
From Software Engineer to Day Trader in 3 Easy Steps:
 A Comparison of Software Engineering (SE) Data Mining

with Financial Data Mining1

Gary D. Boetticher
University of Houston – Clear Lake

2700 Bay Area Boulevard

Houston, Texas 77058
1 281.283.3805

Boetticher@uhcl.edu

ABSTRACT
One of the research objectives in Software Engineering Data
Mining is to produce useful, usable, verifiable, and repeatable
models for better managing software processes and projects. This
objective implies that an organization will be more profitable as
consequence of better management.
Financial events, such as bailouts, high unemployment rates,
foreclosures, etc. have received extensive news coverage since
Fall, 2008. Many professionals are concerned about their job
status and their retirement accounts. From the context of the
Software Engineering community, one question arises: To what
extent can the skills and knowledge attained in Software
Engineering Data Mining apply towards Financial Data Mining?
A reader may be motivated to explore both types of data mining
due to the potential rewards. Furthermore, by studying both
domains makes it possible to determine the financial impact of
delivering software on time or with fewer defects.
This paper examines 3 aspects related to both types of data
mining. The underlying data used for constructing models, the
models themselves, and validation techniques.

Categories and Subject Descriptors
D.2.8 [Metrics]: Performance measures

General Terms
Measurement, Economics, Experimentation.

Keywords
Software engineering, data mining, day trading, financial data
mining, stock market

1. INTRODUCTION
From 1982 through 2007 the stock market (S&P) grew by an
annual rate of 9 percent. These 26 years of prosperity lulled many

investors into a “buy and hold” mindset. In 2008, the average U.S.
portfolio lost approximately 39 percent. To fully recover these
losses would take 9 years at an annual rate of 6 percent net profit.
Such a drastic change in market conditions challenges the
traditional “buy and hold” strategy. An alternative approach,
which seeks to identify buying and selling opportunities, might be
more appropriate given these volatile times.
Shifting the focus from “what to buy” to “when to buy” suggests
the application of financial data mining for identifying buying and
selling opportunities.
The potential for huge financial gains and the intellectual
challenges are sufficient incentives for researching this domain.
Those who have studied data mining in the Software Engineering
domain may wonder about the extent of reusability of their
Software Engineering data mining skills in the financial domain.
Even if one is not motivated to pursue financial data mining,
studying financial data mining could be beneficial in exploring
the financial impact of delivering software on time or with fewer
defects upon a company’s profit margin relative to the ebb and
flow of the stock market.
To migrate from Software Engineering Data Mining to Financial
Data Mining, three aspects of each data mining domain are
presented. The first aspect considers the nature of data, in terms of
construct, quality, and quantity from each domain. Understanding
the nature of data helps determine plausible approaches to
building models relative to the domain. The second aspect
considers the relative models, metrics, and indicators for each
domain and how they may be used in the decision making
process. The third aspect examines the validation process of
models. This is an important step for it gives credibility to a
model. This paper elaborates on each of these aspects.
This paper is organized as follows. Section 2 presents a
justification for financial data mining. Section 3 describes the
nature of data from the two domains. Section 4 explores metrics,
indicators, and models from both domains. In section 5 validation
techniques are described. Section 6 discusses these aspects plus
other aspects to consider when performing financial data mining
using actual money. Section 7 offers a conclusion.

2. WHY FINANCIAL DATA MINING?
If you believe you or anyone else has a system that can
predict the future of the stock market, the joke is on you
[17].

Permission to make digital or hard copies of part or all of this
work or personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
 © ACM 2009 ISBN: 978-1-60558-634-2...$10.00

mailto:Boetticher@uhcl.edu

There are numerous papers on financial data mining that apply
some type of machine learner to a financial data set. Below are
some examples.

