

 Increasing the information content of data using

dependency data between modules [22].

In our study, we have selected NASA projects as the cross-

company data, which are publicly available [7]. NASA projects

contain more than 20.000 modules, of which we used randomly

90% as the training data to predict defective modules in our

projects [6]. From this subset, we have selected a subset of

projects that are similar to those in our data in terms of Euclidean

distance in the 17 dimensional metric spaces [8]. The nearest

neighbors in this random subset are used to train the predictor.

We have added one more analysis using cross-company data to

increase the information content by adding dependency data

between modules of the projects. Our previous research [22]

shows that false alarms can be decreased from 30% to 20% using

a call graph based ranking framework in a public embedded

software data [7]. Therefore, we have also included caller-callee

relations between modules of NASA and the GSM projects to

adjust code metrics with this framework. We repeated this

procedure 20 times and raised a flag for modules that are

estimated as defective in at least 10 trials [8].

Table 3 shows the results from this analysis on 22 projects. Due to

the sizes of projects 7, 23 and 25 and high computing resources,

we were unable to derive call graphs for them. Therefore, we left

them out of this analysis. Results present the estimated defect rate

as 8% in their software system. There is a major difference with

the rule based approach in terms of their practical implications.

According to the rule-based model, LOC required to inspect

corresponds to 45% of the whole code, while module level defect

rate is 14%. On the other hand; for the learning-based model,

LOC required to inspect corresponds to only 2% of the code,

where module level defect rate is estimated as 8%. Therefore, we

can once more see the benefits of a learning-based model to

decrease testing efforts by guiding testers through defective parts

of the software.

The difference between two models is occurred because rule-

based model makes decisions based on individual metrics and it

has a bias towards more complex and larger modules. On the

other hand, learning based model combines all „signals‟ from each

metric and estimates defects located in smaller modules [1, 16].

It is important to mention that this analysis was completed in the

absence of local data. Therefore, we have used the results to show

the tangible benefits of building a defect predictor to the managers

and development team in the company.

6. PHASE IV: DEFECT PREDICTION

EXTENDED
This phase did not exist in our original plan, since we had

underestimated the time and effort that was necessary to build a

local data repository. In this phase, we were able to collect within-

company data from ten versions of the software. Properties of

projects in terms of number of files and defect rates are illustrated

in Table 4. This data is now at Promise Repository for other

researchers to reproduce, refute, and improve our results [7]. We

observed discontinuities in projects between releases, since some

projects may be rarely deployed or some of them may be

withdrawn at a certain release.

Table 3. Cross company analysis

Project

Estimated

defect rate

Estimated

defective

LOC

Total

LOC

%LOC for

inspection

GSM13 0.02 99 6206 0.02

GSM3 0.03 1035 45323 0.02

GSM14 0.08 163 5803 0.03

GSM27 0.06 85 4526 0.02

GSM5 0.06 2133 79114 0.03

GSM4 0.05 1130 53690 0.02

GSM15 0.13 138 5423 0.03

GSM16 0.18 505 10221 0.05

GSM17 0.09 1509 61602 0.02

GSM18 0.09 44 2485 0.02

GSM6 0.08 303 9767 0.03

GSM19 0.08 119 5425 0.02

GSM20 0.06 65 2965 0.02

GSM11 0.05 746 36280 0.02

GSM21 0.18 1476 42431 0.03

GSM22 0.04 140 6933 0.02

GSM23 0.1 246 10601 0.02

GSM9 0.07 137 6258 0.02

GSM10 0.03 82 3507 0.02

GSM24 0.03 28 1971 0.01

GSM8 0.01 389 51273 0.01

GSM25 0.19 369 10135 0.04

GSM26 0.07 168 4880 0.03

GSM2 0.1 2458 80941 0.03

TOTAL 13567 547760

AVG 0.08 0.02

We have decided on the experimental design of the local

prediction model in Phase IV. First, we have challenged the

amount of data, i.e. the ratio between defective and defect-free

modules, needed to establish predictions. We chose “micro-

sampling” approach based on our previous study [3] and we

formed the training set with N defective and M defect-free files

such that total size is twice the number of defective modules.

Second, we discussed on training data of the model to predict

defective files of the projects in the next release. We have

conducted two experiments to decide on the best strategy.

