Classification of Tasks Using Machine Learning

Bernd Bruegge, Joern David, Jonas Helming, Maximilian Koegel

Technical University Munich
Institute of Computer Science / I1
D-85748 Garching, Germany
{bruegge,david,helming,koegel}@in.tum.de

ABSTRACT

Categorizing software engineering artifacts, tasks in our case,
is often a prerequisite for analysis and research. As an exam-
ple, categorizing tasks according to their activity allows for
a post-mortem analysis of the life cycle model of a project
and can be used as a foundation for software metrics. Many
categorical attributes of software artifacts are often not en-
tered correctly or are not entered at all. For example, we
observed a significant number of obsolete tasks that were
not categorized as such.

In this paper, we present an approach for the automatic
classification of tasks in software development projects using
machine learning. We evaluated our technique by two sam-
ple applications from the domain of project management:
Tasks are classified according to activity and relevance, re-
spectively. Project-relevant characteristics are learned by
the classifier from the project history. Five-fold cross-valida-
tion of both applications resulted in classification accuracies
of 80.51% (six categories) and 83.72% (two categories). Our
approach is also applicable to other types of artifacts and
categorizations within a unified software engineering model.

1. INTRODUCTION

Software projects usually produce a variety of artifacts
as outcome of different development activities. These ar-
tifacts include, for example, use cases for the activity re-
quirements engineering, components for system design, or
tasks for project management. This is even true for agile
methodologies like Scrum [16] or XP [6], which work with
artifacts such as user stories or backlog items. For model-
based approaches like the wnified requirements model [7],
these artifacts usually consist of a number of attributes; for
example, a task may consist of a name, a description and
a due date. Additional information is captured in associa-
tions between artifacts, e.g. if one requirement is refining
another requirement, or a task is annotated to its object.
Artifacts are classified according to selected attributes of in-
terest, e.g. the type or the priority of a certain requirement

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

© ACM 2009 ISBN: 978-1-60558-634-2...$10.00

[29], which we call classification attributes. These classifi-
cation attributes can be used as a foundation for metrics
and analyses; Mockus [23], for example, uses the attributes
state and resolution of bug reports. Scrum uses burn-down
charts, which are calculated based on the attribute status of
ToDo items.

These approaches rely on the availability and up-to-date-
ness of the used information, i.e. the classification attributes.
However, up-to-date classification attributes are not always
available. This can be the case if the need for a certain clas-
sification attribute was not anticipated and the attribute
was therefore not captured at creation time. For example,
an analysis of the progress of different software engineer-
ing activities (e.g. requirements analysis) might be required
during an ongoing project, but the captured tasks are not
categorized by activities. In this scenario, automatic ac-
tivity classification is very useful for an ex-post assignment
of the originating activities. Furthermore, some attributes
might not be entered completely and correctly by users. We
observed a significant number of users who are reluctant to
close irrelevant tasks. The effort for manually completing
and updating required information may exceed the benefit
drawn from this information.

Consequently there are approaches in software engineer-
ing, which aim at the automatic classification of artifacts
(e.g. [31]). For example, Anvik and his colleagues [4] also
see the need for an automatic classification of software ar-
tifacts using machine learning techniques. They compared
three classifiers in determining the respective project partic-
ipant, who should fix a reported bug. The reported precision
rates highly vary between 6% to about 50% depending on
the observed development project. Another problem of the
presented approach are the low recall values, meaning that
the set of recommended persons to fix a bug is only a small
subset of the potentially available ones.

We propose a new approach to automatically classify soft-
ware development tasks. The approach combines the modu-
lar recurrent neural network MRNN [12, 13] with the Ratio-
nal-based Uniform Software Engineering model (RUSE) [33].
This technique offers three major benefits compared to exist-
ing approaches: (1) It is capable of handling fuzzy, incom-
plete and partially incorrect data, which may result from
incomplete and inaccurate user input. 2) It considers trace-
ability links between software engineering artifacts, which
generates additional input information for the classification
mechanism and therefore improves the quality of the classi-
fication result [24, 21]. 3) It is able to process different types
of artifacts within the same classification task. Even more,

our approach is highly extensible with respect to additional
artifacts. Thus our approach can be reused for classifica-
tion problems in different projects regarding various types
of software artifacts.

To evaluate the feasibility and performance of our ap-
proach, we selected two typical classification problems, which
are motivated and detailed in section 4. The first one is to
classify tasks according to the development activity which
they are part of [9]. The second one is to classify the status of
tasks; that is, the machine learning engine predicts whether
they are still under examination or already completed and
thus obsolete (irrelevant).

The paper is organized as follows: in section 2, we present
the RUSE model in detail and explain how it is used by the
classification engine. In section 3, we elaborate on the de-
sign of the generic machine learning engine called MRNN
and describe its training setup for a classification problem.
In section 4, we apply our approach to both types of arti-
fact classifications and present the evaluation results. We
also compare our machine learning approach with alterna-
tive classification techniques ranging from support vector
machines to meta-classifiers such as multi-boosting or ran-
dom forests based on the same dataset. Finally, in section
5, we contrast the results from our machine learning tech-
nique with the ability of humans to classify unseen software
artifacts with respect to their corresponding activity.

2. RUSE

This section shortly describes the existing Rational-based
Uniform Software Engineering model (RUSE) [33]. Further,
we will motivate, why we based our approach on RUSE.
RUSE supports distributed software engineering projects in
system modeling, collaboration and organization. The key
idea of RUSE is the combination of different software engi-
neering models into one unified model. Thereby it is possible
to link artifacts from different aspects of a software engineer-
ing project, which is called horizontal traceability [8]. As an
example, a task can be linked to the person the task is as-
signed to as well as to the artifact the task deals with. Like
many software engineering models, RUSE also provides ver-
tical traceability, which means one can link artifacts of the
same model between different levels of abstraction [8]. For

=

Collaboration Organization
Element Element

AN LF

[poson | [e |

| SystemElement

X
[| !

| UMLUseCase | UMLClass | | UserStory '

| Issue ' | Risk H Milestone | | Iteration ' ‘ Task |

Figure 1: Class diagram showing the Rational-based
Uniform Software Engineering model (RUSE).

example, a person is linked to his team or a requirement
is linked to a detailing use case. Both types of traceability
provide additional context information about software engi-

neering artifacts. As all the linked artifacts are available in
the same model (and repository), it is easy to follow these
links and to use the context information as additional input
for our approach. Furthermore, all artifacts in RUSE are
based on the same meta-model, which enables our generic
machine learning approach to flexibly exploit different types
of artifacts.