Frick [10] combines Point-And-Figure (PNF) charting and
Genetic Algorithms. Given a series of price movements, a
corresponding PNF chart is created. The Genetic Algorithm
generates a set of rules to apply to the PNF chart and the results
are assessed.
Mizuno et al. [14] build a neural network model against the
Tokyo Stock Exchange Prices Index (TOPIX) spanning a 5-year
period (1982-1987). The inputs consist of 4 technical indicators
and three outputs (Buy/Hold/Sell). They use an “Equalized
Learning Method.” This method duplicates vectors with Buy/Sell
output values as a way of redistributing instance counts. They
tested their models against the TOPIX from 1986 to 1987. Their
best model produces an annual ROI of 20%. However, the buy-
and-hold strategy during this period produced an annual ROI of
21%.
Chenoweth et al. [7] uses a Directional Index (Directional
Movement divided by True Range). The inputs consists of
S&P500; S&P500, lagged 1 day; S&P500, lagged 2 days; U.S.
Treasury Rate, lagged 2 months; U.S. Treasury Rate, lagged 3
months; and 30 Year Government bonds. They trained on data
spanning 1982 through 1988 and tested on data from 1989
through 1993. Their best model achieves an annual rate of return
of 16.39 percent.
Financial Data Mining is often met with a certain degree of
skepticism. The efficient market hypothesis [9] states that
everyone has access to the same information; therefore any
success appears to be a matter of chance. What is often lacking in
the financial data mining research domain are results using real
money. In this situation where a researcher becomes trader and is
much more vulnerable to the financial pressures and may
undermine the model (assuming it is not totally automated).

Thus, if it is not possible to make money using financial data
mining, then there is no reason to even consider migrating from
Software Engineering Data Mining to Financial Data Mining.

To address this concern, the author presents his 2008 and 2009
financial results and 2009 results in Tables 1 and 2 respectively.
The first three rows of each table show the statistical results for
long trades (buy to enter, sell to exit), short trades (sell to enter,
buy to exit), and the sum of the long and short trades. The second
three rows of each table show composite trades. A composite
trades consists of one or more raw trades that may have multiple
entry points, but a single entry point. An example of a composite
trade might buy one share of IBM at 100, buy a second share at
90, then sell both shares at 98. The first raw trade lost two points
(98 - 100), the second raw trade gained eight points (98 – 90), and
the composite trade would have netted 6 points.

Table 1: 2008 Trading Results
 Winners Losers Pct.
Raw Trades (Long) 412 193 68%
Raw Trades (Short) 408 184 69%
Raw Trades (Total) 820 377 69%
Composite Trades (Long) 308 38 89%
Composite Trades (Short) 272 24 92%
Composite Trade (Total) 580 62 90%

Table 2: 2009 Trading Results
 Winners Losers Pct.
Raw Trades (Long) 46 15 75%
Raw Trades (Short) 25 14 64%
Raw Trades (Total) 71 29 71%
Composite Trades (Long) 37 0 100%
Composite Trades (Short) 20 0 100%
Composite Trade (Total) 57 0 100%

One may argue that statistical success does not necessarily equate
to financial success. For 2008, the trading portfolio increased by
120 percent over 5.3 months of trading. For 2009, the trading
portfolio is up 9 percent over 1.5 months of trading.

3. DATA SETS
At the foundation of any type of data mining is the data. This
section compares software engineering data with financial data in
terms of repeatability, reliability, and complexity.

3.1 Software Engineering Data
The largest public collection of software engineering data is the
Predictor Models in Software Engineering (PROMISE)
repository. As of April, 5, 2009 the PROMISE repository
contained 88 software engineering-based data sets [6]. Fifty-six of
these sets relate to defect prediction, 11 to effort estimation, 7
general, 5 model-base SE, and 9 are text mining. Reuse of data
across these sub-domains is not possible. Next, we focus on the
two most prominent sub-domains defect data and effort
prediction.

Defect Data
More than half (31 out of 56) of the defect data sets have the
following layout: There are n – 1 independent variables which
refer to various software metrics (size, language, or complexity),
and a dependent variable which refers to the number of defects
per module. Most of these 31 data sets come from a Turkish
Telecommunications company or NASA. Comparing these 31
defect data sets with the other 25 data sets would not be fruitful
due to major differences in layout and meaning.

Performing comparisons between the 31 data sets with the same
general layout is difficult for several reasons. Two data sets may
appear to contain the same metrics, but they may differ in how
they define one or particular metric. A common example is how
Source Lines of Code (SLOC) is defined. SLOC counts may
include/exclude a variety of components such as comments,
compiler directives, etc. There are at least 1000 permutations in
defining SLOC [16]. Differences in SLOC count would over-
under-state the amount of defects within an application.

A second problem with the 31 data sets relates to defect counts.
Defect count is highly resource dependent. It depends upon the
number of persons reviewing some, their ability to identify
defects, and the total amount of time dedicated to reviewing the
code. Thus, defect counts are dependent on resource allocation It
does not appear that any of the 31 defect data sets contain
resource allocation metrics.

Effort Estimation

Within the 11 effort estimation data sets, 3 contain data related to
some type COCOMO model, 3 are human-based models, and the

other 5 do not fit any pattern. Since COCOMO is the most
recognized effort estimation data set with the PROMISE
repository, we examine these data sets.

