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ABSTRACT
Software maintenance continues to be a time and resource
intensive activity. Any efforts that help to address the main-
tenance bottleneck within the software lifecycle are welcome.
One area where such efforts are useful is in the identifi-
cation of the parts of the source-code of a software sys-
tem that are most likely to contain faults and thus require
changes. We have carried out an empirical study where we
have merged information from the CVS repository and the
Bugzilla database for an open-source software project to in-
vestigate whether or not parts of the source-code are faulty,
the number and severity of faults and the number and types
of changes associated with parts of the system. We present
an analysis of this information, showing that Pareto’s Law
holds and we evaluate the usefulness of the Chidamber and
Kemerer metrics for identifying the fault-prone classes in the
system analysed.

General Terms
Measurement, Software quality

Keywords
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1. INTRODUCTION
The development of large software systems is a time and
resource intensive activity. Even with the increasing au-
tomation of software development activities, resources are
still scarce. Therefore, we need to be able to provide accu-
rate information and guidelines to managers to help them
make decisions, plan and schedule activities, and allocate
resources for the different software activities that take place

during software development. Software measurement is nec-
essary to assist this decision making process before and dur-
ing the software development lifecycle.

Testing of large systems is an example of a resource and
time-consuming activity. Applying equal testing and veri-
fication effort to all parts of a software system has become
cost-prohibitive [2]. Therefore, identifying parts of the soft-
ware where testing efforts should be focused can help soft-
ware engineers and project managers, both now and in the
future, to direct peer-reviews, testing, inspections, and re-
structuring efforts towards these critical parts of the soft-
ware. As a result, developers can use their resources more
efficiently to deliver higher quality products in a timely man-
ner.

Due to the nature of Open Source software the web has in
effect become a shared distributed development forum for
all aspects of software design and maintenance. In an effort
to leverage this fact we have implemented a research method
broadly based on a Content Analysis [41] based approach.
Most researchers would accept that quantification is an es-
sential component of research. It is necessary if we hope
to test the relative relationships between selected variables.
One of the main strengths of Content Analysis compared
to other methods is that it can make use of information
sources that are not normally exploited by existing methods
and provides a means to use quantitative analysis on what
would normally be considered qualitative data. Analysis on
such a data source not only produces quantitative data but
also at the same time provides a good degree of rigor, repli-
cation and experimental control.

Using such sources such as open sources repositories also
opens up the possibility of gaining ’real life’ data and as
such promises a greater level of ecological validity and in-
sights into how Software Engineers interact in their other
environments when compared to studies based solely on ma-
terials and situations manufactured by researchers.

In addition as the open source community has records span-
ning back over a number of years so it becomes possible to
implement longitudinal studies, which are notoriously dif-
ficult in the fluctuating and fast moving world of Software
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Engineering.

The CVS and Bugzilla databases for an open source project
are used as the data sources for the empirical study reported
in this paper. In particular, in this paper we consider the
evolution of the source code of a software system and the
usefulness of the Chidamber and Kemerer software metrics
[16] for predicting fault-prone parts of the system studied.

2. RELATED WORK
Pareto’s Law (also known as the 80:20 rule) states that 80%
of the effects can be contributed to 20% of the causes. It is
a principle that seems to holds in many different contexts
and was orignally used to explain income and land owner-
ship distributions. It has also been shown to hold in the field
of software engineering where a number of empirical stud-
ies have shown that a large proportion (80%) of faults and
changes are centered in a small proportion (20%) of classes
[40, 55]. Koru and Liu [40] showed that 80% of the changes
to KOffice and Mozilla were centered in 20% of the classes.
Ware et al. [55] examined the evolution of a commercial
application over one year and found that Pareto analysis is
useful for predicting change-prone classes. Given the neces-
sity outlined in the introduction to focus testing effort on
the parts of the software that are most likely to be faulty,
Pareto’s Law can help to focus the testing effort on these
parts of the software. In this study we investigate if Pareto’s
Law holds for the software system analysed here.

In order to find the best ways of developing software, we
must be able to control and thus improve the quality of
software. To do this we must be able to measure it. As
De Marco stated: “You cannot control what you cannot
measure” [20]. Much of the research in software measure-
ment has focused on building models which aim to predict
some external characteristic(s) of a product by measuring
internal attributes of the product and building a predictive
model based on these measurements [11, 24, 32, 35, 5, 7]. In
this section we will consider first the range of software met-
rics that have been defined and then some of the empirical
studies that have utilised these metrics in assessing external
quality attributes.

