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ABSTRACT 
One of the research objectives in Software Engineering Data 
Mining is to produce useful, usable, verifiable, and repeatable 
models for better managing software processes and projects. This 
objective implies that an organization will be more profitable as 
consequence of better management.  
Financial events, such as bailouts, high unemployment rates, 
foreclosures, etc. have received extensive news coverage since 
Fall, 2008. Many professionals are concerned about their job 
status and their retirement accounts. From the context of the 
Software Engineering community, one question arises: To what 
extent can the skills and knowledge attained in Software 
Engineering Data Mining apply towards Financial Data Mining? 
A reader may be motivated to explore both types of data mining 
due to the potential rewards. Furthermore, by studying both 
domains makes it possible to determine the financial impact of 
delivering software on time or with fewer defects. 
This paper examines 3 aspects related to both types of data 
mining. The underlying data used for constructing models, the 
models themselves, and validation techniques. 

Categories and Subject Descriptors 
D.2.8 [Metrics]: Performance measures 

General Terms 
Measurement, Economics, Experimentation. 

Keywords 
Software engineering, data mining, day trading, financial data 
mining, stock market 

1. INTRODUCTION 
From 1982 through 2007 the stock market (S&P) grew by an 
annual rate of 9 percent. These 26 years of prosperity lulled many 

investors into a “buy and hold” mindset. In 2008, the average U.S. 
portfolio lost approximately 39 percent. To fully recover these 
losses would take 9 years at an annual rate of 6 percent net profit. 
Such a drastic change in market conditions challenges the 
traditional “buy and hold” strategy. An alternative approach, 
which seeks to identify buying and selling opportunities, might be 
more appropriate given these volatile times. 
Shifting the focus from “what to buy” to “when to buy” suggests 
the application of financial data mining for identifying buying and 
selling opportunities. 
The potential for huge financial gains and the intellectual 
challenges are sufficient incentives for researching this domain. 
Those who have studied data mining in the Software Engineering 
domain may wonder about the extent of reusability of their 
Software Engineering data mining skills in the financial domain. 
Even if one is not motivated to pursue financial data mining, 
studying financial data mining could be beneficial in exploring 
the financial impact of delivering software on time or with fewer 
defects upon a company’s profit margin relative to the ebb and 
flow of the stock market. 
To migrate from Software Engineering Data Mining to Financial 
Data Mining, three aspects of each data mining domain are 
presented. The first aspect considers the nature of data, in terms of 
construct, quality, and quantity from each domain. Understanding 
the nature of data helps determine plausible approaches to 
building models relative to the domain. The second aspect 
considers the relative models, metrics, and indicators for each 
domain and how they may be used in the decision making 
process. The third aspect examines the validation process of 
models. This is an important step for it gives credibility to a 
model. This paper elaborates on each of these aspects. 
This paper is organized as follows. Section 2 presents a 
justification for financial data mining. Section 3 describes the 
nature of data from the two domains. Section 4 explores metrics, 
indicators, and models from both domains. In section 5 validation 
techniques are described. Section 6 discusses these aspects plus 
other aspects to consider when performing financial data mining 
using actual money. Section 7 offers a conclusion. 

 

 

2. WHY FINANCIAL DATA MINING? 
If you believe you or anyone else has a system that can 
predict the future of the stock market, the joke is on you 
[17]. 
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There are numerous papers on financial data mining that apply 
some type of machine learner to a financial data set. Below are 
some examples. 

Frick [10] combines Point-And-Figure (PNF) charting and 
Genetic Algorithms. Given a series of price movements, a 
corresponding PNF chart is created. The Genetic Algorithm 
generates a set of rules to apply to the PNF chart and the results 
are assessed.  
Mizuno et al. [14] build a neural network model against the 
Tokyo Stock Exchange Prices Index (TOPIX) spanning a 5-year 
period (1982-1987). The inputs consist of 4 technical indicators 
and three outputs (Buy/Hold/Sell). They use an “Equalized 
Learning Method.” This method duplicates vectors with Buy/Sell 
output values as a way of redistributing instance counts. They 
tested their models against the TOPIX from 1986 to 1987. Their 
best model produces an annual ROI of 20%. However, the buy-
and-hold strategy during this period produced an annual ROI of 
21%. 
Chenoweth et al. [7] uses a Directional Index (Directional 
Movement divided by True Range). The inputs consists of 
S&P500; S&P500, lagged 1 day; S&P500, lagged 2 days; U.S. 
Treasury Rate, lagged 2 months; U.S. Treasury Rate, lagged 3 
months; and 30 Year Government bonds. They trained on data 
spanning 1982 through 1988 and tested on data from 1989 
through 1993. Their best model achieves an annual rate of return 
of 16.39 percent. 
Financial Data Mining is often met with a certain degree of 
skepticism. The efficient market hypothesis [9] states that 
everyone has access to the same information; therefore any 
success appears to be a matter of chance. What is often lacking in 
the financial data mining research domain are results using real 
money. In this situation where a researcher becomes trader and is 
much more vulnerable to the financial pressures and may 
undermine the model (assuming it is not totally automated). 

