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ABSTRACT 

We have conducted a study in a large telecommunication 

company in Turkey to employ a software measurement program 

and to predict pre-release defects. We have previously built such 

predictors using AI techniques. This project is a transfer of our 

research experience into a real life setting to solve a specific 

problem for the company: to improve code quality by predicting 

pre-release defects and efficiently allocating testing resources. Our 

results in this project have many practical implications that 

managers have started benefiting: code analysis, bug tracking, 

effective use of version management system and defect prediction. 

Using version history information, developers can find around 

88% of the defects with 28% false alarms, compared to same 

detection rate with 50% false alarms without using historical data. 

In this paper we also shared in detail our experience in terms of 

the project steps (i.e. challenges and opportunities).  

Categories and Subject Descriptors 

D.2.9 [Management]: Software Quality Assurance. D.4.8 

[Performance]: Measurements, Modeling and Prediction.  

General Terms 

Measurement, Prediction. 

Keywords 

Software defect prediction, AI methods, experience report, static 

code attributes. 

1. INTRODUCTION 
Telecommunications is a highly competitive and booming 

industry in Turkey and its neighbours.   The leading GSM 

operator in Turkey operates in Azerbaijan, Kazakhstan, Georgia, 

Northern Cyprus and Ukraine with a customer base of 53,4 

million.   The company has grown very rapidly and successfully 

since its inception in 1994. It has an R&D centre having 200 

researchers and engineers with 1 to 10 years of experience. Their 

legacy software has millions of lines of code that needs to be 

maintained.  

The company is under constant pressure to launch new and better 

campaigns in limited amount of time with tight budgets. As the 

technology changes and the customers require new functionalities, 

they have to respond faster than ever by means of new software 

releases. Currently, they make releases in every two weeks. They 

use incremental software development [21], where each release 

has additional or modified functionalities, compared to the 

previous releases. So there is a limited time to track, control and 

fix the problems in their software. Similar to other software 

development companies, testing is one of the most critical stages 

in their development cycle [2, 12, 14]. Accordingly, the managers 

seek to lever any opportunity for improving their software 

development. 

Our study involved in construction of a metrics program and a 

decision support system to predict defects and apply more 

effective release management. Previous studies have implemented 

extensive automated metrics and defect prediction programs using 

data mining, specifically at NASA [1]. In this paper, we describe 

our experience in translating those programs to a 

telecommunication company. While the company‟s development 

practices are very different from those of NASA, the automated 

AI methods ported with relatively little effort. However, we spent 

much time learning the organization and working within their 

current practices. In that respect, we present our experience on the 

practical applications of AI techniques to solve the problems of 

the company‟s software development processes. The results of our 

study showed that practitioners can benefit from a learning-based 

defect predictor on the allocation of resources, bug tracing and 

measurement in a large software system. Using code metrics and 

version history, we managed to keep high stable detection rates, 

on the average 88%, while decreasing false alarms by 44%. Those 

improvements in the classification accuracy also affected the 

estimated inspection costs of testers to detect defective modules.  

2. GOALS OF THE PROJECT 
Our goals in this project are defined as building a code 

measurement, bug tracing/ matching program and a defect 

prediction model. We have jointly agreed on these goals with the 
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R&D manager, project managers and development team during 

the project kick-off meeting. Furthermore, senior management 

strongly believed that they should adjust their development 

processes to increase software quality as well as to make efficient 

resource allocation. We have decided on the roles and 

responsibilities and aligned the goals of the project with their 

business goals (Table 1). We clearly explained to them what they 

will have at the end.  

 

Table 1. Goals in line with business objectives 

Goals of the project Management objectives 

Code measurement and 

analysis of the software 

system. 

-Improve code quality 

Construction of a defect 

prediction model to predict 

defect prone modules 

before testing phase. 

-Decrease lifecycle costs 

such as testing effort. 

-Decrease defect rates 

Storing a version history 

and bug data. 

-Measure/ control the time 

to repair the defects 

 

In order to track the progress of the project, we decided to make 

monthly meetings with the project team, and quarterly meetings 

with the senior management to present the progress and discuss 

on the next step. Senior management meetings were quite 

important either to escalate the problems or to get their blessing 

on some critical decisions we had to make throughout the project. 

During the life of the project, Softlab researchers were on-site on 

a weekly basis to work with the coders, testers and quality teams.   

Previously, the company did not employ any measurement 

processes due to tight schedules and heavy workloads. Therefore, 

we have planned our work in four main phases. In the first phase, 

we aimed to measure static code attributes at functional/ method 

level from their source code. In the second phase, we planned to 

match software methods with pre-release defects. In the third and 

fourth phases, we planned to build and calibrate a defect 

prediction model, assuming that we would be able to collect 

enough data to train our model. However, the outcomes of every 

phase have led us to re-define and extend the original scope and 

objectives in the later stages. In the next sections, we will explain 

our initial plans, challenges we come across during each phase 

and our methodology to solve these problems in detail. 