2.1 Analysis of Software Metrics
With the widespread acceptance of the Object-Oriented (OO)
paradigm came the realisation that, while existing software
metrics would be useful, they would not be sufficiently accu-
rate to assess the use of abstractions such as encapsulation
and inheritance in this new paradigm [2]. As a result many
new metrics for analysing object-oriented systems have been
defined. In this section, some metrics which have been pro-
posed in the literature are presented.

One of the most common internal attributes of software
products to be measured is size. Many different size mea-
sures have been proposed in the literature (Lines of code,
cyclomatic complexity). These include measures of length
and measures of functionality. Estimates of a product’s size
made at an early stage of the development process can help
predict resource and cost requirements for a project.

Abreu et al. [1] presented a set of system-level metrics
(MOOD) that return values between 0 and 1. Thus a value

of 0 represents the absence of a factor and a value of 1 rep-
resents the maximum possible presence of the factor. The
metrics defined by Lorenz and Kidd [42] (e.g. number of
public instance methods, number of overridden methods)
are more “directly countable” and thus should be easier to
collect [33].

The metrics defined by Chidamber and Kemerer [16] cover
many aspects of the OO paradigm and are the most com-
monly cited OO metrics in the literature. These metrics
include:

• Weighted Methods per Class (WMC): This is the sum
of the weights of all the methods in a class. If the
weight assigned to each method is just one then WMC
is the number of methods in the class (NMC) [18].
NMC is the metric adopted in this study.

• Depth of Inheritance Tree (DIT): The DIT of a class
is the maximum distance in the inheritance tree of the
class from the root node of the hierarchy.

• Number of Children (NOC): The number of children
(derived classes) of a class is the number of classes in-
heriting directly from the class. If a class has a large
number of children this suggests that this class pro-
vides a broad description of a set of classes.

• Coupling between object classes (CBO): “CBO for a
class is a count of the number of other classes to which
it is coupled” [16]. Two objects are coupled if “one
of them acts on the other, i.e. methods of one use
methods or instance variables of another ”. This mea-
sure of coupling includes coupling due to inheritance.
Chidamber and Kemerer state that“excessive coupling
between object classes is detrimental to modular de-
sign”.

• Response for a class (RFC): RFC is a measure of the
magnitude of the response set for a class. The response
set is composed of all the methods in the class itself and
all the methods which can be called from the methods
in the class.

2.2 Evaluating External Attributes of Software
Systems

Many of the studies which attempt to associate internal mea-
sures with external quality attributes of systems focus on
the fault-proneness of systems as an external characteristic.
This stems from the fact that reliability or correctness are
important characteristics in software quality models. For
example, in McCall’s model [44] both reliability and cor-
rectness are both categorised as quality factors. In ISO 9126
[36] one of the six sub-characteristics of internal and external
quality is reliability and one of the factors for determining re-
liability in this model is fault-tolerance. Finally in Dromey’s
model [21] one of the four quality carrying properties of com-
ponents of software products are correctness properties.

One way of measuring or partly measuring the reliability
or correctness of components or modules (e.g. classes) in
a product is to measure the number of faults or the exis-
tence of faults in these modules. If a relationship between



the internal characteristics of some modules and their fault-
proneness can be established for a system, then the structure
of modules with respect to these characteristics should be
evaluated. If the internal attributes can be extracted from
a system at an early design stage then early corrective ac-
tion can be taken to improve the overall quality of a system.
However, many empirical studies reported in the literature
extract these metrics from the source-code of software sys-
tems.

2.2.1 Empirical studies of fault-proneness
Table 1 summarises a selection of empirical studies from the
literature which attempt to build prediction models for iden-
tifying fault-prone classes or classes that are likely to have
many faults in object-oriented systems. The first column of
Table 1 provides the reference for where the study was re-
ported. The second column describes the software systems
that were used to provide the data for analysis. In this col-
umn ’P’ stands for proprietary(a proprietary software sys-
tem), ’OS’ means an open-source system and ’S’ means a
system developed by students. The third column describes
the metrics included in the analysis for the corresponding
system. In this column, MOOD refers to the metrics de-
fined by Abreu et al. [3] C&K means the metrics defined by
Chidamber and Kemerer [16] Briand97 refers to the metrics
defined by Briand et al. [10] and L&K stands for the Lorenz
and Kidd metrics [42]. The analysis method (column four of
Table 1) refers to the analysis techniques applied to establish
which metrics are statistically significantly associated with
faulty classes.