One must use caution when comparing the COCOMO-based data
sets from the PROMISE repository for three reasons. Some of the
COCOMO data collected spans more than 12 years (early 80s
through early 90s). Thus, older COCOMO data may not contain
metrics that reflect technological improvements in the software
development process. Second, the COCOMO model contains
many metrics that are subjective in nature. They are dependent
upon an estimator’s assessment of the various facets of a software
project. Third, many estimates consist of aggregate values. For
example, the Process Maturity (PMAT) metric is based on 18
estimates.

3.2 Financial Data
Financial data is essentially a series of ticks, where a tick
represents a point in time where some financial instrument (e.g. a
stock) is traded at a particular price. The price activity is
segmented by a time-interval, such as one hour. During that time
period the first trade price (the Open), the highest trade priced
(the High), the lowest trade price (the Low), and the last trade
price (the Close) are recorded. The total number of items traded
(e.g. number of shares) during this period, called the Volume, is
also recorded. Normally, the Open, High, Low, Close, and Volume
are abbreviated as OHLCV.

The OHLCV may be captured for multiple time frames ranging
from 30 seconds up to quarterly (3 months). Choosing a particular
time frame is a matter of personal preference.

Daily, weekly, and/or monthly data may be acquired for free. A
common source is Yahoo finance (http://finance.yahoo.com/).
Intraday data may be purchased for a nominal cost from a
commercial data vendor [4, 15].
It is possible to get data for thousands of different stocks spanning
decades. Data spanning a relatively long time frame may need to
be adjusted to account for inflation. Also, a stock may experience
a stock split. This would cause a drastic change in the price of a
stock without changing the underlying value.

4. EQUATIONS/TECHNICAL INDICATORS
In the financial data mining domain the term Technical Indicator
is used to describe some type of equation.

In the Software Engineering domain, effort estimation equations,
such as COCOMO [5] or Function Point Analysis [3] are more
recognizable than defect prediction equations such as Akiyama
[2], Halstead [12], Lipow [13], Gaffney [11], UNISYS [8]. This
lack of recognition seems to be mostly a consequence of the
infancy of the Software Engineering domain.

There are at least 485 technical indicators available in the
financial domain. A good introduction to some of the more
common technical indicators is [1]. Some of the more common
technical indicators include Relative Strength Index (RSI), and
Simple Moving Average (SMA).

Technical indicators by themselves are really metrics. What
makes them indicators is by imposing some condition for making
a buy or sell decision. Figure 1 illustrates this idea with the RSI
indicator. When the RSI crosses below the 70 threshold suggests

it is time to sell. When the RSI crosses above the 30 threshold
suggests it is time to buy.

Figure 1: Graph of RSI Indicator

A second example might be whenever two or more simple
moving averages (based on different periods) cross. Figure 2
illustrates this idea. In this case, the market had a major downturn
as a result of a short moving average crossing below a longer
moving average. Short period moving averages crossing above
longer period moving averages might indicate that the price will
rise.

Figure 2: Moving Averages Crossing

http://finance.yahoo.com/

Thus, technical indicators would be used to generate a model
which is a combination of buy and sell rules. An example of a
simple financial model as depicted below.

 BUY = RSI crosses above 30
 SELL = RSI crosses below 70

5. MODEL VALIDATION
Both domains validate models by dividing a data set into
independent data sets (train and test), using the training data to
build a model (assuming that the user chooses not to use a pre-
existing model) and assessing the model using test data.

Software Engineering models may be assessed using Pred
(percentage of answers with a certain scope of accuracy), Mean
Magnitude of Relative Error (MMRE), Mean Absolute Relative
Error (MARE), or ROC curves. The Software Engineering
community has not reached a consensus regarding which
assessment approach to adopt, and which settings (e.g. PRED(25)
or PRED(30)) to use.

In the Financial Domain, models can be assessed using statistical
methods (e.g. percent of winning trades), but statistical success
doe not always guarantee financial success. Thus, a financial
model may be assessed by how much profit it earns.

Using only profit may not be sufficient to build a robust model.
Consider the results from two financial models in Figure 3. Both
models generate the same amount of profit. However, Model A is
much more volatile than model B. This makes model B more
attractive than A.

Figure 3: Results from Two Financial Models

The financial validation must take into account certain financial
realities. An example may be that a model can not trade more than
10 percent of the average Volume for a given stock. To ignore this
type of rule may result in a model that has a million dollars in
equity buying 20 million shares of a 5-cent stock.