3. PHASE I: CODE MEASUREMENT AND 

ANALYSIS 
In the first three months of the project, we aimed to analyze the 

company‟s coding practices and to conduct a literature survey of 

measurement and defect prediction in the telecommunications 

industry. At the end of this phase, we aimed at having agreed on 

the list of static code attributes and to decide on an automatic tool 

to collect them. We also hoped to have collected the first set of 

static code attributes from the source code in order to make a raw 

code analysis. In order to do that, we would choose the sample 

projects that we would collect data from.  

We decided that static code attributes can be used to point out 

current coding practices. Static code attributes are accepted as 

reliable indicators of defective modules in the software systems. 

They are widely used [1, 3, 6, 12, 15, 16, 17, 18] and easily 

collected through automated tools. Therefore, we have defined the 

set of static code attributes from NASA MDP Repository [12], as 

the metrics to be collected from the software in the company.  

Basically, we collected complexity metrics proposed by McCabe 

[5], metrics related to unique number of operators and operands, 

which are proposed by Halstead [4], size metrics to count 

executable and commented lines of code, and CK object-oriented 

metrics [19] from Java applications. Due to lack of space, we 

could not publish the set of metrics collected from their software. 

However, we have donated all data that comes from nine 

applications of the software to the Promise Repository [7] in 

terms of method, class, package and file levels. So they are 

publicly available for replicated studies or new experiments. 

3.1 Challenges during Phase I 
As mentioned earlier, the company did not have a process or an 

automated tool to measure code attributes. Our suggestion was to 

buy a commercially available automated tool to extract metrics 

information easily and quickly. However, due to budget 

constraints and concerns for adequacy of functionalities of the 

existing tools, senior management did not want to make an 

investment on such a tool. Besides, their software systems contain 

source codes and scripts written in different languages such as 

Java, JSP. Therefore the management was not convinced to find a 

cost effective single tool that would embrace all languages and 

extract similar attributes easily from all of them. 

Software system has the standard 3-tier architecture with 

presentation, application and data layers. However, the content in 

these layers cannot be separated as distinct projects. Any 

enhancement to the existing software somehow touches all or 

some of the layers at the same time, making it difficult to identify 

code ownership as well as to define distinct software projects. 

Another problem we have come across was related with the 

metrics collection process. When we observed the software 

development process with coding practices of the team, it seemed 

that collecting static code attributes in the same manner with 

NASA datasets, i.e. in functional method level, is almost 

impossible due to lack of an available automated mechanisms that 

would match those attributes with the defect data. 

3.2 Our Methodology  
Metric Extraction: We have implemented an all-in-one metrics 

extraction and analysis tool, Prest, to extract code metrics [9]. 

Compared to other commercial and open source tools, Prest 

embraces many distinctive features and it is freely available. It 

extracts 22 to 26 static code attributes in different granularities, 

i.e. package, class, file, method level. It is able to parse 

programming languages such as C, C++, Java, JSP, PL/SQL, and 

forms a dependency matrix that keeps inter-relations between 

modules of the software systems. Prest has a simple user interface, 

where the user can import the source code and parse his/her 

project using one or more language parsers. It is able to parse 

different parts of the code, using parsers of different programming 

languages (Figure 1). Then, static code attributes extracted in four 

granularity levels are displayed on the screen. Additional analysis 

on modules helps to identify critical modules whose attributes do 

not meet the coding standards of NASA MDP [12]. Sample 

screenshot for a GSM project can be seen in Figure 2. 



 

 

Figure 1. Screenshot from Prest: Parsing a project 

 

 

Figure 2. Screenshot from Prest: Displaying results 

 

We were able to collect static code attributes from 22 critical 

applications of the company. Moreover, we have inserted defect 

labels, i.e., 1 for defective and 0 for defect-free, to the modules 

using the UI. Then, we converted them to arff format to use in the 

classifier component of the tool. Currently, classifier component 

of Prest applies Naïve Bayes and Decision Tree algorithms, from 

which we have used the former one as the algorithm of our 

predictor. 

Project Selection: This was one of our first critical decisions in 

this project in order to define the scope and to choose projects 

and/ or units of production that would be under study. Although 

project managers initially wanted to focus on presentation and 

application layers due to the complexity of the architecture, we 

jointly decided to take 22 critical and highly interconnected Java 

applications embedded in these layers. We refer to them as 

projects during this study.  

Level of granularity: As we mentioned in the previous section, we 

were unable to use method-level metrics in the software system, 

since we could not collect method-level defect data from the 

developers in such limited amount of time. Therefore, we have 

aggregated our method-level attributes to the file-level by taking 

minimum, maximum, average and sum values of each file  [17] in 

order to make them compatible with defect data.  