As shown in figure 1, every element in RUSE is a Mod-
elElement. The RUSE model supports three different cate-
gories of ModelElements: SystemElements, Collaboration-—
Elements, and OrganizationElements. SystemElements are
used to model the system under construction on different
layers of abstraction. This includes requirements, test cases,
and the detailed specification of the system. Most of the
SystemElements are based on the Unified Modeling Lan-
guage (UML) [1], but RUSE also supports other abstrac-
tions such as user stories used in XP [6]. CollaborationEle-
ments capture the communication and collaboration of users
and are mainly based on the QOC model [22]. Collabora-
tionElements range from comments, tasks and risks to mile-
stones and iterations. OrganizationElements describe the
organizational structure of a software development project
and are used to model organizational units such as teams
and participants and their associations. =~ RUSE is imple-

Task

assignedTo

Organizational Unit

+Name: String
+Description: String
+DueDate: Date
+CreationDate: Date
+Activity: Enumeration
+Status: Boolean

creator

annotates

Requirement

EnEs

Figure 2:
model of the Rational-based Uniform Software Engineer-
ing model (RUSE).

Class diagram showing the detailed Task

mented in a tool suite called Sysiphus [16], which provides
online and offline collaboration support for distributed de-
velopment teams. In our case study, Sysiphus was employed
as the central project- and CASE-tool for a large student-
driven project. Sysiphus also supports a change-based soft-
ware configuration management (SCM) approach [19]. This
approach allows to track every change made on the unified
model; and it can further be used to navigate over time in the
project, as it was outlined in the PAUSE approach [15]. In
other words, this allows to recreate every state of the whole
project and to reproduce every applied change. This capa-
bility can be used to create input data from past versions of
the models’ instances for the training of our machine learn-
ing approach, as it was conducted in our second case study.
Furthermore, Sysiphus supports flexible customizations and
extensions of the used model. This means that one can easily
add new attributes and associations also called links. In our
case study, we added the classification attribute activity to
the model element Task, the value of which is to be entered

Attribute

Meaning

Name A short and unique name for the represented task.
Description A detailed description of the task.
DueDate The deadline for the completion of the task, if there is one.
CreationDate The date where the task was created in the system. The attribute is set automatically.
Activity The Activity attribute classifies an Task according to the
software engineering activity it originated from. In our case the activity could be:
-Analysis -System Design -Object Design -Implementation -Testing -Project Management

Status Determines if the corresponding task is still in progress or already done, that is, irrelevant.

Table 1: Description of the non-link attributes of an Task.

by the users. This classification attribute served as input
(target feature for supervised learning) for the training of
our machine learning engine.

One particular type of software artifact in RUSE is a Task.
In the following, we will describe which input information
of the artifacts of type Task was captured in Sysiphus and
was therefore used for our evaluation. As shown in figure
2, a Task consists of six attributes as well as five different
links between Task and other ModelElements. All informa-
tion except CreationDate has to be entered manually by the
developer or the project planner. Table 1 shows an overview
of the six relevant attributes, table 2 shows the five links of
interest.

Attribute Meaning

parent Link to a parent task. That is, a task that can be

broken down to this child and other children.
child Link to child tasks.
assignedTo Link to a person or a team
the task is assigned to.
creator Link to a person or a team,
which is the creator of the task.

annotates Link to the object of the task,

e.g. a requirement the task refers to.

Table 2: Description of the links between an Task and
other ModelElements.

3. THE CLASSIFICATION ENGINE

In this paper, we employ a connectionist method for the
classification of software artifacts based on their attributes.
We use a modular recurrent neural network (MRNN) [13] as
enabling technology of our classification approach. Neural
networks in general have shown to be capable of handling
distorted, incomplete, or erroneous input data [5]. It is not
reasonable to use a Naive Bayes classifier for this kind of
fuzzy classification task, for example, since one can hardly
assume that the attributes are stochastically independent
(e.g. CreationDate and DueDate of a Task). Even in the
cases, where this is not harmful for the classification ac-
curacy’, one does not want to rely on those premises. To

Tt is harmful, for example, if the different classes only
discriminate in the correlations between the different at-
tributes.

substantiate the choice of a connectionist classifier empiri-
cally, we present a comparison with alternative classification
techniques in section 4.2.

Recurrent neural networks are a subclass of artificial neu-
ral networks, which are characterized by recurrent connec-
tions between their units. These typically form a directed
cycle, while common feed-forward networks do not allow any
cycles [10]. The MRNN is able to process different types of
artifacts within the same classification task. Furthermore,
the MRNN classification engine is robust, since it is capable
of handling fuzzy, incomplete, and partially incorrect data.
Robustness [17] is especially important when processing soft-
ware engineering knowledge. For example, many instances
of the type Task created during the software project consid-
ered in section 4 lack several attribute values [28]. Only the
attribute Name is constantly available. Alternative classi-
fiers such as k-nearest-neighbor classifiers (kNN) [11] do not
cope well with missing values in the feature vector repre-
sentation. Finally, the application to software engineering
data requires to learn from examples, since the knowledge
is not explicitly given in a rule-based or in another declar-
ative form. Thus, logical inference based on an ontology of
software engineering concepts (terminological box), for ex-
ample, is not applicable here.