It is worth noting that much of the early work in validating
Object-Oriented metrics utilised software systems developed
by students. However, since about 2001 either proprietary
or open source systems have been used to validate these
metrics. These systems obviously reflect the intricacies and
complexities of actual software systems. A number of re-
searchers and research groups have utilised proprietary soft-
ware systems and a range of metrics and analysis methods
for their work. Others have used the data from the NASA
Metrics Data Program (MDP) as the basis for their research.
Surprisingly few of the papers reviewed here have utilised
the potential of open-source software to carry out similar
research. Two notable exception are Gyimothy et al. [32]
who studied the Mozilla software system and Zimmermann
et al. [58] who studied Eclipse. In this research we study
a component of the Eclipse software, the Java Development
Kit (JDT).

Many of the empirical studies summarised in Table 1 study
the effect of the Chidamber and Kemerer metrics on fault-
proneness. Coupling metrics, (CBO or RFC) and the in-
heritance metric, (DIT) seem to be included in many of the
multivariate analysis models constructed. Similar analysis
has been undertaken on the open-source software system
Mozilla, [32]. The Chidamber and Kemerer metrics suite
was extracted from the software. The CBO metric along
with lines of code (LOC) were the best metrics for predicting
the fault-proneness of classes. Subramanyam and Krishnan,
[52], found similar results. In this research we also validate a
subset of the Chidamber and Kemerer metrics and compare
our results to those of [32].

3. THE EMPIRICAL STUDY
Perry et al. [49] have proposed a structure that good em-
pirical studies should follow. Their proposed structure is
embodied in this empirical study.

3.1 Research Context
In this paper we analyse the CVS and the Bugzilla database
for an open-source system to link changes in the source code
with faults/issues raised in Bugzilla. Previous research in
this field has developed tools which exploit the information
stored in version control systems such as CVS and issue
tracking systems such as Bugzilla. For example, Fischer
et al. [30], Cubranic and Murphy [19] and Sliwerski et al.
[51] have integrated these information sources to help gain
a deeper insight into the evolution of software and in par-
ticular for impact analysis purposes. As mentioned in the
previous section, Gyimothy et al. [32] also link Bugzilla in-
formation with changes to the source code to evaluate the
Chidamber and Kemerer metrics [16]. Ayari et al. [4] high-
light some of the threats to building models from this infor-
mation. Their main concerns are that many links between
the two repositories cannot be recovered and also that the
issues raised in an issue tracking system may not all re-
late to corrective maintenance and thus the resulting mod-
els may be inappropriately be called fault-detection models.
Ostrand et al. [48] also discuss this issue. They proposed a
heuristic that if more than two files were affected by a mod-
ification request then it was unlikely to be a fault because it
was likely to be a change in the interface due to a change in
the specification. The tool adopted in this analysis for the
integration of CVS and Bugzilla information, Venus [17].

3.2 Research Questions
The following research questions are considered in this re-
search:

• RQ1: Does Pareto’s Law hold for the distribution of
faults/issues in classes in the source code?

• RQ2: Are the Chidamber and Kemerer metrics [16]
good predictors of faulty/non-faulty classes?

• RQ3: Are the Chidamber and Kemerer metrics [16]
good predictors of high-fault prone classes?

• RQ4: Are the Chidamber and Kemerer metrics [16]
good predictors of fault prone classes?

3.3 Study Design
In choosing a system to analyse a number of criteria needed
to be taken into account. These include:

• Our study should be repeatable by others. The im-
portance of replication of empirical studies has been
extensively highlighted [13, 9, 14, 37]. Therefore, the
source code of the system analysed and the experimen-
tal data should be publicly available

• The system should be of non-trivial size and thus projects
developed by students should be excluded

• Access to the version control system and issue tracking
system is required



Study Data Set Metrics Analysis Method Statistically Sig-
nificant Metrics

[3] S MOOD Pearson, MLinR MOOD
[6] S C&K ULR, MLR CBO, RFC, DIT
[10] S C&K, Briand97 ,ULR, MLR OCMEC, FM-