4. PHASE II: BUG TRACING AND 

MATCHING 
The second phase of our study was originally planned to store 

defect data, i.e. test and production defects. If things had their 

normal course of action in Phase I, we would have collected 

metrics from the completed versions of 22 projects and matched 

the bugs as well.  

4.1 Challenges during Phase II 
This phase took much longer than we anticipated. First of all, 

there was no process for bug tracing. Secondly, test defects were 

not stored at method level during development activities. Thirdly, 

there was no process to match bugs.  

The project team has realized that the system is very complex such 

that it needs too much time and effort to match each defect with 

its file constantly. Additionally, developers did not volunteer to 

participate in this process, since keeping bug reports would have 

increased their busy workloads. 

4.2 Our Methodology 
To solve these issues, we called for an emergency meeting with 

senior management as well as with the heads of development, 

testing and quality teams. As a result, the company agreed to 

change their existing code development process. They built a 

version control log to keep changes in the source code done by 

the development team. These changes can be either bug fixing or 

new requirement request, all of which are uniquely numbered in 

the system. Whenever a developer checks in the source code to 

the version control system, he/she should provide additional 

information about the modified file, i.e. id of test defect or 

requirement request. Then, we would be able to retrieve those 

defect logs from the history and match them with the files of the 

projects in that version. We manually combined static code 

attributes with a defect flag, indicating 1 for defective files and 0 

for defect-free files. This process change also enabled the 

company to establish code ownership. 

During adaptation of this process change, we did additional 

analysis on static code attributes to point out some of the 

problems in the coding practices of the company‟s development 

team. Our intention was to represent the software development 

practices in the company, mention critical aspects and convince 

the team and the managers for those required course of actions. 

We have taken best practice coding standards of NASA MDP 

Repository [12] and compared them with our measurements. 

Based on our analysis, we have seen that there are two 

fundamental issues in the coding practices: a) No comments at all, 

which makes the source code hard to read and understand by 

other developers, b) Limited usage of vocabulary, which brings 

that the system is unnecessarily modular due to JSP codes from 

the application layer. This code analysis supports the necessity to 

improve the software quality.  

Moreover, as an alternative analysis, we have conducted a rule-

based code review process, based on code metrics. Our aim here 

was to present what amount of code should be reviewed and how 

much testing effort is needed to inspect defect-prone modules in 

the company [14]. To do this, we have simply defined rules for 

each attribute, based on its recommended minimum and maximum 

values [12]. These rules are fired, if a module‟s selected attribute 

is not in the specified interval. This also indicates that the module 

could be defect-prone, therefore, it should be manually inspected. 

The results of the rule-based model can be seen in Figure 3, where 

there are 17 basic rules with the corresponding attributes and two 



additional rules derived from all of the attributes. Rule #18 is fired 

if any of 17 rules is fired. This rule shows that we need to inspect 

100% LOC to find defect-prone modules of the overall system. 

Besides, Rule #19 is fired if all basic rules, but the Halstead rules, 

are fired. This reduces the firing frequency of the former rule such 

that 45% of the code (341655 LOC) should be reviewed to detect 

potentially problematic modules in the software. 

We have seen that rule-based code review process is impractical 

in the sense that we need to inspect 45% of the code [14]. So, it is 

obvious that we need more intelligent oracles to decrease testing 

effort and defect rates in the software system. 

 

 

Figure 3. Rule based analysis 

 

5. PHASE III: DEFECT PREDICTION 

MODELLING 
The original plan in this phase was to start constructing our 

prediction model with the data we had been collecting from the 

projects. We had planned to test the performance of our model 

with the ones in the literature. We would try different 

experimental designs, sampling methods, and AI algorithms to 

build such a model.  

We planned to build a learning-based defect predictor for the 

company. We have agreed to use Naïve Bayes classifier as the 

learner of this model, since a) it is simple and robust as a machine 

learning technique, b) it performs the best prediction accuracy, 

compared to other machine learning methods [1], and c) recent 

study by Lessmann et al. also shows that most of the machine 

learning algorithms are not significantly better than each other in 

defect prediction [18]. We also agreed on the performance 

measures of the defect predictor that we would build. We decided 

using three measures: probability of detection, pd, probability of 

false alarm, pf, and balance from signal detection theory [13]. Pd 

measures the percentage of defective modules that are correctly 

classified by the predictor. Pf, on the other hand, is a measure to 

calculate the ratio of defect-free modules that are wrongly 

classified as defective with our predictor. In the ideal case, we 

expect to see {100%, 0} for {pd, pf} rates, however, the model 

trigger more often which has a cost of false alarms [1]. Finally, 

balance indicates how close our estimates to the ideal case by 

calculating the Euclidean distance between the performance of our 

model and the point {100, 0}. Obviously, we have computed 

these measures by comparing our predictions with the actual 

defect data at every release. A confusion matrix is used to 

compute performance measures (Table 2) with the formulas. 