The fundamental data structure that is processed by the
MRNN are sequences of arbitrarily dimensional feature vec-
tors [20] that stand for multi-represented objects [3]. Multi-
representation is a concept to address the manifold con-
tents carried by complex domain objects, that is, multi-
represented objects capture several aspects of the same do-
main object. A recent example is the encapsulation of all
biometric features of a person like voice pattern, image and
finger print in a single multi-represented object. A multi-
represented (MR) object is an element of a multi-dimen-
sional feature space: 0 = (r1,...,7,) € F1 X ... X F,,, where
F; is a feature that can be weighted by a factor w; € [0, 1]
additionally. The allowed feature types are: Unstructured
text, Metric (numerical), Ordinal (ordered), and Categorical
(unordered). Each feature type has to be preprocessed in a
different way, with respect to its possible value range and
the appropriate data normalization to be applied. For ex-
ample, each metric feature is individually scaled to the value
range [0, 1].

3.1 Recurrent Network Model

The basic design of the recurrent neural network is defined
by the following propagation model and is depicted by the
schema of figure 3. The vector 3; stands for the internal state

Neuron Records

Neural Prediction/
TargetNodes

Hidden State Layer

Input Sequence

Figure 3: Schematic topology of the proposed modular recurrent network MRNN. The block arrows indicate the
internal state transition §; — §;41. A, B and C are weight matrices. 7; is the external input vector at time ¢, ¢y, is
the correspondingly predicted output vector. For classification as opposed to sequence prediction only one output unit
Yt+1 is used. The depicted block arrow direction shows the forward propagation phase.

at the discrete time step t. The state layer composed from
these internal states is the backbone for learning the input-
target sequences and for classifying or predicting symbol se-
quences. Each neuron record (the block arrows depicted in
figure 3) serves both as hidden and as context unit, because
§t—1 provides a context for the recursive computation of the
subsequent hidden state ;.

e Aisa"R%, Bisa"R" and C is a ®R" matrix.
e d; is the dimensionality of the input- and da is the

dimensionality of the output feature space.

e h=dim(s;), (i = t-k,...,t+m) is the dimensionality
of the state layer. h is independent from d; and d2
and was set to h = 15 (experimentally determined) to
provide sufficient network resources.

St = f(BSi—1 + AZt) (1)
o1 = f(Cs) 2
G T G, i=1,...,m (3)

The crucial recurrent equation 1 combines an external in-
put @ with the previous state 5;—1 to the subsequent state
§¢, which indirectly depends on all foregoing external in-
puts Zi—g,...,Tt—1 and internal states S;_g,...,St—1. In
the case of supervised network training, the target symbols
Yit1, - - - Yt+m are known, while in the case of actual struc-
ture classification the output sequence d¢y1, ..., Ot+m is com-
puted solely based on the respective inputs. Here, the activa-

tion function is chosen as sigmoid function f(z) = m.

The MRNN is trained with a modified Backpropagation
Through Time (BPTT) algorithm [10, 30] and is able to
process vectors of variable dimension Zi—x and #iy+m. The
network is able to process variably dimensional vectors as
encoding of input and target data, so different object types
such as Tasks or Requirements can be associated with the
same set of classes during the training phase, for example.
In other words, tasks and requirements, which are described
by different sets of attributes and thus are represented by
feature vectors of different size, can be learned according
to the same originating activities such as analysis or imple-
mentation. In the following section, we describe the math-
ematical fundamentals of the advanced text representation
— namely Latent Semantic Indexing — used as preprocessing
of the input information fed into the neural classifier.

3.2 Latent Semantic Indexing of Textual At-
tributes

Each artifact that contains unstructured text has to be
transformed into a numerically processable representation.
An example for unstructured text is the “description” at-
tribute of a task, which can be freely filled in by the user.
The content is considered by a text mining approach that
provides a rich artifact representation with the semantics of
the textual attributes, since a conceptual similarity measure
between artifacts is provided thereby.

According to the vector space model [26], a feature vec-
tor £ € R*, k < di, (for dy also see section 3.1) is com-
puted for each textual attribute (bag-of-words approach).
The well-known preprocessing steps stemming [25] and stop-
word removal were realized by the Apache Lucene index-
ing and search framework (http://lucene.apache.org.). The
vector space model can be refined by applying Latent Se-
mantic Indexing [14] to the set of computed feature vectors.
Thereby, a matrix M; ; of keyword frequencies per text unit
is spanned. Text units are given by descriptions consisting
of sentences, paragraphs and sections or they even repre-
sent whole documents. The rows of the matrix denote the
frequency of occurrence for term 4 in text unit j. The ma-
trix is decomposed by Singular Value Decomposition (SVD),
which is a generalization of the Principal Component Anal-
ysis (PCA) that determines the inherent key concepts that
characterize all d-dimensional feature vectors. SVD is able
to analyze the correlations among terms as well as the corre-
lations between text units and comprised terms, which are
described by a non-quadratic matrix. Thereby, the term-
frequency matrix M = UDW? is decomposed into two
orthonormal matrices U and W and one diagonal matrix
D. After diagonalizing this matrix M, the singular values
o; = Dj ;j in the diagonal of the matrix D reveal the insignif-
icant dimensions to be discarded. These k least informative
dimensions with singular values 04—k, 04—k+1,...,0n are ig-
nored by the transformation to a (d-k)-dimensional sub-
space. The resulting feature vectors z; € R~ represent

the content of an artifact v; € Vi Z; := (Wf:j,Wg:j,...,
Wf,,w-), where WZ}, it =1,...,dk, j =1,...,|V] are the

entries of the transposed right-singular matrix. This global
vector space model enables the MRNN to learn the latent
semantics of domain-specific notions and textual concepts.
SVD also covers semantical peculiarities such as synonymy
and polysemy. Synonymy is the phenomenon of several dis-

tinct words holding the same linguistic meaning. Polysemy
is the contrary phenomenon, that is, a single expression has
different meanings in different linguistic contexts.

4. EVALUATION

Our classification of model-based software development
data based on a recurrent neural network is a new approach
at the intersection of software engineering and machine learn-
ing. To evaluate the feasibility and performance of our ap-
proach, we conducted two classification experiments. In
both experiments, RUSE model elements of the dedicated
type Task were used (also see [9]). The first one is to clas-
sify tasks according to the activity to which they belong.
In the second experiment, SYMBOCONN is employed to clas-
sify the status of Tasks; that is, the machine learning engine
predicts whether they are still under examination or already
completed.