MEC, DIT,RFC
[8] S IC,EC, inheri-

tance and cohe-
sion measures

LR IC, cohesion, Inh,
Ovr, Add

[12] P (90 C++
classes)

As above Spearman, MLR IC(method invo-
cation)

[11] S Spearman, MLR IC(method invo-
cation), cohesion

[22] P(85 C++
classes)

C&K, Briand97 MLR Size, CBO,
ACMIC

[23] P(174 C++
classes)

C&K, ⊆L&K LR none after con-
trolling for size

[24] P(69 Java
classes)

C&K, Briand97 OCMEC, DIT,
Size

[28] P(2 systems) Size, Complexity Alberg diagrams,
Negative bino-
mial

Size(LOC)

[27] P(31 projects) Qualitative and
Quantitative
Factors

Bayesian Net-
work

Qualitative and
Quantitative

[29] S 200 metrics MLR coupling cohesion
and inheritance
measures in-
cluded

[32] OS (Mozilla
(3677 classes))

C&K MLR, MLinR CBO, DIT,
WMC, LOC

[31] P (145 Java
classes)

⊆C&K,
⊆Briand97

MLR IC, DIT

[34] S(avg. 12
classes), Sys-
tem(12 classes),
LEDA (197
classes)

C&K Spearman WMC

[38] NASA MDP Design, Code
metrics

Machine Learn-
ing Algorithms

All metrics

[45] NASA MDP McCabe, Hal-
stead, LOC

Machine Learn-
ing

All

[46] P (5 Microsoft
systems)

module, function
and class metrics

Spearman, PCA
MLinR

metrics from each
group

[48] P(2 systems) Size,Prior faults,
Age, file status,
program type

Negative bino-
mial

All

[52] P (405 C++
classes, 301 Java
classes)

⊆C&K Pearson and
WLS

Size, WMC,
CBO, DIT

[53] P(3 Systems) C&K WMC, RFC
[56] 123 Java classes ⊆C&K LR NMC, NOC,

CBOout, RFCin,
DIT, LCOM

[58] OS (Eclipse) method, class, file
and package met-
rics

Spearman, LR
LinR

metrics from each
group

Table 1: Summary of Empirical Studies for predicting fault-proneness



Classes 1412
Files 1147
Subroutines 18198
Lines 411153
Lines Blank 28142
Lines Code 268945
Lines Comment 126895
Declarative Statements 57681
Executable Statements 127154
Ratio Comment/Code 0.47
No. of Commit operations on 05/02/2008 9874

Table 2: Summary Statistics for JDT Core compo-
nent

Faults/Issues Resolution Total
Verified * 4,355
Resolved * 5,213
Other * 866
TOTAL * 10,433

Table 3: Issue Information for JDT Core

On this basis the Java Development Toolkit (JDT) compo-
nent of the Eclipse project was chosen for this analysis. The
Core sub component of the JDT comprising 1412 class files
and over 268000 LOC satisfies our requirements for this ex-
periment. Table 2 provides summary statistics for the JDT
Core component.

The Bugzilla database for the Eclipse project [54] provides
detailed information related to issues reported. The data
in Table 3 provides details of all issues related to the Core
component of the JDT product in Eclipse on the 05 February
2008.

We are interested in those issues/faults that are fixed and so
we concentrate on a subset of the 10,433 (see Table 3) differ-
ent issue entries. We focused on issues having the resolution
marked as FIXED and status VERIFIED and RESOLVED
because these are the issues that have been resolved and thus
it is likely that they will be mentioned in a commit operation
comment. Table 4 summarises this information. From the
total of 4704 issues enumerated in Table 4, we found an im-
pact on CVS messages of 3336 issues/faults (a 71% match).
Therefore, we are able to trace the changes induced (or at
least linked, to via the commit comment in CVS) by these
issues/faults through the CVS system and ultimately map
the issue ID with a changed piece of code and specifically a
class name. We are able to map both changes and issues to
code segments in this way.