Table 4. General properties of GSM projects

Project Release ID

 1 2 3 4 5 6 7 8 9 10

GSM1 Total Files - - - 218 220 - 280 - - -

 Defectives 2 2 1

GSM2 Total Files 262 262 - - - - 264 - 264 -

 Defectives 2 2 - - - - 1 - 1 -

GSM3 Total Files 262 264 266 - - 281 - 300 310 310

 Defectives 2 2 1 - - 1 - 2 1 1

GSM4 Total Files 434 440 442 442 - 472 488 488 488 488

 Defectives 3 5 2 4 - 1 2 3 11 9

GSM5 Total Files 565 - 570 569 - 569 - 571 571 544

 Defectives 1 - 3 5 - 1 - 3 3 2

GSM6 Total Files 48 - - 48 - - - - - -

 Defectives 1 - - 1 - - - - - -

GSM9 Total Files - 28 28 - - - - - - -

 Defectives - 1 1 - - - - - - -

GSM10 Total Files - - - - - 91 - - - 105

 Defectives - - - - - 1 - - - 1

GSM11 Total Files - - - 204 - - - - 233 -

 Defectives - - - 1 - - - - 2 -

AVG Total Files 314 248.5 326.5 296.2 220 353.2 344 453 373.2 361.7

Defectives 1.8 2.5 1.7 2.6 2 1 1.3 2.6 3.4 3.2

Defect Rate %0.6 %1 %0.5 %0.8 %0.9 %0.3 %0.4 %0.6 %0.9 %0.9

Initially, we have used the latest previous release of each project

as the training set, i.e. the latest release that a project was

deployed and its metrics as well as defect data were collected. As

the second alternative, we have treated the latest previous release

of all projects as the training set [14].Test data is the next release

of that project, in which development phase has just been

completed and testing phase beings. Table 5 shows a sample of

two versions and two projects in our experiment results. We have

conducted 100 iterations and at each iteration we randomly

selected M defect-free files from previous releases to form the

training set and predict defect-prone parts of the current release

(test set). We took the average performance of 100 iterations. It is

observed that both of the approaches produced high pd rates in

the range between 78% to 100%. Third column (version-level)

presents the prediction performance when we choose our training

set from all projects of the previous version to predict defective

modules of projects, GSM3 and GSM4. The last column (project-

level), on the other hand, shows the performance of our predictor

when we use only the previous version of GSM3 or GSM4 to

predict defective modules of the selected project in the current

version. Results shows that project-level defect predictor is better

(bold cells in Table 5), although we have high false alarm rates.

Table 5. Results for version- vs. project-level prediction

Release

number

Appl.

Name

1st experiment with

8 appl.

2nd experiment

with GSM 3 or 4

Pd pf bal pd pf bal

2
GSM3 100 67 53 85 34 68

GSM4 78 75 44 80 66 51

3
GSM3 92 51 60 100 36 75

GSM4 81 63 45 90 71 44

6.1 Challenges during Phase IV
The results of this analysis, in Table 5, show that we still

produced high false alarms by selecting the training data from

previous versions of the specific project only, compared to results,

when training data is selected from the previous versions of the

various projects in the software. False alarms are dangerous for

such local predictors, since they cause the developers or testers

inspecting more modules than necessary. This, in fact, contradicts

with one of the initial aims of constructing a defect predictor:

decreasing testing effort. Since false alarms produce additional

costs, it is hard to adopt our predictor to their real development

practices. Therefore, we should find a strategy to detect as much

defective modules as possible, while decreasing false alarms to a

reasonable cost.

6.2 Our Methodology
We have discussed on the reasons of high false alarms in monthly

meetings with the project team and found that we need to clean

files that are not changed since January 2008 from the version

history. For this, we built a simple assumption on defect-

proneness of a module: It is highly probable that a module is

defect free if it has not been changed since January 2008. Then,

we have added a flag to each file of the projects that indicates

whether the file is actively changed or passive since January. The

model controls each of its predictions by looking at the history

flag of these files. If the model predicts a file as defective,

although it has not been used since January, then it is re-classified

as defect-free.