Our activity- and status-classification approach is inde-
pendent from a concrete life cycle model. To show its fea-
sibility and performance, we selected a real-world project
with a particular life cycle model. This project used the
activities Analysis, System Design, Object Design, Imple-
mentation, Testing, and Project Management.

The DOLLI Case Study: As training and evaluation
examples for our approach, we used data of a student-driven
project which employed Sysiphus as central project repos-
itory. The Dolli project (Distributed Online Logistics and
Location Infrastructure) [2], a large project (approx. 50 stu-
dents), was carried out as a cooperation between the Tech-
nical University of Munich (TUM) and the Munich Airport
(FMG). The objective of Dolli was to improve the airport’s
existing tracking and locating capabilities and to integrate
all available location data into a central database; thereby,
luggage tracking and dispatching of service personal should
be supported as well as a 3D visualization of the aggre-
gated data was to be implemented. The project duration
was one semester. The students worked on the project for
more than five months, partly full-time. They were orga-
nized in eleven sub-teams and their efforts resulted in a com-
prehensive project model consisting of about 15.000 model
elements. We used this project model for our evaluation.

4.1 Activity Classification of Tasks

The logistics project DOLLI first followed a variant of a
Unified Process for 4 months. The development activities
analysis, system design, object design, implementation and
testing as well as project management were executed se-
quentially in the first part of the project (waterfall model).
For the remainder of the project, the developers followed
the Scrum methodology [16]. All Tasks created during the
project were manually classified into the predefined devel-
opment activities.

Figure 4 illustrates the development of open Tasks over
time and per activity. The interesting result was that al-
though a sequential life cycle model was planned, none of
the activities were really finished with the beginning of the
subsequent activity. Also it can be observed, that in the
Scrum-oriented phase at the end of the project, there was
a significant rise of analysis- and implementation-related
Tasks. Table 3 shows the distribution of Tasks. Note that
the Tasks were rarely classified as belonging to Testing and
Project Management activities. Since the Tasks had to be
classified manually by the project participants, the require-

Activity Number of Tasks
Analysis 258
System Design 158
Object Design 58
Implementation 202
Testing 7
Project Management 1
Total 684

Table 3: Distribution of Tasks according to the activity
they were assigned to by the project participants. The
activities testing and project management were rarely
assigned. Project management tasks were mostly man-
aged in the team wikis, whereas comprehensive testing
was not in scope of the DOLLI project.

ment for an automatic classification arose. In our specific
use case, there were three reasons for an automatic classi-
fication of the activity attribute, of which we believe that
the first one is very common: (1) The manual input of the
activity attribute was intrusive for the project participants.
This was especially true as the developers had no obvious
benefit from entering this information. It was necessary to
continuously motivate the developers to fill in the activity
attribute®. In general, filling in attributes is a problem that,
in our opinion, applies to a whole class of knowledge engi-
neering tasks. (2) Tasks arising in meetings also need to be
automatically classified according to their activity. This is
especially important for the automatic capture of Tasks, e.g.
using speech recognition techniques. (3) In our case study,
we started to work in a sequential- and activity-oriented
approach and then switched to a more agile and Scrum-
oriented process. In future projects, we plan to perform
such a process shift also in converse order. Hence, when
following an agile process, the Tasks will not be classified
by their activity. An automatic classification would help to
retrospectively add this information whenever the process is
turned into an activity-oriented process.

For an automatic classification, we trained the neural clas-
sifier with data from the DOLLI project. The following para-
graph describes the technical setup of the training patterns
learned by the neural network and reports on the results of
the activity classification.

Training Data Representation.

For each Task, 13 attributes are captured in the Sysiphus
tool (see section 2) at the time of creation within a cer-
tain development activity. These are Name, Team, Activ-
ity, State, DueDate, OrganizationalUnit, Description, Par-
entTask, ChildTasks, Annotatables, URLElements, Attach-
ments and CreationDate. The attributes of the Task to be
classified by our neural classifier are described by 26 to 2536
feature dimensions, depending on the respective representa-
tion technique. As an example, a minimal training pattern
with only two input attributes results in a straight-forward
feature vector representation:

2This is a common issue of research approaches, which need
additional information to be captured.

160

140

120

100

Open Tasks per Activity

. oS

£

AN :
E_ru et A

7.10.07 27.10.07 16.11.07 6.12.07 26.12.07

m— Analysis

System Design === +Object Design - - = Implementation

15.1.08 4.2.08 24.2.08 15.3.08 4.4.08

Testing ——— Projekt Management

Figure 4: Fraction of open Tasks with respect to the total number of Tasks managed in the DOLLI project in percent
[%], broken down by activity. Beginning from February 24th, the Scrum-oriented phase reveals itself by a momentary
peak in the relative number of open Tasks — especially in the activities Analysis and Implementation.

—

Ty = (1"17---,1']917 l‘k1+17.--,$k2) = (a'lv"'va6)7 Ti € R7

Team CreationDate Y41

a; € {0,1}. Categorical attributes such as Team or Orga-
nizationalUnit are encoded in a unary form, that is, each
symbol to be encoded is assigned to an orthogonal bit vec-
tor with a “1” at the i*" component, (0,0, ...,0,1,0, ...,0).
Numerical (metric) attributes such as CreationDate (relative
point of time with respect to the beginning of the project
measured in days) are assigned to a fixed-width intercept
of the whole feature vector, for example, a numerical value
is scaled to the range [0, 1] and the respective value is repli-
cated 10 times (as often as the width of the other attributes’
representations). Even if a single feature dimension would
suffice to represent a numerical value, due to balance rea-
sons, the value is replicated in order to achieve the same
weight than other types of represented attributes (e.g. cat-
egorical).