 

Table 2. Typical confusion matrix 

predicted 
Actual 

defective defect free 

defective A B 

defect free C D 

 

pd = A / (A + C) 

pf = B  / (B + D) 

bal = 2pd)-(1  pf)-(0 -1 22   

In order to interpret our results to business managers, we also 

agreed to construct a cost-benefit analysis based on Arisholm and 

Briand‟s work [23]. We would simply measure the amount of 

LOC or the number of modules that our model would predict as 

defective. Then we would compare this with a random testing 

strategy to measure how much we gain from testing effort by 

using our predictor. In a random testing strategy, it is assumed 

that we need to inspect K percent of LOC to detect K percent of 

defective modules [23]. Our aim is to decrease this inspection cost 

with the help of our predictor.   

5.1 Challenges during Phase III 
Although we started collecting data from completed versions of 

the software system, we have realized that constructing such a 

dataset would take a long time. We have seen that building a 

version history is an inconsistent process. Developers could 

allocate extra time to write all test defects they fixed during the 

testing phase due to other business priorities. In addition, 

matching those defects with corresponding files of the software 

cannot be automatically handled. We could not form an effective 

training set for a long time. Therefore, we were not able to build 

our defect prediction model.  

5.2 Our Methodology 
Instead of waiting for a complete dataset, we have come up with 

an alternative way to move ahead. In our previous research, we 

had suggested companies, like this GSM operator, to build defect 

predictors with other companies‟ data, i.e. cross-company data 

[6]. Cross-company data can be used effectively in the absence of 

a local data repository, especially when special filtering 

techniques are used:  

 Selecting similar projects from cross-company data 

using nearest neighbor sampling [8]. 

 Increasing the information content of data using 

dependency data between modules [22].  



In our study, we have selected NASA projects as the cross-

company data, which are publicly available [7]. NASA projects 

contain more than 20.000 modules, of which we used randomly 

90% as the training data to predict defective modules in our 

projects [6]. From this subset, we have selected a subset of 

projects that are similar to those in our data in terms of Euclidean 

distance in the 17 dimensional metric spaces [8]. The nearest 

neighbors in this random subset are used to train the predictor.  

We have added one more analysis using cross-company data to 

increase the information content by adding dependency data 

between modules of the projects. Our previous research [22] 

shows that false alarms can be decreased from 30% to 20% using 

a call graph based ranking framework in a public embedded 

software data [7]. Therefore, we have also included caller-callee 

relations between modules of NASA and the GSM projects to 

adjust code metrics with this framework. We repeated this 

procedure 20 times and raised a flag for modules that are 

estimated as defective in at least 10 trials [8]. 

Table 3 shows the results from this analysis on 22 projects. Due to 

the sizes of projects 7, 23 and 25 and high computing resources, 

we were unable to derive call graphs for them. Therefore, we left 

them out of this analysis. Results present the estimated defect rate 

as 8% in their software system. There is a major difference with 

the rule based approach in terms of their practical implications. 

According to the rule-based model, LOC required to inspect 

corresponds to 45% of the whole code, while module level defect 

rate is 14%. On the other hand; for the learning-based model, 

LOC required to inspect corresponds to only 2% of the code, 

where module level defect rate is estimated as 8%. Therefore, we 

can once more see the benefits of a learning-based model to 

decrease testing efforts by guiding testers through defective parts 

of the software.  

The difference between two models is occurred because rule-

based model makes decisions based on individual metrics and it 

has a bias towards more complex and larger modules. On the 

other hand, learning based model combines all „signals‟ from each 

metric and estimates defects located in smaller modules [1, 16]. 

It is important to mention that this analysis was completed in the 

absence of local data. Therefore, we have used the results to show 

the tangible benefits of building a defect predictor to the managers 

and development team in the company. 

 

6. PHASE IV: DEFECT PREDICTION 

EXTENDED 
This phase did not exist in our original plan, since we had 

underestimated the time and effort that was necessary to build a 

local data repository. In this phase, we were able to collect within-

company data from ten versions of the software. Properties of 

projects in terms of number of files and defect rates are illustrated 

in Table 4. This data is now at Promise Repository for other 

researchers to reproduce, refute, and improve our results [7]. We 

observed discontinuities in projects between releases, since some 

projects may be rarely deployed or some of them may be 

withdrawn at a certain release.  