Thus, if it is not possible to make money using financial data 
mining, then there is no reason to even consider migrating from 
Software Engineering Data Mining to Financial Data Mining. 

To address this concern, the author presents his 2008 and 2009 
financial results and 2009 results in Tables 1 and 2 respectively. 
The first three rows of each table show the statistical results for 
long trades (buy to enter, sell to exit), short trades (sell to enter, 
buy to exit), and the sum of the long and short trades. The second 
three rows of each table show composite trades. A composite 
trades consists of one or more raw trades that may have multiple 
entry points, but a single entry point. An example of a composite 
trade might buy one share of IBM at 100, buy a second share at 
90, then sell both shares at 98. The first raw trade lost two points 
(98 - 100), the second raw trade gained eight points (98 – 90), and 
the composite trade would have netted 6 points.  

Table 1: 2008 Trading Results 
 Winners Losers Pct. 
Raw Trades (Long) 412 193 68% 
Raw Trades (Short) 408 184 69% 
Raw Trades (Total) 820 377 69% 
Composite Trades (Long) 308 38 89% 
Composite Trades (Short) 272 24 92% 
Composite Trade (Total) 580 62 90% 

Table 2: 2009 Trading Results 
 Winners Losers Pct. 
Raw Trades (Long) 46 15 75% 
Raw Trades (Short) 25 14 64% 
Raw Trades (Total) 71 29 71% 
Composite Trades (Long) 37 0 100% 
Composite Trades (Short) 20 0 100% 
Composite Trade (Total) 57 0 100% 

 

One may argue that statistical success does not necessarily equate 
to financial success. For 2008, the trading portfolio increased by 
120 percent over 5.3 months of trading. For 2009, the trading 
portfolio is up 9 percent over 1.5 months of trading. 

3. DATA SETS 
At the foundation of any type of data mining is the data. This 
section compares software engineering data with financial data in 
terms of repeatability, reliability, and complexity. 

3.1 Software Engineering Data 
The largest public collection of software engineering data is the 
Predictor Models in Software Engineering (PROMISE) 
repository. As of April, 5, 2009 the PROMISE repository 
contained 88 software engineering-based data sets [6]. Fifty-six of 
these sets relate to defect prediction, 11 to effort estimation, 7 
general, 5 model-base SE, and 9 are text mining. Reuse of data 
across these sub-domains is not possible. Next, we focus on the 
two most prominent sub-domains defect data and effort 
prediction. 

Defect Data 
More than half (31 out of 56) of the defect data sets have the 
following layout: There are n – 1 independent variables which 
refer to various software metrics (size, language, or complexity), 
and a dependent variable which refers to the number of defects 
per module. Most of these 31 data sets come from a Turkish 
Telecommunications company or NASA. Comparing these 31 
defect data sets with the other 25 data sets would not be fruitful 
due to major differences in layout and meaning.  

Performing comparisons between the 31 data sets with the same 
general layout is difficult for several reasons. Two data sets may 
appear to contain the same metrics, but they may differ in how 
they define one or particular metric. A common example is how 
Source Lines of Code (SLOC) is defined. SLOC counts may 
include/exclude a variety of components such as comments, 
compiler directives, etc. There are at least 1000 permutations in 
defining SLOC [16]. Differences in SLOC count would over- 
under-state the amount of defects within an application. 

A second problem with the 31 data sets relates to defect counts. 
Defect count is highly resource dependent. It depends upon the 
number of persons reviewing some, their ability to identify 
defects, and the total amount of time dedicated to reviewing the 
code. Thus, defect counts are dependent on resource allocation It 
does not appear that any of the 31 defect data sets contain 
resource allocation metrics. 

Effort Estimation 

Within the 11 effort estimation data sets, 3 contain data related to 
some type COCOMO model, 3 are human-based models, and the 



other 5 do not fit any pattern. Since COCOMO is the most 
recognized effort estimation data set with the PROMISE 
repository, we examine these data sets. 

One must use caution when comparing the COCOMO-based data 
sets from the PROMISE repository for three reasons. Some of the 
COCOMO data collected spans more than 12 years (early 80s 
through early 90s). Thus, older COCOMO data may not contain 
metrics that reflect technological improvements in the software 
development process. Second, the COCOMO model contains 
many metrics that are subjective in nature. They are dependent 
upon an estimator’s assessment of the various facets of a software 
project. Third, many estimates consist of aggregate values. For 
example, the Process Maturity (PMAT) metric is based on 18 
estimates. 