Faults/Issues Resolution Total
Verified Fixed 3912
Resolved Fixed 792
TOTAL Fixed 4704

Table 4: Issues with resolution fixed for JDT Core

Mozilla NMC NOC DIT CBO RFC LOC
NMC 1.00 0.00 0.16 0.43** 0.54** 0.56**
NOC 1.00 0 0 0 0
DIT 1.00 0.17 0.52** 0.08
CBO 1.00 0.48** 0.58**
RFC 1.00 0.40**
LOC 1.00
JDT NMC NOC DIT CBO RFC LOC
NMC 1.00 .126** -.018 .555** .869** .791**
NOC 1.00 -.108 .297 .061 .047
DIT 1.00 .071 .046 -.026
CBO 1.000 .643** .565**
RFC 1.00 .858**
LOC 1.00

Table 5: Correlations between Metrics

3.3.1 Tools
Our aim is to associate issue/fault requests that are reported
in Bugzilla with specific parts of the source code of a soft-
ware system. A typical Bugzilla database does not hold this
type of information. However, CVS comments provide a rich
source of documentation (including the issue request ID in
some cases) [15].

In this work we utilise Venus [17], an Eclipse plug-in which
creates traceability links between CVS and Bugzilla. Venus
utilises the powerful functionality of the Eclipse platform to
identify the differences between two versions of a file and
thus the impact set of a change. From that impact set the
resources modified (e.g. class, method) can be identified. If
the corresponding CVS commit comment referred to an issue
ID, then this ID can be verified using the Bugzilla database.

In addition to identifying traceability links between issues
raised in Bugzilla and the source code (via CVS), it is also
necessary to extract metrics from the source code of the
project to help build a prediction model. The manual appli-
cation of metrics to software is likely to be a time-consuming
and error-prone task even for small systems. The source
code analysis tool Understand for Java was used for this
purpose [50].

Table 5 presents the correlations between the metrics for the
JDT system (analysed in this study). and for Mozilla (anal-
ysed by Gyimothy et al. [32]). A ** denotes a statistically
significant correlation. It is noteworthy that almost all the
correlations that were statistically significant for the Mozilla
study [32] are also significant for this study of the JDT sys-
tem. The only exception is the significant correlation found
between RFC and DIT for Mozilla which is not significant
for the JDT system. Mozilla is developed in C++ and JDT
in Java. We have found that C++ systems tend to have
more inheritance than Java systems [25]. This may be the
reason for the significant correlation in the Mozilla system
here. There is also a significant correlation between NOC
and NMC for JDT which doesn’t exist for Mozilla. Again
this highlights a possible difference between the inheritance
structures in C++ systems compared to Java systems.

3.4 Data Analysis and Interpretation



20% of 1412 282
Number of faults in first 282 classes 7204
Percentage of faults in first 282 classes 82

Table 6: Pareto’s Law(faults/issues in classes)

20% of 1412 282
Number of changes in first 282 classes 35244
Percentage of changes in first 282 classes 89.5

Table 7: Pareto’s Law(changes in classes)

In this section we investigate each of the research questions
outlined earlier.

RQ1: Does Pareto’s Law hold for the distribution of faults/
issues in classes in the source code?

Table 6 provides the results for Pareto’s Law. As the table
illustrates 82% of faults/issues occured in 20% of the classes.
This supports earlier findings outlined above, concerning
Pareto’s Law. Identifying the small proportion of problem-
atic classes, and then focusing testing efforts on them could
significantly improve the quality of these products, reduce
the product-release cycles, and ultimately the development
and maintenance costs. The priority and severity of issues
has not been accounted for here but will be the focus of fu-
ture work. As well as considering the number of faults/issues
associated with classes, we have also considered the number
of changes associated with classes as per Koru and Liu [40].
Our findings support previous results showing that in excess
of 80% of changes are centered in 20% of classes.

The next stage of our analysis is to try to build a prediction
model for identifying fault-prone and change-prone classes
in a software system.

RQ2: Are the Chidamber and Kemerer metrics [16] good
predictors of faulty/non-faulty classes?

A univariate logistic regression analysis was undertaken us-
ing some of the Chidamber and Kemerer metrics [16] along
with the Lines of code (LOC) metric, each as the indepen-
dent variable in the regression in turn. The dependent vari-
able was a boolean representing whether or not classes are
faulty.