The training and test patterns both hold the form input
— target presented above, while the test patterns were ex-
cluded from MRNN training. Five-fold cross-validation was
used to obtain significant accuracy measurements, therefore
the 684 objects were divided into 5 disjoint test sets. The
common measures precision and recall to assess the quality
of a classifier were computed according to the following for-

mulas:
{oeci\fféé):C(O)}\’pTecisiom _ \{OGKi\K(t_ﬁ:C(O)}\7

i 7

recall; = |

where C;, i = 1,...,r is the i*" class out of the set of classes
C = {C1,...,C;} and K; is the set of objects that were
predicted to belong to class C;, no matter if this is true or
not. K(o) € C is the classification of object o predicted
by the machine learning engine. The classification K (o) of
unseen objects is compared with their actual class mem-
bership C'(0). The precision and recall values are weighted
with the size a; := |C;| of each class by a weighted sum
precision = Y7, <i.precision;, n =y . _; c;, analogously
for the recall.

Table 4 shows the results of the evaluation process, which
depend on the choice of attributes included in the training
process (column Input Attributes). Instead of applying a
feature selection algorithm, the input attributes were chosen
according to the realities in the application domain, which

is software engineering. In this case, for the activity clas-
sification, the date attributes and the corresponding team
promised to contain valuable information. This is due to
the assumption that in given periods, specific teams worked
on specific activities.

During the training phase, the machine learning engine is
faced with incomplete data, for example, the values of the
DueDate attribute are missing in 68.44% of the training ex-
amples. However, the connectionist machine learning unit
is capable of handling fuzzy, incomplete and partially incor-
rect data. The MRNN coped with the incomplete attribute
values, as shown by the evaluation variants 1 and 2. Due to
the additional DueDate attribute in variant 2, the accuracy
could be slightly improved and stabilized (smaller variation)
— despite the majority of missing DueDate values.

In the case of variant 2, the training error cannot be re-
duced as much as for variant 3 or 4, since the mapping from
the input attributes to the classification attribute activity is
less unique than in the other cases. This is due to the lower
discrimination provided by the attributes Team (categori-
cal), DueDate and CreationDate (both numerical), which do
not always uniquely determine the activity an artifact orig-
inated from. Since the neural network realizes a functional
mapping, the training error does not vanish completely.

For activity classification, overfitting [18] occurs very early
when using textual attributes, such that the training proce-
dure has to be stopped quite early. For example, reducing
the training error to an amount of 3.14% leads to a 4.8%
lower classification accuracy on unseen objects (generaliza-
tion) than accepting a training error of 7.93% in the case of
variant 4.

We see that the attribute CreationDate is highly signifi-
cant for the classification of the activity that produced the
respective artifact. The sound classification result when us-
ing the attributes CreationDate and Team (variants 1,2,5,
and 6) shows that certain periods of time in the project ex-
isted, in which certain teams worked in a specific activity.

The evaluation variants 3 and 4 showed that it is even
possible to classify Tasks without having available any time-
related information, even though the results are unpropor-
tionally less accurate. Surprisingly, in this case, variant 4 us-
ing the advanced text representation LSI provides a slightly

Variant Input Attributes LSI Measure Precision Recall F-Measure A

1 Team, CreationDate - Mean 75.77 76.40 76.08 8.70
Variation [70.74 - 80.46] [72.55 - 81.19] [72.11 - 80.24]

2 Team, DueDate, - Mean 76.83 77.37 77.10 7.48
CreationDate Variation [75.11 - 78.93] [74.51 - 79.21] [74.81 - 79.07]

3 All except Activity, Team, No Mean 54.15 54.43 54.28 0.85
DueDate, CreationDate Variation [45.87 - 61.21] [47.06 - 62.50] [46.47 - 61.85]

4 All except Activity, Team, Yes! Mean 48.71 52.37 50.47 10.27
DueDate, CreationDate Variation [42.67 - 54.46] [46.32 - 58.52] [44.42 - 56.42]

5 All except Activity No Mean 75.88 76.85 76.35 3.39
Variation [69.54 - 80.98] [71.32 - 81.62] [70.42 - 81.30]

6 All except Activity Yes? Mean 80.64 80.38 80.51 7.60
Variation [78.03 - 84.28] [76.47 - 83.70] [77.24 - 83.99]

Table 4: Average classification accuracy measured in terms of Precision and Recall for the 684 Tasks after 5-fold
cross-validation. The measure Variation indicates the range of the obtained accuracy values over the 5 individual test
sets used for cross-validation. For all predictions, the network was trained till a residual error of A. The F-Measure

is a weighted mean of Precision and Recall: F-Measure

2-Precision - Recall
Precision + Recall *

If Latent Semantic Indexing (LSI) was

used (only applicable in the case of textual attributes), 35% and 65% of the variance o2 in the training set were kept
respectively (via discarding the dimensions corresponding to the 35% or 65% smallest eigenvalues respectively). All
values are given in percent [%], best accuracy is in bold. ') LST using 02 = 0.65. 2) LSI using o2 = 0.35.

lower classification accuracy (6 = 1.74) than variant 3 with-
out using LSI and is considered to represent a statistical
outlier. One reason for this might be the significantly higher
training error A of variant 4, which is a sign of the less
unique input-target (class) mapping that was more difficult
to learn. The effect of hindered training progress in the case
of latent semantic indexing is due to the lossy transformation
(6% = 0.65) of the input information, which discards both
redundant information and information used to distinguish
the artifact class. Normally, the improved representation
(less redundant and more compressed) overcompensates the
negative effect of losing information which is usable for the
class distinction.

4.2 Classification of the Artifact Status

All Tasks in the DOLLI project were classified manually
according to their status, which is either open or closed. Fig-
ure 5 shows the distribution of open Tasks over time. After
the above-mentioned process shift from a traditional sequen-
tially oriented software life cycle model to Scrum-oriented
methods, we observed a large number of Tasks which were
neither touched (read or changed) nor closed until the end
of the project. A survey among the project participants
revealed that 81% of these Tasks were either irrelevant or
were attached to a task which was already closed. This im-
plies that the respective Tasks should have been closed, too.
Again, an automatic classification approach could support
the user to mark these objects as irrelevant.