 

Table 3. Cross company analysis 

Project 

Estimated 

defect rate 

Estimated 

defective 

LOC 

Total  

LOC 

%LOC for 

inspection 

GSM13 0.02 99 6206 0.02 

GSM3 0.03 1035 45323 0.02 

GSM14 0.08 163 5803 0.03 

GSM27 0.06 85 4526 0.02 

GSM5 0.06 2133 79114 0.03 

GSM4 0.05 1130 53690 0.02 

GSM15 0.13 138 5423 0.03 

GSM16 0.18 505 10221 0.05 

GSM17 0.09 1509 61602 0.02 

GSM18 0.09 44 2485 0.02 

GSM6 0.08 303 9767 0.03 

GSM19 0.08 119 5425 0.02 

GSM20 0.06 65 2965 0.02 

GSM11 0.05 746 36280 0.02 

GSM21 0.18 1476 42431 0.03 

GSM22 0.04 140 6933 0.02 

GSM23 0.1 246 10601 0.02 

GSM9 0.07 137 6258 0.02 

GSM10 0.03 82 3507 0.02 

GSM24 0.03 28 1971 0.01 

GSM8 0.01 389 51273 0.01 

GSM25 0.19 369 10135 0.04 

GSM26 0.07 168 4880 0.03 

GSM2 0.1 2458 80941 0.03 

TOTAL   13567 547760   

AVG 0.08     0.02 

 

We have decided on the experimental design of the local 

prediction model in Phase IV. First, we have challenged the 

amount of data, i.e. the ratio between defective and defect-free 

modules, needed to establish predictions. We chose “micro-

sampling” approach based on our previous study [3] and we 

formed the training set with N defective and M defect-free files 

such that total size is twice the number of defective modules. 

Second, we discussed on training data of the model to predict 

defective files of the projects in the next release. We have 

conducted two experiments to decide on the best strategy.  

 

 

 



Table 4. General properties of GSM projects 

Project  Release ID 

  1 2 3 4 5 6 7 8 9 10 

GSM1 Total Files - - - 218 220 - 280 - - - 

 Defectives    2 2  1    

GSM2 Total Files 262 262 - - - - 264 - 264 - 

 Defectives 2 2 - - - - 1 - 1 - 

GSM3 Total Files 262 264 266 - - 281 - 300 310 310 

 Defectives 2 2 1 - - 1 - 2 1 1 

GSM4 Total Files 434 440 442 442 - 472 488 488 488 488 

 Defectives 3 5 2 4 - 1 2 3 11 9 

GSM5 Total Files 565 - 570 569 - 569 - 571 571 544 

 Defectives 1 - 3 5 - 1 - 3 3 2 

GSM6 Total Files 48 - - 48 - - - - - - 

 Defectives 1 - - 1 - - - - - - 

GSM9 Total Files - 28 28 - - - - - - - 

 Defectives - 1 1 - - - - - - - 

GSM10 Total Files - - - - - 91 - - - 105 

 Defectives - - - - - 1 - - - 1 

GSM11 Total Files - - - 204 - - - - 233 - 

 Defectives - - - 1 - - - - 2 - 

AVG Total Files 314 248.5 326.5 296.2 220 353.2 344 453 373.2 361.7 

 
Defectives 1.8 2.5 1.7 2.6 2 1 1.3 2.6 3.4 3.2 

Defect Rate %0.6 %1 %0.5 %0.8 %0.9 %0.3 %0.4 %0.6 %0.9 %0.9 

Initially, we have used the latest previous release of each project 

as the training set, i.e. the latest release that a project was 

deployed and its metrics as well as defect data were collected. As 

the second alternative, we have treated the latest previous release 

of all projects as the training set [14].Test data is the next release 

of that project, in which development phase has just been 

completed and testing phase beings. Table 5 shows a sample of 

two versions and two projects in our experiment results. We have 

conducted 100 iterations and at each iteration we randomly 

selected M defect-free files from previous releases to form the 

training set and predict defect-prone parts of the current release 

(test set). We took the average performance of 100 iterations. It is 

observed that both of the approaches produced high pd rates in 

the range between 78% to 100%. Third column (version-level) 

presents the prediction performance when we choose our training 

set from all projects of the previous version to predict defective 

modules of projects, GSM3 and GSM4. The last column (project-

level), on the other hand, shows the performance of our predictor 

when we use only the previous version of GSM3 or GSM4 to 

predict defective modules of the selected project in the current 

version. Results shows that project-level defect predictor is better 

(bold cells in Table 5), although we have high false alarm rates. 

 

Table 5. Results for version- vs. project-level prediction 

Release 

number 

Appl. 

Name 

1st experiment with 

8 appl. 

2nd experiment 

with GSM 3 or 4 

Pd pf bal pd pf bal 

2 
GSM3 100 67 53 85 34 68 

GSM4 78 75 44 80 66 51 

3 
GSM3 92 51 60 100 36 75 

GSM4 81 63 45 90 71 44 

6.1 Challenges during Phase IV 
The results of this analysis, in Table 5, show that we still 

produced high false alarms by selecting the training data from 

previous versions of the specific project only, compared to results, 

when training data is selected from the previous versions of the 

various projects in the software. False alarms are dangerous for 

such local predictors, since they cause the developers or testers 

inspecting more modules than necessary. This, in fact, contradicts 

with one of the initial aims of constructing a defect predictor: 

decreasing testing effort. Since false alarms produce additional 

costs, it is hard to adopt our predictor to their real development 

practices. Therefore, we should find a strategy to detect as much 

defective modules as possible, while decreasing false alarms to a 

reasonable cost.  