JDT NMC NOC DIT CBO LOC RFC
Coeff. .113 .095 .410 .165 .009 .054
Const. -.260 .556 -.171 -.616 -.132 -.397
p-value <.001 .005 <.001 <.001 <.001 <.001
R

2 .195 .010 .106 .323 .222 .276
Mozilla
p-value <.001 0.551 <.001 <.001 <.001 <.001
R

2 0.114 0.000 0.067 0.152 0.128 0.108

Table 8: Result of Univariate Logistic Regression

Table 8 presents the results of this analysis for each met-
ric. The p-value for each metric tells whether or not this
this metric is a significant predictor of the dependent vari-
able. For each metric the p-value is significant (< .05), al-
though NOC seems less significant than the other metrics.
Table 8 also presents the corresponding results achieved by
Gyimothy et al. [32]. In general our results seem to achieve
considerably higher R

2 values. The NOC metric does not
seem to be strongly statistically significant in either study.
The coefficient reflects the strength of the impact of the im-
pact of the independent variable. The sign of this coefficient
reflects whether the impact is positive or negative. The R

2

coefficient gives the proportion of the total variation in the
dependent variable that is explained by the model. The
larger the value of R

2 the better the dependent variable is
explained by the independent variable.

It should be noted that “in logistic regression, high R
2 val-

ues are rare opposed to the R
2 values of least-square regres-

sion because they are built on very different formulae” [32].
In this context our results are quite important since NMC,
LOC, RFC and in particular CBO (R2=32.3%) can explain
a considerable amount of the variation in the dependent vari-
able. This compares with 15.2% of the variation being ex-
plained by CBO in the study undertaken by Gyimothy et
al. (see last two rows of Table 8).

It is likely that the metrics considered are not totally inde-
pendent. If strong correlations exist between some metrics
then not all of these metrics should be included in a multi-
variate model. The correlations between RFC and LOC and
between RFC and NMC seem particularly large (see Table 5)
and thus could lead to the problem of multicollinearity if all
these metrics are included in a multivariate model. In fact
we constructed such a model and found that NMC and LOC
were not significant predictors in the model and that NMC
had a negative coefficient. This is unusual since one might
expect bigger classes to have more faults/issues associated
with them.

We use stepwise selection to determine which variables should
be included in the multivariate model. Each variable is cho-
sen in turn as the dependent variable with all other variables
as the independent variables. The R

2 value of the regression
is highest when RFC is the dependent variable. Combined
with the correlations above, this suggests that this metric
should be excluded from the regression model. We also ex-
clude NOC since its significance in the univariate model is
less than the other metrics.

In the multivariate logistic regression analysis we found R
2 =

0.371. We have seen that in logistic regression R
2

> 0.3 is
considered good so our model seems to be a good predictor.
Gyimothy et al. [32] found that R

2 = 0.175 in their analy-
sis. This result was only slightly better than the univariate
model using CBO. Our findings are similar with an increase
of 0.05 in R

2 in going from the univariate model (with CBO)
to the multivariate model.

Logistic regression also provides classification models. These
models assign each class either a faulty or non-faulty status,
based on a threshold value of 0.5. This means that if the
model value for a class is > 0.5 the class is classified as



JDT Const NMC DIT CBO LOC
Coeff. -1.155 .026 .271 .107 .002
p-value <.001 .044 <.001 .001 .031

Table 9: Multivariate Logistic Regression

Predicted Predicted Percentage
Observed Not faulty Faulty Correct
Not faulty 330 157 67.8
Faulty 162(1658) 757(7132) 77.3

Table 10: Classification of Classes based on Multi-
variate Logistic Regression

faulty otherwise it is classified as not faulty. Each of the
models (the univariate models and the multivariate model)
were utilised to create a classification table.

Table 10 shows the results of the classification for the mul-
tivariate logistic regression. The numbers in parentheses
are the sum of the faults that were found in that group of
classes. As we can see from Table 10, the model classified
1087 (330+757) of the 1406 classes correctly, that is with
the precision of 77,31%.

Table 11 shows the values for the precision, correctness, and
completeness of the univariate logistic regression models and
the multivariate logistic regression model.

RFC and CBO have very high correctness values (81.6% and
82.24%), meaning that only a small percentage (18.4 percent
and 17.73 percent) of the faultless classes were predicted as
faulty. As such they are almost as good as the multivari-
ate model. There is little difference between the univariate
models using NMC, CBO, RFC and LOC and the multi-
variate model from the perspective of precision. However,
with regard to completeness the multivariate model is con-
siderably better than any of the univariate models with the
model using CBO as the independent variable as the next
best as regards completeness. Again, in general our results
suggest that these metrics are slightly better predictors than
the findings of Gyimothy et al. [32] suggest.