In contrast to the classification of the artifact activity, the
classification according to the status would have a visible
benefit to the project participants: the mechanism deter-
mines Tasks, which are most likely irrelevant, and recom-
mends to close or to delete these items. To gather trainings
cases for our machine learning approach post-mortem, we
used the change-based SCM approached [19] to recreate the
state of the DOLLI project before the process shift was done.
As training set, we chose Tasks which were not yet closed
at that time. Subsequently, we determined which Tasks had

0,00
07.10.2007 27.10.2007 16.11.2007 06.12.2007 26.12.2007 15.01.2008 04.02.2008 24.02.2008 15.03.2008 04.04.2008

Figure 5: Fraction of open Tasks with respect to the
total number of Tasks managed in the DOLLI project in
percent [%)]. Beginning from February 24th, the scrum
oriented phase is revealed by a momentary peak in the
relative number of open Tasks.

not been closed until the end of the project. Under the as-
sumption that all of the chosen Tasks which had not been
closed at the end of the project were irrelevant, we accord-
ingly set the classification attribute irrelevant of each Task.
Again we expected the date attributes and the correspond-
ing team as the most valuable information.

As opposed to the activity classification with a target
space consisting of six classes, the binary classification of the
artifact status explicitly considers the development of an ar-
tifact over time, that is, the individual artifact history or life
cycle. We again used a network topology with a hidden layer
dimension of h = 30. Compared to the multi-class activity
classification, the classification of the Task status even shows
a higher tendency to overfitting. To avoid an overadaption
with respect to the training set, for each cross-validation we
used a small auxiliary test set during training to check the
current quality of the classification model. When the clas-

Variant Input Attributes LSI Measure Precision Recall F-Measure A
1 Team, Activity, - Mean 74.30 71.20 72.65 22.01
CreationDate Variation [65.09 - 83.33] [58.33 - 83.33] [61.53 - 83.33]

2 Team, Activity, - Mean 72.06 68.66 70.27 19.41
CreationDate, DueDate Variation [59.35 - 84.72] [54.17 - 83.33] [56.64 - 84.02]

3 All Attributes No Mean 78.18 75.36 76.74 12.33
Variation [69.63 - 86.67] [66.67 - 83.33] [68.12 - 84.97]

4 All Attributes Yes! Mean 81.13 80.47 80.79 22.87
Variation [67.71 - 89.47] [70.83 - 87.50] [69.24 - 88.48]

5 All Attributes Yes? Mean 85.49 82.14 83.72 16.31
except DueDate Variation [78.19 - 92.71] [73.91 - 91.67] [75.99 - 92.18]

Table 5: Average accuracy for the classification of the artifact status irrelevant after 5-fold cross-validation. All values
are given in percent [%], best accuracy is in bold. ') LSI using 02 = 0.65. 2) LSI using 02 = 0.85.

sification error on this test set started to rise, the training
process was cut off. This is the reason for the higher level
of the residual training error denoted by A.

Compared to the first scenario, the status classification
should only be used to provide the user with a recommen-
dation, as it is not acceptable to incorrectly classify an Task
as irrelevant (alpha error). For the purpose of recommenda-
tion, the given precision is sufficient to effectively support
project participants. As shown in table 5, LST had a positive
effect on the classification accuracy in this second scenario,
which is demonstrated by variant three and four. The most
interesting observation we made during the evaluation, was
the role of the attribute DueDate. One could expect that a
defined and prompt DueDate would lead to Tasks which are
not irrelevant and the other way round. However, we found
out that the attribute DueDate even had a negative effect
on the precision.

To discover the reason behind that anomaly, we trained
the classification engine only with the DueDate information
without any further attributes. Due to the missing values
of the DueDate attribute in 54.24% of the training cases
used for status classification, the training error stagnated
on a high level of about A = 24%, because of the lack of
information that could be used to distinguish and classify the
respective Tasks. This fact alone is not the reason for the
repressed classification accuracy, since the neural classifier
can deal with incomplete information, if further attributes
are available. In fact, the problem was that contradicting
time information was imposed by the DueDate attribute.
This means, for example, that there are 9 Tasks which have
the same DueDate value of 80 days since the first day of the
project, but which are in the one case irrelevant (5), while
in the other case not (4).

Of course, such ambiguous information is misleading and
counterproductive for the classification (non-dichotomous or
non-disjoint Task distribution). It argues for the robust-
ness of the classification engine, that the classification accu-
racy is not even more distorted by the DueDate attribute.
One might argue that decision-trees would have immedi-
ately explained the ambiguity of the DueDate attribute, but
decision-tree based classifiers such as the RandomForest used
in the following paragraph showed a performance on or even
below average, especially when high-dimensional and sparse
bag-of-words vectors (textual content) have to be exploited
for the classification.

Input / Classifier Accuracy
Team, Activity, CreationDate
MRNN 73.90
SVM 73.70
RandomCommittee 70.25
RandomPForest 69.05
Bayes Net 65.05
MultiBoostAB 63.60
Team, Activity, CreationDate, DueDate

SVM 73.60
MRNN 70.27
RandomForest 68.35
RandomCommittee 66.00
Bayes Net 65.05
MultiBoostAB 63.60

Table 6: Comparison of the classification accuracy (F-
measure) of the MRNN classifier with different classifi-
cation and meta-classification techniques from the Weka
data mining package such as Support Vector Machines
(SVM) or MultiBoostAB. The tasks were classified accord-
ing to their relevancy, which was evaluated by 5-fold
cross-validation.

Comparison with Alternative Classification Tech-
niques: In order to compare the performance of our clas-
sifier with alternative classification techniques, we applied
several established classifiers to the problem of relevancy
classification. Amongst others, we trained and tested a sup-
port vector machine (SVM)? classifier on the same dataset.
The results using different input attributes are listed in ta-
ble 6 and 7, which correspond to the different input variants
shown above in table 5.