Results of our experiments using only code metrics (Model I) and

using code metrics along with history flags (Model II) are

summarized in Table 6 for all public datasets. We can clearly

observe that using version history improves the predictions

significantly in terms of pf rates. Our model succeeded in

decreasing false alarms, on the average from 50% to 28% using

version history. The change in pf rates vary in terms of projects in

the range of {0%, 63%} due to discontinuities in the changed

projects throughout version history. Additionally, we managed to

have stable high pd rates, on the average 88%, while reducing pf

rates successfully. Besides, we have spent less effort to detect

88% of these defective modules: Cost benefit analysis (CB

column in Table 6) shows that we have managed to decrease the

inspection effort to detect defective modules by 72%, from 88%

to 25%. As a result, using a defect prediction model enables

developers allocate their limited amount of time and effort to only

defect-prone parts of a system. Managers can also see the practical

implications of such decision making tools which reduces testing

effort and cost.

We have successfully built our defect predictor for the company

using local data and presented our results to the project team. The

results of the project showed that the company‟s business goal of

decreasing testing effort without compromising the level of

product quality can be achieved with intelligent oracles. We have

used several methods to calibrate the model for the company in

order to get the best prediction performance for them. We have

seen that file-level call graph based ranking (CGBR) method did

not work due to their transition to Service Oriented Architecture

(SOA). SOA did not allow us to capture caller-callee relations

through simple file interactions. Moreover, we have only used

static code attributes from Java files to build our model. However,

there are many PL/ SQL scripts that contain very critical

information on the interactions between application and data

layers. Thus, a simple call-graph based ranking in file-level could

not capture the overall picture and hence fail to increase the

information content in our study.

7. LESSONS LEARNED
During this project we had many challenges to overcome, and we

constantly re-defined our processes, and planned for new sets of

actions. In this section, we would like to discuss what can be

used as best practices, and what needs to be avoided next time.

We hope that this study and our self evaluation would shed some

light for other researchers and practitioners.

7.1 Best Practices
Managerial Support: From the beginning till the end of this

work, we had full support of senior management, and mid level

management. They were available and ready to help whenever we

needed them. We believe that without such a support a project

like this would not have been concluded successfully.

Project planning and monitoring: One of the critical success

factors was that we had a detailed project plan and we rigorously

followed and monitored the plan. This enabled us to identify

problems early on and to take necessary precautions on time.

Although we had many challenges we were able to finish the

project on time achieving and extending its intended goals. These

meetings also brought up new and creative research ideas. As a

research team we mapped the project plan and its deliverables to

new research topics and academic studies. Moreover, the

company has gained valuable outcomes, which are described in

the next best practice, i.e. “multiplier effect”.