6.2 Our Methodology 
We have discussed on the reasons of high false alarms in monthly 

meetings with the project team and found that we need to clean 

files that are not changed since January 2008 from the version 

history. For this, we built a simple assumption on defect-

proneness of a module: It is highly probable that a module is 

defect free if it has not been changed since January 2008. Then, 

we have added a flag to each file of the projects that indicates 

whether the file is actively changed or passive since January. The 

model controls each of its predictions by looking at the history 

flag of these files. If the model predicts a file as defective, 

although it has not been used since January, then it is re-classified 

as defect-free.  

Results of our experiments using only code metrics (Model I) and 

using code metrics along with history flags (Model II) are 

summarized in Table 6 for all public datasets. We can clearly 

observe that using version history improves the predictions 



significantly in terms of pf rates. Our model succeeded in 

decreasing false alarms, on the average from 50% to 28% using 

version history. The change in pf rates vary in terms of projects in 

the range of {0%, 63%} due to discontinuities in the changed 

projects throughout version history. Additionally, we managed to 

have stable high pd rates, on the average 88%, while reducing pf 

rates successfully. Besides, we have spent less effort to detect 

88% of these defective modules: Cost benefit analysis (CB 

column in Table 6) shows that we have managed to decrease the 

inspection effort to detect defective modules by 72%, from 88% 

to 25%. As a result, using a defect prediction model enables 

developers allocate their limited amount of time and effort to only 

defect-prone parts of a system. Managers can also see the practical 

implications of such decision making tools which reduces testing 

effort and cost. 

We have successfully built our defect predictor for the company 

using local data and presented our results to the project team. The 

results of the project showed that the company‟s business goal of 

decreasing testing effort without compromising the level of 

product quality can be achieved with intelligent oracles. We have 

used several methods to calibrate the model for the company in 

order to get the best prediction performance for them. We have 

seen that file-level call graph based ranking (CGBR) method did 

not work due to their transition to Service Oriented Architecture 

(SOA). SOA did not allow us to capture caller-callee relations 

through simple file interactions. Moreover, we have only used 

static code attributes from Java files to build our model. However, 

there are many PL/ SQL scripts that contain very critical 

information on the interactions between application and data 

layers. Thus, a simple call-graph based ranking in file-level could 

not capture the overall picture and hence fail to increase the 

information content in our study. 

7. LESSONS LEARNED 
During this project we had many challenges to overcome, and we 

constantly re-defined our processes, and planned for new sets of 

actions.  In this section, we would like to discuss what can be 

used as best practices, and what needs to be avoided next time. 

We hope that this study and our self evaluation would shed some 

light for other researchers and practitioners. 

7.1 Best Practices 
Managerial Support: From the beginning till the end of this 

work, we had full support of senior management, and mid level 

management. They were available and ready to help whenever we 

needed them. We believe that without such a support a project 

like this would not have been concluded successfully.  

Project planning and monitoring: One of the critical success 

factors was that we had a detailed project plan and we rigorously 

followed and monitored the plan. This enabled us to identify 

problems early on and to take necessary precautions on time. 

Although we had many challenges we were able to finish the 

project on time achieving and extending its intended goals. These 

meetings also brought up new and creative research ideas. As a 

research team we mapped the project plan and its deliverables to 

new research topics and academic studies. Moreover, the 

company has gained valuable outcomes, which are described in 

the next best practice, i.e. “multiplier effect”. 

 

Table 6. Results of local defect prediction model 

 Name Model I Model II 

  pd pf bal CB pd pf bal CB 

2 GSM2 50 49 50 0 50 19 62 60 

 GSM 3 100 31 76 66 100 18 86 81 

 GSM 4 80 75 45 17 80 62 54 32 

3 GSM 3 100 22 84 73 100 15 89 84 

 GSM 4 100 69 42 49 100 61 53 61 

 GSM 5 67 63 49 17 67 9 76 87 

 GSM 9 100 8 95 71 100 0 100 92 

4 GSM 4 75 75 42 34 75 53 55 53 

 GSM 5 70 41 65 62 70 10 75 88 

 GSM 6 100 51 46 52 100 6 94 93 

5 GSM 1 75 35 63 51 75 15 68 74 

6 GSM 3 90 25 81 68 90 18 85 81 

 GSM 4 100 79 44 35 100 29 80 77 

 GSM 5 72 35 68 65 72 8 79 92 

7 GSM 1 100 34 59 43 100 27 76 65 

 GSM2 50 55 33 0 50 8 61 84 

 GSM4 100 31 78 59 100 29 80 64 

8 GSM3 95 23 82 70 95 16 87 85 

 GSM4 100 81 36 46 100 63 52 50 

 GSM5 100 64 54 37 100 21 85 68 

9 GSM2 100 29 80 54 100 17 88 79 

 GSM4 100 74 44 41 100 62 55 53 

 GSM5 100 52 58 53 100 18 89 84 

 GSM11 100 28 81 79 50 17 63 74 

10 GSM3 100 57 60 41 100 35 76 65 

 GSM4 88 69 49 36 88 60 54 44 

 GSM5 100 40 72 60 100 7 95 93 

 GSM10 100 95 29 33 100 61 56 59 

 AVG 90 50 59 47 88 28 74 72 

 