3.2 Financial Data 
Financial data is essentially a series of ticks, where a tick 
represents a point in time where some financial instrument (e.g. a 
stock) is traded at a particular price. The price activity is 
segmented by a time-interval, such as one hour. During that time 
period the first trade price (the Open), the highest trade priced 
(the High), the lowest trade price (the Low), and the last trade 
price (the Close) are recorded. The total number of items traded 
(e.g. number of shares) during this period, called the Volume, is 
also recorded. Normally, the Open, High, Low, Close, and Volume 
are abbreviated as OHLCV. 

The OHLCV may be captured for multiple time frames ranging 
from 30 seconds up to quarterly (3 months). Choosing a particular 
time frame is a matter of personal preference. 

Daily, weekly, and/or monthly data may be acquired for free. A 
common source is Yahoo finance (http://finance.yahoo.com/). 
Intraday data  may be purchased for a nominal cost from a 
commercial data vendor [4, 15]. 
It is possible to get data for thousands of different stocks spanning 
decades. Data spanning a relatively long time frame may need to 
be adjusted to account for inflation. Also, a stock may experience 
a stock split. This would cause a drastic change in the price of a 
stock without changing the underlying value. 

4. EQUATIONS/TECHNICAL INDICATORS 
In the financial data mining domain the term Technical Indicator 
is used to describe some type of equation.  

In the Software Engineering domain, effort estimation equations, 
such as COCOMO [5] or Function Point Analysis [3] are more 
recognizable than defect prediction equations such as Akiyama 
[2], Halstead [12], Lipow [13], Gaffney [11], UNISYS [8]. This 
lack of recognition seems to be mostly a consequence of the 
infancy of the Software Engineering domain. 

There are at least 485 technical indicators available in the 
financial domain. A good introduction to some of the more 
common technical indicators is [1]. Some of the more common 
technical indicators include Relative Strength Index (RSI), and 
Simple Moving Average (SMA).  

Technical indicators by themselves are really metrics. What 
makes them indicators is by imposing some condition for making 
a buy or sell decision. Figure 1 illustrates this idea with the RSI 
indicator. When the RSI crosses below the 70 threshold suggests 

it is time to sell. When the RSI crosses above the 30 threshold 
suggests it is time to buy. 

Figure 1: Graph of RSI Indicator 

A second example might be whenever two or more simple 
moving averages (based on different periods) cross. Figure 2 
illustrates this idea. In this case, the market had a major downturn 
as a result of a short moving average crossing below a longer 
moving average. Short period moving averages crossing above 
longer period moving averages might indicate that the price will 
rise. 

Figure 2: Moving Averages Crossing 
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Thus, technical indicators would be used to generate a model 
which is a combination of buy and sell rules. An example of a 
simple financial model as depicted below. 

 BUY = RSI crosses above 30 
 SELL = RSI crosses below 70 

5. MODEL VALIDATION 
Both domains validate models by dividing a data set into 
independent data sets (train and test), using the training data to 
build a model (assuming that the user chooses not to use a pre-
existing model) and assessing the model using test data. 

Software Engineering models may be assessed using Pred 
(percentage of answers with a certain scope of accuracy), Mean 
Magnitude of Relative Error (MMRE), Mean Absolute Relative 
Error (MARE), or ROC curves. The Software Engineering 
community has not reached a consensus regarding which 
assessment approach to adopt, and which settings (e.g. PRED(25) 
or PRED(30))  to use.  

In the Financial Domain, models can be assessed using statistical 
methods (e.g. percent of winning trades), but statistical success 
doe not always guarantee financial success. Thus, a financial 
model may be assessed by how much profit it earns. 

Using only profit may not be sufficient to build a robust model. 
Consider the results from two financial models in Figure 3. Both 
models generate the same amount of profit. However, Model A is 
much more volatile than model B. This makes model B more 
attractive than A.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Results from Two Financial Models 

The financial validation must take into account certain financial 
realities. An example may be that a model can not trade more than 
10 percent of the average Volume for a given stock. To ignore this 
type of rule may result in a model that has a million dollars in 
equity buying 20 million shares of a 5-cent stock. 

6. DISCUSSION 
By studying these three areas, the data, metrics/indicators, and 
validation, a person may be able to migrate their SE data mining 
knowledge and skills into the financial domain in order to build 
viable financial models. 

Unfortunately having a viable financial model does not prepare a 
person for the demands of actual trading. One must master the 
emotional pressures associated with trading real money and 
exercise an extensive amount of discipline. The best way to 
improve in these areas is practice paper trading, then eventually 
trade with real money. 

A second aspect of trading is money management. Very few 
models are 100 percent successful. Therefore, it is important that 
a person know how to avoid accumulating large losses. 

7. CONCLUSIONS 
This paper compares some of the features of SE data mining with 
Financial data mining in terms of data, metrics/indicators, and 
model validation.  
Creating a financially viable model does not guarantee financial 
success. Attaining success includes mastering one’s emotions and 
money management skills. 
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