RQ3: Are the Chidamber and Kemerer metrics [16] good
predictors of high-fault prone classes?

Given that a large proportion of the issues/faults occur in a

Metric Precision Correctness Completeness
NMC 76.30% 77.58% 64.87%
NOC 65.40% - -
DIT 64.79% 66.61% 53.03%
CBO 78.00% 82.24% 72.78%
RFC 76.70% 81.60% 62.35%
LOC 75.24% 76.21% 68.34%
Multi 77.31% 82.82% 81.13%

Table 11: Precision, Correctness and Completeness
for Regression Models

NMC NOC DIT CBO LOC RFC
Coeff .052 .083 .127 .074 .007 .035
Const -2.2 -1.1 -1.7 -2.6 -2.7 -2.8
p-value < .001 .001 .001 < .001 < .001 < .001
R

2 .198 .012 .012 .342 .436 .405

Table 12: Univariate Logistic Regression (classes >

10 faults/issues)

NMC CBO LOC RFC
Coefficient .046 .037 .003 .029
p-value < .001 < .001 < .001 < .001

Table 13: Multivariate Logistic Regression (classes
> 10 faults/issues)

small proportion of classes, it is important to identify these
classes that are associated with many faults. Therefore we
decided to create a new dependent variable. This variable is
also a boolean variable and distinguishes classes that have
more than ten faults/issues associated with them from those
that have less than ten faults/issues associated with them.

The univariate logistic regression with the new dependent
variable is presented in Table 12. The R

2 of NOC and DIT
is again very low so these metrics seem to be less useful.
We exclude these two metrics from our multivariate logistic
regression prediction model. In the multivariate logistic re-
gression (see Table 13) we obtain R

2 = 50.2% illustrating
that the four metrics included in the model can predict half
of the variation in the dependent variable. More efforts will
be expended in improving this model in the future since it is
important to have a good prediction model for classes that
are associated with a large number of issues/faults.

Given that logistic regression uses a binary variable as its
dependent variable, we have only been able to build models
for classes classified as either faulty or non-faulty. Linear re-
gression is used for RQ4 to try to build models which utilise
the number of faults as the dependent variable, since the
number of faults associated with classes varies widely.

RQ4: Are the Chidamber and Kemerer metrics [16] good
predictors of fault prone classes?

As in the logistic regression, the independent variables are
the metrics in the linear regression, but the dependent vari-
able is the number of faults/issues in a class.

The univariate linear regression presented in Table 14 sug-
gests that LOC and RFC are both good predictors (R2

>

0.60) of the number of faults/issues associated with a class.
NMC and CBO are reasonable predictors, each explaining
almost 40% of the variation in the number of issues in a
class. However, both NOC and DIT are not significant pre-
dictors of the dependent variable. In fact they only explain
0.4% and 0.2% of the variation in the number of issues in
a class. Our results show a much higher R

2 for LOC and
RFC than the results of Gyimothy et al. [32] which are pre-
sented at the bottom of Table 14. Our results are slightly



JDT NMC NOC DIT CBO LOC RFC
Coefficient 0.396 0.463 0.332 0.476 0.024 0.210
Constant 2.178 6.921 6.584 0.668 2.213 0.097
p-value .000 .023 .227 .000 .000 .000
R

2 .393 .004 .002 .397 .626 .607
Mozilla
p-value .000 0.728 .000 .000 .000 .000
R

2 0.321 0.000 0.139 0.349 0.342 0.280

Table 14: Univariate Linear Regression (Fault-
proneness)

Dep. Var R
2 F-value p-value Indep. Vars

Num. faults .690 1040.7 .000 LOC,RFC,CBO

Table 15: Multivariate linear regression (Fault-
proneness)

higher for NMC and CBO. The results for the inheritance
metrics (DIT and NOC) are similar and while we didn;t find
either metric significant, Gyimothy et al. found DIT to be
significant although with R

2 = 0.139.

Our findings with respect to the inheritance metrics sug-
gest that both of these metrics should be excluded from the
multivariate model. Given that RFC and LOC, RFC and
NMC, and NMC and LOC are highly correlated we also
exclude NMC from the multivariate regression model since
this metric explains considerably less of the variation in the
number of issues in a class compared to the other two met-
rics.