Table 6. Results of local defect prediction model

 Name Model I Model II

 pd pf bal CB pd pf bal CB

2 GSM2 50 49 50 0 50 19 62 60

 GSM 3 100 31 76 66 100 18 86 81

 GSM 4 80 75 45 17 80 62 54 32

3 GSM 3 100 22 84 73 100 15 89 84

 GSM 4 100 69 42 49 100 61 53 61

 GSM 5 67 63 49 17 67 9 76 87

 GSM 9 100 8 95 71 100 0 100 92

4 GSM 4 75 75 42 34 75 53 55 53

 GSM 5 70 41 65 62 70 10 75 88

 GSM 6 100 51 46 52 100 6 94 93

5 GSM 1 75 35 63 51 75 15 68 74

6 GSM 3 90 25 81 68 90 18 85 81

 GSM 4 100 79 44 35 100 29 80 77

 GSM 5 72 35 68 65 72 8 79 92

7 GSM 1 100 34 59 43 100 27 76 65

 GSM2 50 55 33 0 50 8 61 84

 GSM4 100 31 78 59 100 29 80 64

8 GSM3 95 23 82 70 95 16 87 85

 GSM4 100 81 36 46 100 63 52 50

 GSM5 100 64 54 37 100 21 85 68

9 GSM2 100 29 80 54 100 17 88 79

 GSM4 100 74 44 41 100 62 55 53

 GSM5 100 52 58 53 100 18 89 84

 GSM11 100 28 81 79 50 17 63 74

10 GSM3 100 57 60 41 100 35 76 65

 GSM4 88 69 49 36 88 60 54 44

 GSM5 100 40 72 60 100 7 95 93

 GSM10 100 95 29 33 100 61 56 59

 AVG 90 50 59 47 88 28 74 72

Multiplier Effect: One of the benefits of doing a research in a live

laboratory environment, like this GSM company, is that

researchers can work on-site, access massive amounts of data,

conduct many experiments, and produce a lot of results. The

benefit of this amateur attitude to a commercial setting is that they

can get five times more output than originally planned. It is

definitely a win-win situation. Although we had stated a

measurement and defect prediction problem focusing only the

testing stage, we have extended the project to be able touch whole

stages of SDLC: 1) the design phase by using dependencies

between modules of the software system, 2) coding phase by

adding static code measurement, raw code analysis and rule-based

model, 3) coding phase by employing a sample test-driven

development, 4) testing phase by building a defect predictor to

decrease testing efforts, and finally 5) the maintenance phase by

examining the code complexity measures to evaluate which

modules need to be re-factored in the next release.

Existence of Well Defined Project Life Cycles and Roles/

Responsibilities: The development lifecycle in the company has

been arranged such that all stages, i.e. requirements, design,

coding, testing and maintenance are separately assigned to

different groups in the team. Therefore, segregation of duties has

been successfully operated in the company. We have benefited

from this organizational structure while we were working on this

project. It was easy to contact test team to take defect data, and the

development team to take measurements from the source code.

7.2 Things to Avoid Next Time
Lack of Tool Support: Automated tool support for measurement

and analysis is fundamental for these kinds of projects. In this

project we have developed metrics extraction tool to collect code

metrics easily, however, we were unable to match defects with

corresponding files. Therefore it took too much time to be able to

construct local defect prediction model. Therefore, our next plan

would definitely be initiating an automated bug tracing/ matching

mechanism with the company. We now highly recommend that

before a similar project starts an automated tool support for bug

collection and matching is employed.

Lack of documentation and architectural complexity: Large and

complex systems have distinguishing characteristics. Therefore,

proper documentation is paramount to understand the

complexities especially when critical milestones are defined at

every stage of such projects. This has caused us to face with many

challenges as we moved along. We had to change our plans

several times.

8. CONCLUSION
AI has been tackling the problem of decision making under

uncertainty for some time. This is a critical business problem that

managers in various industries have to deal with. This research

has been at the intersection of AI and Software Engineering. We

had the opportunity to use some of the most interesting

computational techniques to solve some of the most important and

rewarding questions in software development practice. Our

research was an empirical study where we collected data, designed

experiments, presented and evaluated the results of these

experiments. Contrary to classical machine learning applications

we focused on better understanding the data at hand. This case

study provided a live laboratory environment that was necessary

to achieve this.

We have seen that implementing AI in real life is very difficult,

but it is possible. As always both sides (academia and practice)

need passion for success. Our empirical results showed that a

metrics program can be built in less than a year time: as few as

100 data points are good enough to train the model [3]. In the

meantime the company can use cross company data to predict

defects by using simple filtering techniques. Finally, once a local

repository is built and version history information is used, we

would be able to compare our prediction with real defect data and

show that it catches 88% of defective modules with 28% false

alarms. Currently, we work to calibrate the local defect predictor

in the GSM in order to conduct real time predictions based on real

data, i.e., when implementation of the software has just been done

and testing phase begins. We have been trying to integrate this

predictor to their testing practices such that they would benefit

from the predictions, which would expect to catch on the average

88% of actual defective modules, and allocate their time to those

critical parts.

We have known that such metrics programs are well conducted in

many companies, like Motorola [20], Microsoft [10, 11] and

AT&T [2]. In such studies, AI based approaches are often

employed with process based metrics that add more value on

personal aspects of the development team, churn metrics related

with the version history and the process maturity of development

practices. Therefore, one of our research directions is to broaden

this study with new metrics, conducting questionnaires, and

comparing what we have done so far with those approaches.

9. ACKNOWLEDGMENT
We would like to thank Tim Menzies for his valuable comments

and reviews during the preparation of this work. This research is

supported in part by Turkish Scientific Research Council,

TUBITAK, under grant number EEEAG108E014, and Turkcell

A.Ş.

10. REFERENCES
[1] Menzies, T., Greenwald, J., Frank, A. 2007. Data Mining

Static Code Attributes to Learn Defect Predictors. IEEE

Transactions on Software Engineering, vol.33, no.1 (January

2007), 2-13.

[2] Ostrand, T.J., Weyuker E.J., Bell, R.M. 2005. Predicting the

Location and Number of Faults in Large Software Systems.