Multiplier Effect: One of the benefits of doing a research in a live 

laboratory environment, like this GSM company, is that 

researchers can work on-site, access massive amounts of data, 

conduct many experiments, and produce a lot of results. The 

benefit of this amateur attitude to a commercial setting is that they 

can get five times more output than originally planned. It is 

definitely a win-win situation. Although we had stated a 

measurement and defect prediction problem focusing only the 

testing stage, we have extended the project to be able touch whole 

stages of SDLC: 1) the design phase by using dependencies 

between modules of the software system, 2) coding phase by 



adding static code measurement, raw code analysis and rule-based 

model, 3) coding phase by employing a sample test-driven 

development, 4) testing phase by building a defect predictor to 

decrease testing efforts, and finally 5) the maintenance phase by 

examining the code complexity measures to evaluate which 

modules need to be re-factored in the next release. 

Existence of Well Defined Project Life Cycles and Roles/ 

Responsibilities: The development lifecycle in the company has 

been arranged such that all stages, i.e. requirements, design, 

coding, testing and maintenance are separately assigned to 

different groups in the team. Therefore, segregation of duties has 

been successfully operated in the company. We have benefited 

from this organizational structure while we were working on this 

project. It was easy to contact test team to take defect data, and the 

development team to take measurements from the source code.  

7.2 Things to Avoid Next Time 
Lack of Tool Support: Automated tool support for measurement 

and analysis is fundamental for these kinds of projects. In this 

project we have developed metrics extraction tool to collect code 

metrics easily, however, we were unable to match defects with 

corresponding files. Therefore it took too much time to be able to 

construct local defect prediction model. Therefore, our next plan 

would definitely be initiating an automated bug tracing/ matching 

mechanism with the company. We now highly recommend that 

before a similar project starts an automated tool support for bug 

collection and matching is employed. 

Lack of documentation and architectural complexity: Large and 

complex systems have distinguishing characteristics. Therefore, 

proper documentation is paramount to understand the 

complexities especially when critical milestones are defined at 

every stage of such projects. This has caused us to face with many 

challenges as we moved along. We had to change our plans 

several times. 

8. CONCLUSION 
AI has been tackling the problem of decision making under 

uncertainty for some time. This is a critical business problem that 

managers in various industries have to deal with. This research 

has been at the intersection of AI and Software Engineering. We 

had the opportunity to use some of the most interesting 

computational techniques to solve some of the most important and 

rewarding questions in software development practice. Our 

research was an empirical study where we collected data, designed 

experiments, presented and evaluated the results of these 

experiments. Contrary to classical machine learning applications 

we focused on better understanding the data at hand. This case 

study provided a live laboratory environment that was necessary 

to achieve this.  

We have seen that implementing AI in real life is very difficult, 

but it is possible. As always both sides (academia and practice) 

need passion for success. Our empirical results showed that a 

metrics program can be built in less than a year time: as few as 

100 data points are good enough to train the model [3]. In the 

meantime the company can use cross company data to predict 

defects by using simple filtering techniques. Finally, once a local 

repository is built and version history information is used, we 

would be able to compare our prediction with real defect data and 

show that it catches 88% of defective modules with 28% false 

alarms. Currently, we work to calibrate the local defect predictor 

in the GSM in order to conduct real time predictions based on real 

data, i.e., when implementation of the software has just been done 

and testing phase begins. We have been trying to integrate this 

predictor to their testing practices such that they would benefit 

from the predictions, which would expect to catch on the average 

88% of actual defective modules, and allocate their time to those 

critical parts. 

We have known that such metrics programs are well conducted in 

many companies, like Motorola [20], Microsoft [10, 11] and 

AT&T [2]. In such studies, AI based approaches are often 

employed with process based metrics that add more value on 

personal aspects of the development team, churn metrics related 

with the version history and the process maturity of development 

practices. Therefore, one of our research directions is to broaden 

this study with new metrics, conducting questionnaires, and 

comparing what we have done so far with those approaches. 

9. ACKNOWLEDGMENT 
We would like to thank Tim Menzies for his valuable comments 

and reviews during the preparation of this work. This research is 

supported in part by Turkish Scientific Research Council, 

TUBITAK, under grant number EEEAG108E014, and Turkcell 

A.Ş.  