Table 15 presents the results of this analysis. The multivari-
ate model with LOC, RFC and CBO as independent vari-
ables can predict 69% of the variation (compared to 43% in
[32]) in the dependent variable (number of issues per class).
Our multivariate linear regression model is only slightly bet-
ter than the univariate linear model with either LOC or RFC
as the independent variable.

3.5 Validity
The construct, internal and external validity of this empiri-
cal study is considered in this section.

3.5.1 Construct Validity
Construct validity focuses on how accurately the metrics
utilised measure the phenomena of interest. With respect to
the software metrics extracted from the source code, a com-
mercially available tool that has been widely adopted in both
academia and industry was used for this purpose. This tool
calculated the Chidamber and Kemerer metrics which we
utilised in this study. However, there has been considerable
discussion in the literature with respect to how some of these
metrics should be implemented, especially CBO. We utilised
the definitions provided by Understand for Java. In this way
our study can be replicated easily. The other two metrics
utilised (number of changes and number of faults/issues) are
dependent on the accuracy of Venus, the tool we used to link
CVS and Bugzilla information. Eclipse provides consider-
able support for this process and therefore we are confident

that these metrics are extracted accurately. However, as has
been noted earlier, the number of faults/issues reflects all is-
sues that are reported in Bugzilla and so may contain issues
that would not be categorised as corrective maintenance and
therefore should not be classified as faults. Having said that
a majority of the issues were classified as normal severity,
with a smaller proportion classified as enhancements. How-
ever the severity and priority of issues needs to be considered
in more depth in the future.

3.5.2 Internal Validity
Internal Validity is the degree to which a causal relation-
ship can be established between the independent variables
and the dependent variables. From our results the best
logistic regression for identifying classes with issues/faults
was the multivariate regression. This model explained 37%
of the variation in the dependent variable (number of is-
sues/faults). However, this is considered a good result for
logistic regression. When we changed the dependent variable
to consider classes with more than ten faults the amount of
variation explained by the model increased to 50.2%. The
multivariate linear regression with number of issues/faults
as the dependent variable explained 69% of the variation in
the dependent variable. This is a reasonable result, however
other metrics which may explain more of the variation in
the dependent variable need to be identified and included in
the model.

3.6 External Validity
The degree to which the findings from a study can be gen-
eralised to the whole population of interest constitutes the
external validity. The JDT Core is of a considerable size
and is comparable to many open-source projects [26]. How-
ever, while JDT Core may be of a similar size to many other
open-source projects, further replication is required to confi-
dently propose that the findings identified in this paper hold
across many projects in the open-source domain. In addi-
tion, it may not be possible to extend the findings of studies
involving open-source software systems to proprietary soft-
ware due to the different development practices adopted [39,
43]. However it is also now claimed that many open-source
projects have many similar characteristics to proprietary
systems [47]. Further validations with both open-source
and proprietary software systems are necessary to help us
draw stronger conclusions and help identify the causal mech-
anisms for external quality attributes.

4. CONCLUSIONS
The empirical study reported in this paper has identified
a number of interesting findings in relation to the nature
of changes in an open-source software system. Most of the
changes applied to a system are changes to existing methods
or classes, with a smaller proportion relating to addition and
deletion of methods. It was surprising that most issues are
reported with normal severity. This suggests that reporters
abide by the guidelines for creating issue reports.

Our findings confirm earlier results that Pareto’s Law holds
for the changes applied to the system. In relation to predict-
ing classes associated with issues/faults a number of gen-
eral conclusions can be drawn. First the inheritance based
metrics NOC and DIT were not very useful in any of the



prediction models. This is probably due to the fact that the
metrics themselves do not show much variation and thus are
not good for the purpose of distinguishing different classes.
The coupling metrics CBO and RFC along with LOC were
the best predictors of fault-prone classes supporting much of
the empirical work presented in Table 1. While our results
suggest that these metrics are better predictors than the re-
sults presented by Gyimothy et al. these differences may be
due to variations in the systems analysed. Variations in the
systems should be studied further to try to identify which
metrics sets are most suitable to which systems.

Future research will investigate the evolution of open source
software systems in more detail addressing a number of spe-
cific areas. These include building models to identify the
most fault-prone classes in systems and building prediction
models for issues with different severity and priority levels.
Given that previous findings suggest that the Chidamber
and Kemerer metrics can predict classes with low severity
faults better than classes with high severity faults [57] sug-
gests that this is an area which requires further investigation.
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