IEEE Transactions on Software Engineering, vol.31, no.4

(April 2005), 340-355.

[3] Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., and

Jiang, Y. 2000. Implications of Ceiling Effects in Defect

Predictors. in the Proceedings of PROMISE 2008 Workshop,

Germany.

[4] Halstead, H.M. 1977. Elements of Software Science.

Elsevier, New York.

[5] McCabe, T. 1976. A Complexity Measure. IEEE

Transactions on Software Engineering. vol.2, no.4, 308-320.

[6] Turhan, B., Menzies, T., Bener, A., Distefano, J. 2009. On

the Relative Value of Cross-company and Within-Company

Data for Defect Prediction. Empirical Software Engineering

Journal (January 2009), DOI: 10.1007/s10664-008-9103-7.

[7] Boetticher, G., Menzies, T., Ostrand, T. 2007. PROMISE

Repository of empirical software engineering data.

http://promisedata.org/repository. West Virginia University,

Department of Computer Science, 2007.

[8] Turhan, B., Bener, A., Menzies, T. 2008. Nearest Neighbor

Sampling for Cross Company Defect Prediction. In

Proceedings of the 1st International Workshop on Defects in

Large Software Systems, DEFECTS 2008, 26.

http://promisedata.org/repository

[9] Prest. 2009. Department of Computer Engineering, Bogazici

University, http://code.google.com/p/prest/

[10] Nagappan, N., Ball, T., Murphy, B. 2006. Using Historical

In-Process and Product Metrics for Early Estimation of

Software Failures. In Proceedings of the International

Symposium on Software Reliability Engineering, NC,

November 2006.

[11] Nagappan, N., Murphy, B., Basili, V. 2008. The Influence of

Organizational Structure on Software Quality. in Proceedings

of the International Conference on Software Engineering,

Germany, May 2008.

[12] NASA WVU IV & V Facility, Metrics Program. 2004.

http://mdp.ivv.nasa.gov

[13] Heeger, D. 1998. Signal Detection Theory.

http://white.stanford.edu//~heeger/sdt/sdt.html

[14] Tosun, A., Turhan, B., Bener, A. 2008. Direct and Indirect

Effects of Software Defect Predictors on Development

Lifecycle: An Industrial Case Study. in Proceedings of the

19th International Symposium on Software Reliability

Engineering, Seattle, USA, November 2008.

[15] Tosun, A., Turhan, B., Bener, A. 2008. Ensemble of

Software Defect Predictors: A Case Study. In Proceedings of

the 2nd International Symposium on Empirical Software

Engineering and Measurement, Germany, October 2008,

318-320.

[16] Turhan, B., Bener, A. 2009. Analysis of Naive Bayes'

Assumptions on Software Fault Data: An Empirical Study.

Data and Knowledge Engineering Journal, vol.68, no.2, 278-

290.

[17] Koru, G., Liu, H. 2007. Building effective defect prediction

models in practice. IEEE Software, 23-29.

[18] Lessmann, S., Baesens, B., Mues, C., Pietsch, S. 2008.

Benchmarking Classification Models for Software Defect

Prediction: A Proposed Framework and Novel Findings.

IEEE Transactions on Software Engineering, vol.34, no.4,

July/August 2008, 1-12.

[19] Chidamber, S.R., Kemerer, C.F. 1994. A Metrics Suite for

Object Oriented Design. IEEE Transactions on Software

Engineering, vol.20, no.6, 476-493.

[20] Fenton, N.E., Neil, M., Marsh, W., Hearty, P., Radlinski, L.,

and Krause, P. 2008. On the effectiveness of early life cycle

defect prediction with Bayesian Nets. Empirical Software

Engineering, vol.13, 2008, 499-537.

[21] The, A.N., Ruhe, G. 2009. Optimized Resource Allocation

for Software Release Planning. IEEE Transactions on

Software Engineering, vol.35,no.1, Jan/Feb 2009, 109-123.

[22] Arisholm, E., Briand, C.L. 2006. Predicting fault prone

components in a Java legacy system. In Proceedings of

ISESE‟06, 1-22.

http://code.google.com/p/prest/
http://mdp.ivv.nasa.gov/
http://white.stanford.edu/~heeger/sdt/sdt.html

	Welcome
	Program
	Committees
	Author Index
	Repository
	Search