Five-fold cross-validation resulted in a classification ac-
curacy of 69.45% for the SVM, which means that the SVM
approach falls short by more than 14% compared to the per-
formance of the MRNN classifier in the case of the variant
All Attributes except DueDate. The MRNN classifier wins
all comparisons except for the input variant Team, Activity,
CreationDate, DueDate, where the SVM classifier shows an
advantage of about 3% in terms of the F-measure. This
means that our neural classifier in combination with latent
semantic indexing shows a strength in the processing of un-

3The SVM classifier (SMO) from the Weka data mining
package was used [32].

Input / Classifier Accuracy
Team, Activity, CreationDate
All Attributes
MRNN 76.74
SVM 68.55
RandomCommittee 65.95
RandomForest 65.30
Bayes Net 65.05
MultiBoostAB 64.50
All Attributes,
with Latent Semantic Indexing (o2 = 0.85)
MRNN 80.79
SVM 67.65
Bayes Net 62.05
RandomCommittee 59.30
RandomForest 57.30
MultiBoostAB 56.70
All Attributes except DueDate,
with Latent Semantic Indexing (02 = 0.85)

MRNN 83.72
SVM 69.45
Bayes Net 62.05
MultiBoostAB 56.70
RandomForest 56.50
RandomCommittee 54.00

Table 7: Continuation of table 6.

structured text, which is an important source of information
in the case of software development artifacts.

Furthermore, the comparison underpins the difficulty of
reliable classification of software development artifacts when
these are afflicted with incompleteness and noise, since no
classifier was able to break through an accuracy of 84% (F-
measure) — no matter which input attributes were used. The
benefit of our recurrent neural network becomes apparent
when classifying tasks that are represented by raw or refined
(by LSI) textual content. In the case of the input variant All
Attributes except DueDate with LSI in table 7, the MRNN
has a mean advantage of almost 24% compared to the aver-
age of all other classifiers. This is why we have chosen the
connectionist MRNN classifier, which outperforms the other
classification techniques especially in the case of exploiting
textual representations.

S. BETTER THAN GUESSING?

In the previous section, we evaluated the performance of
the machine learning system, which is considerably high.
But of which practical quality is this achievement, or in other
words, how difficult is the classification task for humans?
To figure this out, we conducted an experiment with three
persons with different degrees of expertise in the DOLLI
project, who should classify Tasks according to their activ-
ity by hand. For this purpose, the attributes Name, Descrip-
tion, Status, DueDate, CreationDate, assignedTo, Team, and
annotates were made available to the probands. We give an
example of such an instance, the activity of which was to be
guessed:

(“Information Broker”, “Listener concept on network level,
tapped for university”, Closed, “’, 29 Nov 2007 21:14:20
GMT, “”, Data Management Team, “”).

We see, due to the missing attribute values and the vague

description, the classification of the activity (here Analysis)
can be ambiguous and is mostly non-trivial.

In the experiment, the Informed Outsider knew the RUSE
model and the information about the DOLLI project pro-
vided in this paper. The Knowledgeable Observer worked
part-time in the DOLLI project as a teaching assistant. The
Ezpert played a central role as an active project participant
in DOLLI. The results of our experiment are presented in
table 8.

We chose a layered single sample (random selection in
groups, the class distribution of the objects in the sample
is proportional to that in the basic population) of n = 70
Tasks from the basic population of N = 684 Tasks to obtain
significant results. We compared the given empirical distri-
bution (multinomial, X; € {1,2,...,6},i=1,...,N) with
a theoretical normal distribution using the Chi-Square test
(x? ~ 917 > 13.28 = x2.;;). The frequencies of the Task
instances listed in table 3 significantly differ from a normal
distribution N (1, 5%) with parameters fi = 2.33 ~ E[X] and
% = 1.65 =~ Var[X]. Tolerating a maximal deviation of
|tsampte — 1] < 0.3 from the estimated mean value, a min-
imal sample size of nmin = 70 can be calculated using the
normal approximation, nevertheless.

Expertise Precision Recall F-Measure
Informed Outsider 38.07 32.86 35.27
Knowledgeable Obs. 50.17 41.43 45.38
Expert 61.35 51.43 55.95

Table 8: Evaluation of the ability of humans to classify
Tasks. Three persons with different degrees of expertise
and insight into the software project were compared.

6. CONCLUSION & FUTURE RESEARCH

We combined a unified software engineering model (RUSE)
and a neural classifier called MRNN to classify software ar-
tifacts as work products of software development activities.
In general, heterogeneous sequences consisting of objects of
different types, or in other words, from different classes, can
be learned by the recurrent neural network. Altogether, this
paper provides two major contributions:

(1) Combination of a Unified Software Engineering
Model with a Machine Learning Engine: We com-
bined two different technologies from software engineering
and connectionist artificial intelligence to obtain an intel-
ligent classification mechanism specialized in processing of
heterogeneous knowledge.

(2) Automatic Classification of Software Artifacts:
We demonstrated that complex software artifacts can be
classified by the neural classifier. The employed neural net-
work is also capable of handling fuzzy, incomplete and par-
tially incorrect data. Our new technique was successfully
applied to the classification of software artifacts according
to development activities, whose instances should be classi-
fied based on 13 domain-specific attributes.

There are further possibilities of exploiting software devel-
opment knowledge based on our machine learning technique;
we wish to mention two examples. The first is the automatic
classification of quality attributes namely quality attributes
of requirements. Approaches as proposed by Wilson and his

colleagues [31] aim at the classification of requirements ac-
cording to specific quality attributes in order to calculate
quality metrics, which express the quality of captured re-
quirements. We expect that our approach is able to solve
such a classification problem very effectively.

Another example is the prediction of burn-down charts,
which represent a method from the agile project manage-
ment methodology Scrum [27]. Burn-down charts reflect
the project progress and the features to be implemented for
each planned release. The prediction of the remaining im-
plementation time can answer the question of whether the
planned release will be on time and whether it will meet the
functionality and quality requirements of the client. The
high precision in the status classification including temporal
information leads us to the assumption that even burn-down
charts can be predicted with our approach.