6. DISCUSSION
By studying these three areas, the data, metrics/indicators, and
validation, a person may be able to migrate their SE data mining
knowledge and skills into the financial domain in order to build
viable financial models.

Unfortunately having a viable financial model does not prepare a
person for the demands of actual trading. One must master the
emotional pressures associated with trading real money and
exercise an extensive amount of discipline. The best way to
improve in these areas is practice paper trading, then eventually
trade with real money.

A second aspect of trading is money management. Very few
models are 100 percent successful. Therefore, it is important that
a person know how to avoid accumulating large losses.

7. CONCLUSIONS
This paper compares some of the features of SE data mining with
Financial data mining in terms of data, metrics/indicators, and
model validation.
Creating a financially viable model does not guarantee financial
success. Attaining success includes mastering one’s emotions and
money management skills.

8. REFERENCES
[1] S. Achelis, S., Technical Analysis from A-Z, McGraw Hill

Professional, 2000, Pp. 1 – 380.
[2] F. Akiyama, “An Example of Software System Debugging,”

Information Processing, vol. 71, pp. 353-379, 1971.
[3] A.J., Albrecht, “Measuring Application Development

Productivity,” Proceedings of the Joint SHARE, GUIDE, and
IBM Application Development Symposium, Monterey,
California, October 14–17, IBM Corporation, 1979, pp. 83–
92.

[4] Ashkon Technology, 2004, Information available at:
www.ashkon.com

[5] Barry Boehm, et al. Software cost estimation with COCOMO
II (with CD-ROM). Englewood Cliffs, NJ:Prentice-Hall,
2000.

[6] Boetticher, G., Menzies, T., and T. Ostrand, PROMISE
Repository of empirical software engineering data
http://promisedata.org/repository, West Virginia University,
Department of Computer Science, 2007

[7] Chenoweth, T., Obradovic, Z. and S. Lee, “Embedding
Technical Analysis into Neural Network Based Trading
Systems,” Applied Artificial Intelligence, vol 10, no. 6.,
1996, Pp. 523-541.

[8] Compton, T., and C. Withrow, “Prediction and Control of
Ada Software Defects,” J. Systems and Software, vol. 12, pp.
199-207, 1990.

[9] Eugene F. Fama, "Random Walks in Stock Market Prices,"
Financial Analysts Journal, Sept./Oct. 1965.

[10] Frick, et al., Genetic-Based Trading Rules - A New Tool to
Beat the Market With -- First Empirical Results, in
Aktuarielle Ansätze für Finanz-Risiken, Proceedings of 6th
International AFIR Colloquium, Nürnberg, 1.-3. October
1996, (Editor Pete Albrecht) Verlag Versicherungswirtschaft
e.V. Karlsruhe, Volume I/II, pp. 997 - 1018 (with coauthors
A. Frick, R. Herrmann, M. Kreidler and A. Narr).

[11] J.R. Gaffney, “Estimating the Number of Faults in Code,”
IEEE Trans. Software Eng., vol. 10, no. 4, 1984.

 A

B

http://www.ashkon.com/
http://promisedata.org/repository

[12] M.H. Halstead, Elements of Software Science. Elsevier
North-Holland, 1975.

[13] M. Lipow, “Number of Faults per Line of Code,” IEEE
Transactions on. Software Engineering, vol. 8, no. 4, pp.
437-439, 1982.

[14] Mizuno, et al., Application of Neural Network To Technical
Analysis of Stock Market Prediction, Studies in Informatics
and Control (With Emphasis on Useful Applications of
Advanced Technology), 7 2, June 1998.

[15] Alexandre Nikolenko, ANFutures website. Information
available at: http://www.anfutures.com/

[16] Park, Robert E. et al. Software Size Measurement: A
Framework for Counting Source Statements (CMU/SEI-92-
TR-20, ADA 258-304). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University,
September 1992.

[17] Ralph Wanger, A Zebra in Lion Country: Ralph Wanger's
Investment Survival Guide Everett Mattlin, Publisher: New
York, NY : Simon & Schuster, c1997

1 Investing is a very serious and risky endeavor. This paper is not intended to prepare the reader for investing of any kind. The author

and the University of Houston at Clear Lake assume no responsibility for any direct or indirect expenses or losses incurred by the
reader or any individuals affiliated with the reader as a result of applying software and/or techniques associated with this paper.

http://www.anfutures.com/

	Welcome
	Program
	Committees
	Author Index
	Repository
	Search