10. REFERENCES 
[1] Menzies, T., Greenwald, J., Frank, A. 2007. Data Mining 

Static Code Attributes to Learn Defect Predictors. IEEE 

Transactions on Software Engineering, vol.33, no.1 (January 

2007), 2-13. 

[2] Ostrand, T.J., Weyuker E.J., Bell, R.M. 2005. Predicting the 

Location and Number of Faults in Large Software Systems. 

IEEE Transactions on Software Engineering, vol.31, no.4 

(April 2005), 340-355.  

[3] Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., and 

Jiang, Y. 2000. Implications of Ceiling Effects in Defect 

Predictors. in the Proceedings of PROMISE 2008 Workshop, 

Germany. 

[4] Halstead, H.M. 1977. Elements of Software Science. 

Elsevier, New York. 

[5] McCabe, T. 1976. A Complexity Measure. IEEE 

Transactions on Software Engineering. vol.2, no.4, 308-320. 

[6] Turhan, B., Menzies, T., Bener, A., Distefano, J. 2009. On 

the Relative Value of Cross-company and Within-Company 

Data for Defect Prediction. Empirical Software Engineering 

Journal (January 2009), DOI: 10.1007/s10664-008-9103-7. 

[7] Boetticher, G., Menzies, T., Ostrand, T. 2007. PROMISE 

Repository of empirical software engineering data. 

http://promisedata.org/repository. West Virginia University, 

Department of Computer Science, 2007. 

[8] Turhan, B., Bener, A., Menzies, T. 2008. Nearest Neighbor 

Sampling for Cross Company Defect Prediction. In 

Proceedings of the 1st International Workshop on Defects in 

Large Software Systems, DEFECTS 2008, 26. 

http://promisedata.org/repository


[9] Prest. 2009. Department of Computer Engineering, Bogazici 

University, http://code.google.com/p/prest/  

[10] Nagappan, N., Ball, T., Murphy, B. 2006. Using Historical 

In-Process and Product Metrics for Early Estimation of 

Software Failures. In Proceedings of the International 

Symposium on Software Reliability Engineering, NC, 

November 2006. 

[11] Nagappan, N., Murphy, B., Basili, V. 2008. The Influence of 

Organizational Structure on Software Quality. in Proceedings 

of the International Conference on Software Engineering, 

Germany, May 2008. 

[12] NASA WVU IV & V Facility, Metrics Program. 2004. 

http://mdp.ivv.nasa.gov  

[13] Heeger, D. 1998. Signal Detection Theory. 

http://white.stanford.edu//~heeger/sdt/sdt.html  

[14] Tosun, A., Turhan, B., Bener, A. 2008. Direct and Indirect 

Effects of Software Defect Predictors on Development 

Lifecycle: An Industrial Case Study. in Proceedings of the 

19th International Symposium on Software Reliability 

Engineering, Seattle, USA, November 2008. 

[15] Tosun, A., Turhan, B., Bener, A. 2008. Ensemble of 

Software Defect Predictors: A Case Study. In Proceedings of 

the 2nd International Symposium on Empirical Software 

Engineering and Measurement, Germany, October 2008, 

318-320. 

[16] Turhan, B., Bener, A. 2009. Analysis of Naive Bayes' 

Assumptions on Software Fault Data: An Empirical Study. 

Data and Knowledge Engineering Journal, vol.68, no.2, 278-

290. 

[17] Koru, G., Liu, H. 2007. Building effective defect prediction 

models in practice. IEEE Software, 23-29. 

[18] Lessmann, S., Baesens, B., Mues, C., Pietsch, S. 2008. 

Benchmarking Classification Models for Software Defect 

Prediction: A Proposed Framework and Novel Findings. 

IEEE Transactions on Software Engineering, vol.34, no.4, 

July/August 2008, 1-12. 

[19] Chidamber, S.R., Kemerer, C.F. 1994. A Metrics Suite for 

Object Oriented Design. IEEE Transactions on Software 

Engineering, vol.20, no.6, 476-493. 

[20] Fenton, N.E., Neil, M., Marsh, W., Hearty, P., Radlinski, L., 

and Krause, P. 2008. On the effectiveness of early life cycle 

defect prediction with Bayesian Nets. Empirical Software 

Engineering, vol.13, 2008, 499-537. 

[21] The, A.N., Ruhe, G. 2009. Optimized Resource Allocation 

for Software Release Planning. IEEE Transactions on 

Software Engineering, vol.35,no.1, Jan/Feb 2009, 109-123. 

[22] Arisholm, E., Briand, C.L. 2006. Predicting fault prone 

components in a Java legacy system. In Proceedings of 

ISESE‟06, 1-22.

 

http://code.google.com/p/prest/
http://mdp.ivv.nasa.gov/
http://white.stanford.edu/~heeger/sdt/sdt.html

	Welcome
	Program
	Committees
	Author Index
	Repository
	Search