7. REFERENCES

[1] Omg unified modeling language specification version
2.0. 2004.

[2] Distributed online logistics and location infrastructure
(dolli), http://wwwl.in.tum.de/static/dolli/, 2007.

[3] E. Achtert, H.-P. Kriegel, A. Pryakhin, and
M. Schubert. Hierarchical density-based clustering for
multi-represented objects. In Workshop on Mining
Complex Data (MCD’05), ICDM, Houston, TX.
Institute for Computer Science, University of Munich,
2005.

[4] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix
this bug? In Proceedings of the 28th international
conference on Software engineering, pages 361 — 370.
ACM New York, NY, US, 2006.

[5] W. Bechtel and A. Abrahamsen. Connectionism and
the mind: An introduction to parallel processing in
networks. Blackwell, 1991.

[6] K. Beck. Ezxtreme Programming Ezplained.
Addison-Wesley, 2000.

[7] B. Berenbach and T. Wolf. A unified requirements
model; integrating features, use cases, requirements,
requirements analysis and hazard analysis. In Second
IEEFE International Conference on Global Software
Engineering, ICGSE 2007, pages 197-203, 2007.

[8] B. Bruegge, O. Creighton, J. Helming, and M. Kogel.
Unicase - an ecosystem for unified software
engineering research tools. In Third IEEE
International Conference on Global Software
Engineering, ICGSE 2008, Bangalore, India, 2008.

[9] B. Bruegge and A. H. Dutoit. Object-Oriented
Software Engineering Using UML, Patterns, and Java.
Prentice Hall, ISBN 0-13-0471100, 2004.

[10] R. Callan. Neuronale Netze im Klartext. Pearson
Studium, 2003.

[11] J.-H. Chen, H.-M. Chen, and S.-Y. Ho. Design of
nearest neighbor classifiers using an intelligent
multi-objective evolutionary algorithm. In Pattern
Recognition Letters, volume 23, pages 1495 — 1503.
Elsevier Science Inc., New York, NY, USA, 2002.

[12] J. David. Navigation recommendation on knowledge
artifacts. In Workshop “Agile Knowledge Sharing for
Distributed Software Teams”, Lecture Notes in
Informatics. Springer, 2008.

[13] J. David. Recommending software artifacts from
repository transactions. In The Twenty First
International Conference on Industrial, Engineering
and Other Applications of Applied Intelligent Systems
(IEA/AIE 2008), LNAI 5027, pages 189-198.
Springer-Verlag Berlin Heidelberg, 2008.

[14] S. Deerwester, S. T. Dumais, G. W. Furnas,

R. Harshman, and T. K. Landauer. Indexing by latent
semantic analysis. volume 41, pages 391-407, 1990.

[15] J. Helming, M. Koegel, and H. Naughton. Pause: A
project analyzer for a unified software engineering
environment. In In Workshop Proceedings of ICGSE
2008, Bangalore, India. IEEE CS Press, 2008.

[16] http://www.scrumalliance.org. Scrum alliance. 2007.

[17] A. Katz, M. Gately, and D. Collins. Robust classifiers
without robust features. In Pattern Recognition
Letters, volume 2, pages 472-479. Neural
Computation, 1990.

[18] T. M. Khoshgoftaar, E. B. Allen, and J. Deng.
Controlling overfitting in software quality models:
Experiments with regression trees and classification.
In Seventh International Software Metrics Symposium
(METRICS’01), 2001.

[19] M. Koegel. Towards software configuration
management for unified models. In ICSE CVSM’08
Workshop Proceedings, pages 19—24, 2008.

[20] D. D. Lewis. Representation and learning in
information retrieval. Technical report, University of
Massachusetts, 1992.

[21] H. Liu and H. Motoda. Feature selection for
knowledge discovery and data mining. In The Springer
International Series in Engineering and Computer
Science, volume 454, pages 1226-1238, 1998.

[22] A. MacLean, R. M. Young, V. M. Bellotti, and T. P.
Moran. Questions, options, and criteria: Elements of
design space analysis. In HCI, volume 6, pages
201-250, 1991.

[23] A. Mockus. Missing data in software engineering. In
Guide to Advanced Empirical Software Engineering,
pages 185200, 2008.

[24] H. Peng, F. Long, and C. Ding. Feature selection
based on mutual information: criteria of
max-dependency, max-relevance, and min-redundancy.
In IEEE Transactions on Pattern Analysis and
Machine Intelligence, volume 27, pages 1226-1238,
2005.

[25] M. Porter. An algorithm for suffix stripping. Technical
Report 3, 1980.

[26] G. Salton, A. Wong, and C. S. Yang. A vector space
model for automatic indexing. In Communications of
the ACM, volume 18, page 6130620, 1975.

[27] K. Schwaber. Agile Project Management with Scrum.
Microsoft Press, 2004.

[28] M. S. B. Sehgal, I. Gondal, and L. S. Dooley.
Collateral missing value imputation: a new robust
missing value estimation algorithm for microarray
data. volume 21, pages 2417-2423. Bioinformatics,
2005.

[29] J. Singer, S. Sim, and T. Lethbridge. Software
engineering data collection for field studies. In Guide
to Advanced Empirical Software Engineering, pages

[30]

[31]

9-34, 2008.

P. Werbos. Backpropagation through time: what it
does and how to do it. In Proceedings of the IEEE,
volume 78, pages 1550-1560, 1990.

W. Wilson, L. Rosenberg, and L. Hyatt. Automated
analysis of requirement specifications. In Proceedings
of the 19th International Conference on Software
Engineering, pages 161-171, 1997.

I. H. Witten and E. Frank. Data Mining: Practical
machine learning tools and techniques. 2nd Edition,
Morgan Kaufmann, San Francisco, 2005.

T. Wolf. Rationale-based unified software engineering
model. In Dissertation, Technische Universitit
Miinchen, 2007.

	Welcome
	Program
	Committees
	Author Index
	Repository
	Search

